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Abstract. A closed string is a string with a proper substring that occurs in the string
as a prefix and a suffix, but not elsewhere. Closed strings were introduced by Fici
(Proc. WORDS, 2011) as objects of combinatorial interest in the study of Trapezoidal
and Sturmian words. In this paper we consider algorithms for computing closed factors
(substrings) in strings, and in particular for greedily factorizing a string into a sequence
of longest closed factors. We describe an algorithm for this problem that uses linear
time and space. We then consider the related problem of computing, for every position
in the string, the longest closed factor starting at that position. We describe a simple
algorithm for the problem that runs in O(n log n/ log log n) time.

1 Introduction

A closed string is a string with a proper substring that occurs as a prefix and a suffix
but does not have internal occurrences. Closed strings were introduced by Fici [3] as
objects of combinatorial interest in the study of Trapezoidal and Sturmian words.
Since then, Badkobeh, Fici, and Liptak [1] have proved a tight lowerbound for the
number of closed factors (substrings) in strings of given length and alphabet.

In this paper we initiate the study of algorithms for computing closed factors. In
particular we consider two algorithmic problems. The first, which we call the closed

factorization problem, is to greedily factorize a given string into a sequence of longest
closed factors (we give a formal definition of the problem below, in Section 2). We
describe an algorithm for this problem that uses O(n) time and space, where n is the
length of the given string.

The second problem we consider is the closed factor array problem, which requires
us to compute the length of the longest closed factor starting at each position in the
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input string. We show that this problem can be solved in O(n log n

log log n
) time, using

techniques from computational geometry.
This paper proceeds as follows. In the next section we set notation, define the

problems more formally, and outline basic data structures and concepts. Section 3
describes an efficient solution to the closed factorization problem and Section 4 then
considers the closed factor array. Reflections and outlook are offered in Section 5.

2 Preliminaries

2.1 Strings and Closed Factorization

Let Σ denote a fixed integer alphabet. An element of Σ∗ is called a string. For any
strings W,X,Y,Z such that W = XYZ, the strings X,Y,Z are respectively called a
prefix, substring, and suffix of W. The length of a string X will be denoted by |X|.
Let ε denote the empty string of length 0, i.e., |ε| = 0. For any non-negative integer
n, X[1, n] denotes a string X of length n. A prefix X of a string W with |X| < |W|
is called a proper prefix of W. Similarly, a suffix X of W with |Z| < |W| is called a
proper suffix of W. For any string X and integer 1 ≤ i ≤ |X|, let X[i] denote the ith
character of X, and for any integers 1 ≤ i ≤ j ≤ |X|, let X[i..j] denote the substring
of X that starts at position i and ends at position j. For convenience, let X[i..j] be
the empty string if j < i. For any strings X and Y, if Y = X[i..j], then we say that i
is an occurrence of Y in X.

If a non-empty string X is both a proper prefix and suffix of string W, then, X is
called a border of W. A string W is said to be closed, if there exists a border X of
W that occurs exactly twice in W, i.e., X = W[1..|X|] = W[|W| − |X| + 1..|W|] and
X 6= W[i..i+ |X| − 1] for any 2 ≤ i ≤ |W| − |X|. We suppose that any single character
C ∈ Σ is closed, assuming that the empty string ε occurs exactly twice in C. A string
X is a closed factor of W, if X is closed and is a substring of W. Throughout we
consider a string X[1, n] on Σ. We define the closed factorization of string X[1, n] as
follows.

Definition 1 (Closed Factorization). The closed factorization of string X[1, n],
denoted CF(X), is a sequence (G0,G1, . . . ,Gk) of strings such that G0 = ε, X[1, n] =
G1 · · ·Gk and, for each 1 ≤ j ≤ k, Gj is the longest prefix of X[|G1 · · ·Gj−1| + 1..n]
that is closed.

Example 2. For string X = ababaacbbbcbcc$, CF(X) = (ε, ababa, a, cbbbcb, cc, $).

We remark that a closed factor Gj is a single character if and only if |G1 · · ·Gj−1|+1
is the rightmost (last) occurrence of character X[|G1 · · ·Gj−1|+ 1] in X.

We also define the longest closed factor array of string X[1, n].

Definition 3 (Longest Closed Factor Array). The longest closed factor array of

X[1, n] is an array A[1, n] of integers such that for any 1 ≤ i ≤ n, A[i] = ℓ if and only

if ℓ is the length of the longest prefix of X[i..n] that is closed.

Example 4. For string X = ababaacbbbcbcc$, A = [5, 4, 3, 5, 2, 1, 6, 3, 2, 4, 3, 1, 2, 1, 1].

Clearly, given the longest closed factor array A[1, n] of string X, CF(X) can be
computed in O(n) time. However, the algorithm we describe in Section 4 to compute
A[1, n] requires O(n logn

log logn
) time, and so using it to compute CF(X) would also take

O(n logn

log logn
) time overall. In Section 3 we present an optimal O(n)-time algorithm to

compute CF(X) that does not require A[1, n].
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Figure 1. The suffix tree of string X = ababaacbbbcbcc$, where each leaf stores the beginning
position of the corresponding suffix. All the branches from an internal node are sorted in ascending
lexicographical order, assuming $ is the lexicographically smallest. The suffix array SA of X is
[15, 5, 3, 1, 6, 4, 2, 8, 9, 10, 12, 14, 7, 11, 13], which corresponds to the sequence of leaves from left to
right, and thus can be computed in linear time by a depth first traversal on the suffix tree.

2.2 Tools

The suffix array [5] SAX (we drop subscripts when they are clear from the context)
of a string X is an array SA[1..n] which contains a permutation of the integers [1..n]
such that X[SA[1]..n] < X[SA[2]..n] < · · · < X[SA[n]..n]. In other words, SA[j] = i iff
X[i..n] is the jth suffix of X in ascending lexicographical order.

The suffix tree [8] of a string X[1, n] is a compacted trie consisting of all suffixes
of X. Suffix trees can be represented in linear space, and can be constructed in linear
time for integer alphabets [2]. Figure 1 illustrates the suffix tree for an example string.

For a node w in the suffix tree let pathlabel(w) be the string spelt out by the
letters on the edges on the path from the root to w. If there is a branch from node
u to node v and u is an ancestor of v then we say u = parent(v). Assuming that
every string X terminates with a special character $ which occurs nowhere else in
X, there is a one-to-one correspondence between the suffixes of X and the leaves of
the suffix tree of X. We assume the branches from a node u to each child v of u are
stored in ascending lexicographical order of pathlabel(v). When this is the case, SA is
simply the leaves of the suffix tree when read during a depth-first traversal. At each
internal node v in the suffix tree we store two additional values v.s and v.e such that
SA[v.s..v.e] contains the beginning positions of all the suffixes in the subtree rooted
at v.

3 Greedy Longest Closed Factorization in Linear Time

In this section, we present how to compute the closed factorization CF(X) of a given
string X[1, n]. Our high level strategy is to build a data structure that helps us to
efficiently compute, for a given position i in X, the longest closed factor starting at i.
The core of this data structure is the suffix tree for X, which we decorate in various
ways.



Golnaz Badkobeh et. al: Closed Factorization 165

Let S be the set of the beginning positions of the longest closed factors in CF(X).
For any i ∈ S, let G = X[i..i + |G| − 1] be the longest closed factor of X starting at
position i in X.

Let G′ be the unique border of the longest closed factor G starting at position i of
X, and bi be its length, i.e., G′ = G[1..bi] = X[i..i + bi − 1] (if G is a single character,
then G′ = ε and bi = 0). The following lemma shows that we can efficiently compute
CF(X) if we know bi for all i ∈ S.

Lemma 5. Given bi for all i ∈ S, we can compute CF(X) in a total of O(n) time and

space independently of the alphabet size.

Proof. If bi = 0, then G = X[i]. Hence, in this case it clearly takes O(1) time and
space to compute G.

If bi > 1, then we can compute G in O(|G|) time and O(bi) space, as follows. We
preprocess the border G′ of G using the Knuth-Morris-Pratt (KMP) string matching
algorithm [4]. This preprocessing takes O(bi) time and space. We then search for the
first occurrence of G′ in X[i + 1..n] (i.e. the next occurrence of the longest border
of G[1,m] to the right of the occurrence X[i..i + bi − 1]). The location of the next
occurrence tells us where the end of the closed factor is, and so it also tells us G =
X[i..i+ |G| − 1]. The search takes O(|G|) time — i.e. time proportional to the length
of the closed factor. Because the sum of the lengths of the closed factors is n, over
the whole factorization we take O(n) time and space. The running time and space
usage of the algorithm are clearly independent of the alphabet size. ⊓⊔

What remains is to be able to efficiently compute bi for a given i ∈ S. The following
lemma gives an efficient solution to this subproblem:

Lemma 6. We can preprocess the suffix tree of string X[1, n] in O(n) time and space,

so that bi for each i ∈ S can be computed in O(1) time.

Proof. In each leaf of the suffix tree, we store the beginning position of the suffix
corresponding to the leaf. For any internal node v of the suffix tree of X, let max(v)
denote the maximum leaf value in the subtree rooted at v, i.e.,

max(v) = max{i | X[i..i+ pathlabel(v)− 1], 1 ≤ i ≤ n− pathlabel(v)− 1}.

We can compute max(v) for every v in a total of O(n) time total via a depth first
traversal. Next, let P[1, n] be an array of pointers to suffix tree nodes (to be computed
next). Initially every P[i] is set to null. We traverse the suffix tree in pre-order, and
for each node v we encounter we set P[max(v)] = v if P[max(v)] is null. At the end
of the traversal P[i] will contain a pointer to the highest node w in the tree for which
i is the maximum leaf value (i.e., i is the rightmost occurrence of pathlabel(w)).

We are now able to compute bi, the length of the unique border of the longest
closed factor starting at any given i, as follows. First we retrieve node v = P[i].
Observe that, because of the definition of P[i], there are no occurrences of substring
X[i..i + |pathlabel(v)|] to the right of i. Let u = parent(v). There are two cases to
consider:
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Figure 2. Illustration for Lemma 6. We consider the longest closed factor G starting at position i
of string X. We retrieve node P[i] = v, which implies max(v) = i. Let u be the parent of v. The
black circle represents a (possibly implicit) node which represents X[i..i + pathlabel(u)], which has
the same set of occurrences as pathlabel(v). Hence bi = |pathlabel(u)|, and therefore G = X[i..j +
pathlabel(u)− 1], where j is the leftmost occurrence of pathlabel(u) with j > i.

– If u is not the root, then observe that there always exists an occurrence of sub-
string pathlabel(u) to the right of position i (otherwise i would be the rightmost
occurrence of pathlabel(u), but this cannot be the case since u is higher than v,
and we defined P[i] to be the highest node w with max(w) = i). Let j be the
the leftmost occurrence of pathlabel(u) to the right of i. Then, the longest closed
factor starting at position i is X[i..j + |pathlabel(u)| − 1] (this position j is found
by the KMP algorithm as in Lemma 5).

– If u is the root, then it turns out that i is the rightmost occurrence of character
X[i] in X. Hence, the longest closed factor starting at position i is X[i].

The thing we have not shown is that |pathlabel(u)| = bi. This is indeed the case,
since the set of occurrences of X[i..j+ |pathlabel(u)|] (i.e., leaves in the subtree corre-
sponding to the string) is equivalent to that of pathlabel(v), any substring starting at
i that is longer than |pathlabel(u)| does not occur to the right of i and thus bi cannot
be any longer. Hence |pathlabel(u)| = bi. (See also Figure 2).

Clearly v = P[i] can be retrieved in O(1) time for a given i, and then u = parent(v)
can be obtained in O(1) time from v. This completes the proof. ⊓⊔

The main result of this section follows:

Theorem 7. Given a string X[1, n] over an integer alphabet, the closed factorization
CF(X) = (G1, . . . ,Gk) of X can be computed in O(n) time and space.

Proof. G0 = ε by definition and so does not need to be computed. We compute the
other Gj in ascending order of j = 1, . . . , k. Let si be the beginning position of Gi in
X, i.e., s1 = 1 and si = |G1 · · ·Gi−1| + 1 for 1 < i ≤ k. We compute G1 in O(|G1|)
time and space from bs1 using Lemma 5 and Lemma 6. Assume we have computed
the first j − 1 factors G1, . . . ,Gj−1 for any 1 ≤ j < k − 1. We then compute Gj in
O(|Gj|) time and space from bsj , again using Lemmas 5 and 6. Since

∑k
j=1 |Gj| = n,

the proof completes. ⊓⊔

The following is an example of how the algorithm presented in this section com-
putes CF(X) for a given string X.
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Example 8. Consider the running example string X = ababaacbbbcbcc$, and see
Figure 1, which shows the suffix tree of X.

1. We begin with node P[1] representing ababaacbbbcbcc$, whose parent represents
aba. Hence we get b1 = |aba| = 3. We run the KMP algorithm with pattern aba

and find the first factor G1 = ababa.
2. We then check node P[6] representing a. Since its parent is the root, we get b2 = 0

and therefore the second factor is G2 = a.
3. We then check node P[7] representing cbbbcbcc$, whose parent represents cb.

Hence we get b3 = |cb| = 2. We run the KMP algorithm with pattern cb and find
the third factor G3 = cbbbcb.

4. We then check node P[13] representing cc$, whose parent represents c. Hence we
get b4 = |c| = 1. We run the KMP algorithm with pattern c and find the fourth
factor G4 = cc.

5. We finally check node P[15] representing $. Since its parent is the root, we get
b5 = 0 and therefore the fifth factor is G5 = $.

Consequently, we obtain CF(X) = (ababa, a, cbbbcb, cc, $), which coincides with Ex-
ample 2.

4 Longest Closed Factor Array

A natural extension of the problem in the previous section is to compute the longest
closed factor starting at every position in X in linear time — not just those involved in
the factorization. Formally, we would like to compute the longest closed factor array
of X, i.e., an array A[1, n] of integers such that A[i] = ℓ if and only if ℓ is the length
of the longest closed factor starting at position i in X.

Our algorithm for closed factorization computes the longest closed factor start-
ing at a given position in time proportional to the factor’s length, and so does not
immediately provide a linear time algorithm for computing A; indeed, applying the
algorithm näıvely at each position would take O(n2) time to compute A. In what
follows, we present a more efficient solution:

Theorem 9. Given a string X[1, n] over an integer alphabet, the closed factor array
of X can be computed in O(n logn

log logn
) time and O(n) space.

Proof. We extend the data structure of the last section to allow A to be computed in
O(n logn

log logn
) time and O(n) space. The main change is to replace the KMP algorithm

scanning in the first algorithm with a data structure that allows us to find the end of
the closed factor in time independent of its length.

We first preprocess the suffix array SA for range successor queries, building the
data structure of Yu, Hon and Wang [9]. A range successor query rsqSA(s, e, k) returns,
given a range [s, e] ⊆ [1, n], the smallest value x ∈ SA[s..e] such that x > k, or
null if there is no value larger than k in SA[s..e]. Yu et al.’s data structure allows
range successor queries to be answered in O( logn

log logn
) time each, takes O(n) space, and

O(n logn

log logn
) time to construct.

Now, to compute the longest closed factor starting at a given position i in X (i.e.
to compute A[i]) we do the following. First we compute bi, the length of the border of
the longest closed factor starting at i, in O(1) time using Lemma 6. Recall that in the
process of computing bi we determine the node u having pathlabel(u) = X[i..i+bi−1].
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To determine the end of the closed factor we must find the smallest j > i such that
X[j..j + bi − 1] = X[i..i + bi − 1]. Observe that j, if it exists, is precisely the answer
to rsqSA(u.s, u.e, i). (See also the left diagram of Figure 2. Assuming that the leaves
in the subtree rooted at u are sorted in the lexicographical order, the leftmost and
rightmost leaves in the subtree correspond to the u.s-th and u.e-th entries of SA,
respectively. Hence, j = rsqSA(u.s, u.e, i)). For each A[i] we spend O( logn

log logn
) time

and so overall the algorithm takes O(n logn

log logn
) time. The space requirement is clearly

O(n). ⊓⊔

We note that recently Navarro and Neckrich [7] described range successor data
structures with faster O(

√
log n)-time queries, but straightforward construction takes

O(n log n) time [6], so overall this does not improve the runtime of our algorithm.

5 Concluding Remarks

We have considered but two problems on closed factors here, and many others remain.
For example, how efficiently can one compute all the closed factors in a string (or, say,
the closed factors that occur at least k times)? Relatedly, how many closed factors
does a string contain in the worst case and on average?

One also wonders if the closed factor array can be computed in linear time, by
somehow avoiding range successor queries.
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