Alternative Algorithms for Lyndon Factorization^

Sukhpal Singh Ghuman ${ }^{1}$, Emanuele Giaquinta ${ }^{2}$, and Jorma Tarhio ${ }^{1}$
${ }^{1}$ Department of Computer Science and Engineering, Aalto University
P.O.B. 15400, FI-00076 Aalto, Finland
\{Sukhpal. Ghuman, Jorma. Tarhio\}@aalto.fi
${ }^{2}$ Department of Computer Science, P.O.B. 68, FI-00014 University of Helsinki, Finland
Emanuele.Giaquinta@cs.helsinki.fi

Abstract

We present two variations of Duval's algorithm for computing the Lyndon factorization of a word. The first algorithm is designed for the case of small alphabets and is able to skip a significant portion of the characters of the string, for strings containing runs of the smallest character in the alphabet. Experimental results show that it is faster than Duval's original algorithm, more than ten times in the case of long DNA strings. The second algorithm computes, given a run-length encoded string R of length ρ, the Lyndon factorization of R in $O(\rho)$ time and constant space.

1 Introduction

Given two strings w and w^{\prime}, w^{\prime} is a rotation of w if $w=u v$ and $w^{\prime}=$ strings u and v. its proper rotatis
that tl
graphi
Duval'
space.
suffixe
Wheel
Burrov
transfc
is a ler
important data co
runs in linear time ord if it is lexicographically sm unique factorization in Lyndo ors is nonincreasing with resp introduced by Chen, Fox anc actorization in linear time edient in a recent method f step in the construction of s well as in the bijective cows-Wheeler transform is an invertible ng of its rotations, while the suffix array fixes of a string. They are the basis for xt indexes. Although Duval's algorithm in still be useful to furthe
time for the computation of the Lyndon facto either huge or compressible and given in a col

Various alternative algo the last twenty years. Apos while Roh et al. described a how to compute the Lynd form and in Lempel-Ziv 78

In this paper, we preser is designed for the case of string contains runs of the s portion of the characters of

 $c, g, t\}$. If the gorithm is able to skip a significant riments, the new algorithm is more than ten times faster than the original one for long DNA strings.

[^0]The second variation is for strings compressed with run-length encoding. The run-length encoding of a string is a simple encoding where each maximal consecutive sequence of the same symbol is encoded as a pair consisting of the symbol plus the length of the sequence. Given a run-length encoded string R of length ρ, our algorithm computes the Lyndon factorization of R in $O(\rho)$ time and uses constant space. It is thus preferable to Duval's algorithm in the cases in which the strings are stored or maintained in run-length encoding.

2 Basic definitions

Let Σ be a finite ordered alphabet of symbols and let Σ^{*} be the set of words (strings) over Σ ordered by lexicographic order. The empty word ε is a word of length 0 . Let also Σ^{+}be equal to $\Sigma^{*} \backslash\{\varepsilon\}$. Given a word w, we denote with $|w|$ the length of w and with $w[i]$ the i-th symbol of w, for $0 \leq i<|w|$. The concatenation of two words u and v is denoted by $u v$. Given two words u and v, v is a substring of u if there are indices $0 \leq i, j<|u|$ such that $v=u[i] \cdots u[j]$. If $i=0(j=|u|-1)$ then v is a prefix (suffix) of u. We denote by $u[i . . j]$ the substring of u starting at position i and ending at position j. For $i>j u[i . . j]=\varepsilon$. We denote by u^{k} the concatenation of $k u$'s, for $u \in \Sigma^{+}$and $k \geq 1$. The longest border of a word w, denoted with $\beta(w)$, is the longest proper prefix of w which is also a suffix of w. Let $l c p\left(w, w^{\prime}\right)$ denote the length of the longest common prefix of words w and w^{\prime}. We write $w<w^{\prime}$ if either $l c p\left(w, w^{\prime}\right)=$ $|w|<\left|w^{\prime}\right|$, i.e., if w is a proper prefix of w^{\prime}, or if $w\left[l c p\left(w, w^{\prime}\right)\right]<w^{\prime}\left[l c p\left(w, w^{\prime}\right)\right]$. For any $0 \leq i<|w|, \operatorname{Rot}(w, i)=w[i . .|w|-1] w[0 . . i-1]$ is a rotation of w. A Lyndon word is a word w such that $w<\operatorname{ROT}(w, i)$, for $1 \leq i<|w|$. Given a Lyndon word w, the following properties hold:

1. $|\beta(w)|=0$;
2. either $|w|=1$ or $w[0]<w[|w|-1]$.

Both properties imply that no word a
a Lyndon word. The
following result is due to Chen, Fox an
Theorem 1. Any word w admits a ur

$$
(w)=w_{1}, w_{2}, \ldots, w_{m}
$$ such that w_{i} is a Lyndon word, for $1 \leq$ $\cdots \geq w_{m}$.

The run-length encoding (RLE) of a wo

), is a sequence of pairs (runs) $\left\langle\left(c_{1}, l_{1}\right),\left(c_{2}, l_{2},\right), \ldots,\left(c_{\rho}, l_{\rho}\right)\right\rangle$ such that $c_{i} \in \Sigma, l_{i} \geq 1, c_{i} \neq c_{i+1}$ for $1 \leq i<r$,
and $w=c_{1}^{l_{1}} c_{2}^{l_{2}} \cdots c_{\rho}^{l_{\rho}}$. The interval of positions in w of the factor w_{i} in the Lyndon factorization of w is $\left[a_{i}, b_{i}\right]$, where $a_{i}=\sum_{j=1}^{i-1}\left|w_{j}\right|, b_{i}=\sum_{j=1}^{i}\left|w_{j}\right|-1$. Similarly, the interval of positions in w of the run $\left(c_{i}, l_{i}\right)$ is $\left[a_{i}^{r l e}, b_{i}^{r l e}\right]$ where $a_{i}^{r l e}=\sum_{j=1}^{i-1} l_{j}$, $b_{i}^{r l e}=\sum_{j=1}^{i} l_{j}-1$.

3 Duval's algorithm

In this section we briefly describe Duval's algorithm for the computation of the Lyndon factorization of a word. Let L be the set of Lyndon words and let
be the se
where c i

$$
\left.w \in \Sigma^{+} \text {and } w \Sigma^{*} \cap L \neq \emptyset\right\}
$$

of Lyndon words. Let also $P^{\prime}=P \cup\left\{c^{k} \mid k \geq 2\right\}$, 1 in Σ. Duval's algorithm is based on the following

LF-DUVAL (w)	
1.	$k \leftarrow 0$
2.	while $k<\|w\|$ do
3.	$i \leftarrow k+1$
4.	$j \leftarrow k+2$
5.	while TRUE do
6.	if $j=\|w\|+1$ or $w[j-1]<w[i-1]$ then
7.	while $k<i$ do
8.	output $(w[k . . k+j-i])$
9.	$k \leftarrow k+j-i$
10.	break
11.	else
12.	if $w[j-1]>w[i-1]$ then
13.	\quad else
$14 \leftarrow k+1$	
15.	$j \leftarrow j \leftarrow i+1$
16.	$j \leftarrow 1$

Figure 1. Duval's algorithm to compute the Lyndon factorization of a string.

Lemma 2. Let $w \in \Sigma^{+}$and w_{1} be the longest prefix of $w=w_{1} w^{\prime}$ which is in L. We have $C F L(w)=w_{1} C F L\left(w^{\prime}\right)$.

Lemma 3. $P^{\prime}=\left\{(u v)^{k} u \mid u \in \Sigma^{*}, v \in \Sigma^{+}, k \geq 1\right.$ and $\left.u v \in L\right\}$.
Lemma 4. Let $w=\left(u a v^{\prime}\right)^{k} u$, with $u, v^{\prime} \in \Sigma^{*}, a \in \Sigma, k \geq 1$ and $u a v^{\prime} \in L$. The following propositions hold:


```
LF-SKIP \((w)\)
    1. \(e \leftarrow|w|-1\)
    2. while \(e \geq 0\) and \(w[e]=\bar{c}\) do
    3. \(e \leftarrow e-1\)
    4. \(l \leftarrow|w|-1-e\)
    5. \(w \leftarrow w[0 . . e]\)
6. \(s \leftarrow \min O c c_{\{\bar{c} \bar{c}\}}(w) \cup\{|w|\}\)
    7. \(\operatorname{LF}-\operatorname{DuvaL}(w[0 . . s-1])\)
    8. \(r \leftarrow 0\)
    9. while \(s<|w|\) do
10. \(\quad w \leftarrow w[s . .|w|-1]\)
11. while \(w[r]=\bar{c}\) do
                \(r \leftarrow r+1\)
        \(s \leftarrow|w|\)
        \(k \leftarrow 1\)
        \(\mathcal{P} \leftarrow\left\{\bar{c}^{r} c \mid c \leq w[r]\right\}\)
        \(j \leftarrow 0\)
        for \(i \in O \operatorname{cc}_{\mathcal{P}}(w): i>j\) do
            \(h \leftarrow l c p(w, w[i . .|w|-1])\)
            if \(h=|w|-i\) or \(w[i+h]<w[h]\) then
                    \(s \leftarrow i\)
                    \(k \leftarrow 1+\lfloor h / s\rfloor\)
                    break
            \(j \leftarrow i+h\)
        for \(i \leftarrow 1\) to \(k\) do
            output \((w[0 . . s-1])\)
        \(s \leftarrow s \times k\)
. for \(i \leftarrow 1\) to \(l\) do
28. output \((\bar{c})\)
```

Figure 2. The algorithm to compute the Lyndon factorization that can potentially skip symbols.

Lemma 6. Let w be a string with $C F L(w)=w_{1}, w_{2}, \ldots, w_{m}$. It holds that $\left|w_{1}\right|=$ $\min \{j \mid w[j . .|w|-1]<w\}$ and $w_{1}=w_{2}=\cdots=w_{k}=w\left[0 . .\left|w_{1}\right|-1\right]$, where $k=$ $1+\left\lfloor l c p\left(w, w\left[\left|w_{1}\right| . .|w|-1\right]\right) /\left|w_{1}\right|\right\rfloor$.

Based on these Lemmas, Duval's algorithm can be implemented by initializing $j \leftarrow 1$ and executing the following steps until w becomes ε : 1$)$ compute $h \leftarrow l c p(w, w[j . .|w|-$ 1]). 2) if $j+h<|w|$ and $w[h]<w[j+h]$ set $j \leftarrow j+h+1$; otherwise output $w[0 . . j-1]$ k times and set $w \leftarrow w[j k . .|w|-1]$, where $k=1+\lfloor h / j\rfloor$, and set $j \leftarrow 1$.

4 Improved algorithm for small alphabets

Let w be a word over an alphabet Σ with $C F L(w)=w_{1}, w_{2}, \ldots, w_{m}$ and let \bar{c} be the smallest symbol in Σ. Suppose that there exists $k \geq 2, i \geq 1$ such that \bar{c}^{k} is a prefix of w_{i}. If the last symbol of w is not \bar{c}, then by Theorem 1 and by the properties of Lyndon words, \bar{c}^{k} is a prefix of each of $w_{i+1}, w_{i+1}, \ldots, w_{m}$. This property can be exploited to devise an algorithm for Lyndon factorization that can potentially skip symbols. Our algorithm is based on the alternative formulation of Duval's algorithm by I et al.. Given a set of strings \mathcal{P}, let $O c_{\mathcal{P}}(w)$ be the set of all (starting) positions in w corresponding to occurrences of the strings in \mathcal{P}. We start with the following Lemmas:

Lemma 7. Let w be a word and let $s=\max \{i \mid w[i]>\bar{c}\} \cup\{-1\}$. Then, $\operatorname{CFL}(w)=$ $C F L(w[0 . . s]) C F L\left(\bar{c}^{(|w|-1-s)}\right)$.

Proof. If $s=-1$ or $s=|w|-1$ the Lemma plainly holds. Otherwise, Let w_{i} be the factor in $C F L(w)$ such that $s \in\left[a_{i}, b_{i}\right]$. To prove the claim we have to show that $b_{i}=s$. Suppose by contradiction that $s<b_{i}$, which implies $\left|w_{i}\right| \geq 2$. Then, $w_{i}\left[\left|w_{i}\right|-1\right]=\bar{c}$, which contradicts the second property of Lyndon words.

Lemma 8. Let w be a word such that $\bar{c} \bar{c}$ occurs in it and let $s=\min \operatorname{Occ}_{\{\bar{c} \bar{c}\}}(w)$. Then, we have $C F L(w)=C F L(w[0 . . s-1]) C F L(w[s .|w|-1])$.

Proof. Let w_{i} be the factor in $C F L(w)$ such that $s \in\left[a_{i}, b_{i}\right]$. To prove the claim we have to show that $a_{i}=s$. Suppose by contradiction that $s>a_{i}$, which implies $\left|w_{i}\right| \geq 2$. If $s=b_{i}$ then $w_{i}\left[\left|w_{i}\right|-1\right]=\bar{c}$, which contradicts the second property of Lyndon words. Otherwise, since w_{i} is a Lyndon word it must hold that $w_{i}<\operatorname{Rot}\left(w_{i}, s-a_{i}\right)$. This implies at least that $w_{i}[0]=w_{i}[1]=\bar{c}$, which contradicts the hypothesis that s is the smallest element in $O c c_{\{\bar{c}\}}(w)$.

Lemma 9. Let w be a word such that $w[0]=w[1]=\bar{c}$ and $w[|w|-1] \neq \bar{c}$. Let r be the smallest position in w such that $w[r] \neq \bar{c}$. Note that $w[0 . . r-1]=\bar{c}^{r}$. Let also $\mathcal{P}=\left\{\bar{c}^{r} c \mid c \leq w[r]\right\}$. Then we have
$\left.c_{\mathcal{P}}(w) \mid w[s .|w|-1]<w\right\} \cup\{|w|\}-1$, of factor w_{1}. at $b_{1}=\min \{s \mid w[s . .|w|-1]<w\}-1$. Since $w[0 . . r-$ y string v such that $v<w$ we must have that either $=\bar{c}^{|v|}$ otherwise. Since $w[|w|-1] \neq \bar{c}$, the only position $\xi^{-|w|-s}$ is $|w|$, corresponding to the empty word. Hence,

Based on these Lemr containing runs of \bar{c}. symbols in the compr compute $O c_{\mathcal{P}}(w)$. W In the general case, of its longest prefix concatenation of \bar{c} sy Suppose that $\bar{c} \bar{c}$ occu $C F L(u)$ and $C F L(v)$ $C F L(u)$ can be comp

Concerning v, let $1] \neq \bar{c}$, and we can apt in $C F L(v)$. To this en $v\}$, where $\mathcal{P}=\left\{\bar{c}^{r} c \mid c\right.$ string matching to ite satisfies $v[i . .|v|-1]<$

```
LF-RLE(R)
1. }k\leftarrow
2. while }k<|R|\mathrm{ do
3. }(m,q)\leftarrow\operatorname{LF-RLE-NEXT}(R,k
4. for }i\leftarrow1\mathrm{ to }q\mathrm{ do
5. output (k,k+m-1)
6. }\quadk\leftarrowk+
```

```
```

$\operatorname{F-RLE-NEXT}\left(R=\left\langle\left(c_{1}, l_{1}\right), \ldots,\left(c_{\rho}, l_{\rho}\right)\right\rangle, k\right)$

```
```

$\operatorname{F-RLE-NEXT}\left(R=\left\langle\left(c_{1}, l_{1}\right), \ldots,\left(c_{\rho}, l_{\rho}\right)\right\rangle, k\right)$
$i \leftarrow k$
$i \leftarrow k$
. $j \leftarrow k+1$
. $j \leftarrow k+1$
. while true do
. while true do
if $i>k$ and $l_{j-1}<l_{i-1}$ then
if $i>k$ and $l_{j-1}<l_{i-1}$ then
$z \leftarrow 1$
$z \leftarrow 1$
else $z \leftarrow 0$
else $z \leftarrow 0$
$s \leftarrow i-z$
$s \leftarrow i-z$
if $j=|R|$ or $c_{j}<c_{s}$ or
if $j=|R|$ or $c_{j}<c_{s}$ or
($c_{j}=c_{s}$ and $l_{j}>l_{s}$ and $c_{j}<c_{s+1}$) then
($c_{j}=c_{s}$ and $l_{j}>l_{s}$ and $c_{j}<c_{s+1}$) then
return $(j-i,\lfloor(j-k-z) /(j-i)\rfloor)$
return $(j-i,\lfloor(j-k-z) /(j-i)\rfloor)$
else
else
if $c_{j}>c_{s}$ or $l_{j}>l_{s}$ then
if $c_{j}>c_{s}$ or $l_{j}>l_{s}$ then
$i \leftarrow k$
$i \leftarrow k$
else
else
$i \leftarrow i+1$
$i \leftarrow i+1$
$j \leftarrow j+1$

```
```

 \(j \leftarrow j+1\)
    ```
```

Figure 3. The algorithm to compute the Lyndon factorization of a run-length encoded string.
we do not need to verify the p all the patterns in \mathcal{P} differ in tl using a character class for the matching algorithm that suppo bit-parallelism. In this respect, is an ideal choice, as it is subli to search for \bar{c}^{r}, but that soluti

\square h that $i^{\prime} \leq i+r$ an express $\mathcal{P} \mathrm{mc}$ this pattern u h as the algoritl
 the sets $O c_{\mathcal{P}}(v)$ is $O(|w|)$, the full worst case. To see why, it is enough to observ or which the algorithm verifies if $v[i . .|v|-1]<v$ are a subset of the positions verified by the original algorithm.

5 Computing the Lyndon factorization of a run-length encoded string

In this section we present an algorithm to compute the Lyndon factorization of a string given in RLE form. The algorithm is based on Duval's original algorithm and on a combinatorial property between the Lyndon factorization of a string and its RLE, and has $O(\rho)$-time and $O(1)$-space complexity, where ρ is the length of the RLE. We start with the following Lemma:

Lemma 10. Let w be a word over Σ and let $w_{1}, w_{2}, \ldots, w_{m}$ be its Lyndon factorization. For any $1 \leq i \leq|\operatorname{RLE}(w)|$, let $1 \leq j, k \leq m, j \leq k$, such that $a_{i}^{r l e} \in\left[a_{j}, b_{j}\right]$ and $b_{i}^{r l e} \in\left[a_{k}, b_{k}\right]$. Then, either $j=k$ or $\left|w_{j}\right|=\left|w_{k}\right|=1$.

Proof. Suppose by contradiction that $j<k$ and either $\left|w_{j}\right|>1$ or $\left|w_{k}\right|>1$. By definition of j, k, we have $w_{j} \geq w_{k}$. Moreover, since both $\left[a_{j}, b_{j}\right]$ and $\left[a_{k}, b_{k}\right]$ overlap with $\left[a_{i}^{r l e}, b_{i}^{r l e}\right]$, we also have $w_{j}\left[\left|w_{j}\right|-1\right]=w_{k}[0]$. If $\left|w_{j}\right|>1$, then, by definition of w_{j}, we have $w_{j}[0]<w_{j}\left[\left|w_{j}\right|-1\right]=w_{k}[0]$. Instead, if $\left|w_{k}\right|>1$ and $\left|w_{j}\right|=1$, we have that w_{j} is a prefix of w_{k}. Hence, in both cases we obtain $w_{j}<w_{k}$, which is a contradiction.

The consequence of this Lemma is that a run of length l in the RLE is either contained in one factor of the Lyndon factorization, or it corresponds to l unit-length factors. Formally:

Corollary 11. Let w be a word over Σ and let $w_{1}, w_{2}, \ldots, w_{m}$ be its Lyndon factorization. Then, for any $1 \leq i \leq|\operatorname{RLE}(w)|$, either there exists w_{j} such that $\left[a_{i}^{r l e}, b_{i}^{r l e}\right]$ is contained in $\left[a_{j}, b_{j}\right]$ or there exist l_{i} factors $w_{j}, w_{j+1}, \ldots, w_{j+l_{i}-1}$ such that $\left|w_{j+k}\right|=1$ and $a_{j+k} \in\left[a_{i}^{r l e}, b_{i}^{r l e}\right]$, for $0 \leq k<l_{i}$.

This property can be exploited to obtain an algorithm for the Lyndon factorization that runs in $O(\rho)$ time. First, we introduce the following definition:

Definition 12. A word w is a $L R$ word if it is either a Lyndon word or it is equal to a^{k}, for some $a \in \Sigma, k \geq 2$. The LR factorization of a word w is the factorization in $L R$ words obtained from the Lyndon factorization of w by merging in a single factor the maximal sequences of unit-length factors with the same symbol.

For example, the LR factorization of cctgccaa is $\langle\operatorname{cctg}, c c, a a\rangle$. Observe that this factorization is a (reversible) encoding of the Lyndon factorization. Moreover, in this encoding it holds that each run in the RLE is contained in one factor and thus the size of the LR factorization is $O(\rho)$. Let L^{\prime} be the set of LR words. We now present the algorithm $\operatorname{LF}-\operatorname{RLE}-\operatorname{Next}(R, k)$ which computes, given an RLE sequence R and an integer k, the longest LR word in R starting at position k. Analogously to Duval's algorithm, it reads the RLE sequence from left to right maintaining two integers, j and ℓ, which satisfy the following invariant:

$$
\begin{align*}
& c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}} \in P^{\prime} ; \\
& \ell= \begin{cases}\left|\operatorname{RLE}\left(\beta\left(c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}}\right)\right)\right| & \text { if } j-k>1, \\
0 & \text { otherwise } .\end{cases} \tag{1}
\end{align*}
$$

The integer j, initialized to $k+1$, is the index of the next run to read and is incremented at each iteration until either $j=|R|$ or $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}} \notin P^{\prime}$. The integer ℓ, initialized to 0 , is the length in runs of the longest border of $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}}$, if $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}}$ spans at least two runs, and equal to 0 otherwise. For example, in the case of the word $a b^{2} a b^{2} a b$ we have $\beta\left(a b^{2} a b^{2} a b\right)=a b^{2} a b$ and $\ell=4$. Let $i=k+\ell$. In general, if $\ell>0$, we have

$$
\begin{aligned}
& l_{j-1} \leq l_{i-1}, l_{k} \leq l_{j-\ell}, \\
& \beta\left(c_{k}^{l_{k}} \cdots c_{j-1}^{j_{j-1}}\right)=c_{k}^{l_{k}} c_{k+1}^{l_{k+1}} \cdots c_{i-2}^{l_{i-2}} c_{i-1}^{l_{j-1}}=c_{j-\ell}^{l_{k}} c_{j-\ell+1}^{l_{j-\ell+1}} \cdots c_{j-2}^{l_{j-2}} c_{j-1}^{l_{j-1}} .
\end{aligned}
$$

Note that the longest border may not fully cover the last (first) run of the corresponding prefix (suffix). Such the case is for example for the word $a b^{2} a^{2} b$. However, since $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}} \in P^{\prime}$ it must hold that $l_{j-\ell}=l_{k}$, i.e., the first run of the suffix is fully covered. Let
$z=\left\{1 \quad\right.$ if $\ell>0 \wedge l_{j-1}<l_{i-1}$,

Informally, the inte fully cover the run $\left(c_{i-}\right.$ where

$$
\begin{aligned}
& q=\bigsqcup^{j} \\
& u=c_{j}^{l_{j}} \\
& u v \in L
\end{aligned}
$$

e longest border of $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}}$ does not at $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}}$ can be written as $(u v)^{q} u$,
z) $\bmod (j-i)$, ${ }_{j-\ell-1}^{l_{j-\ell-1}}=c_{i-r}^{l_{i-r}} \cdots c_{j-r-1}^{l_{j-r-1}}$, th $=0$,

For example, in the case of th $2, r=2$. The algorithm is based

Lemma 13. Let j, ℓ be su a:
the following cases:

1. If $c_{j}<c_{s}$ then $c_{k}^{l_{k}} \cdots c_{j}^{l}$
2. If $c_{j}>c_{s}$ then $c_{k}^{l_{k}} \cdots c_{j}^{l}$

First note that, if $z=1, c_{j} \neq c_{i-1}$, si
In the firct thron onces, we obtain the fir
vord $c_{k}^{l_{k}} \cdots c_{j-1}^{l_{j-1}} c_{j}$. Indeper e same proposition also hr By a similar reasoning, $c_{k}^{l_{k}} \cdots c_{j}^{l_{i}}$. If we then app. d we mus
$\left.<c_{i+1}\right)$ or
$\cdots c_{j}^{l_{i}+1}$.
We prove by induction tha ables j and ℓ are initialized to Suppose that the invariant hol it follows that the invariant als $c_{j}=c_{i}$ and $l_{j} \leq l_{i}$, and to 0 the pair $(j-i, q)$, i.e., the length of $u v$ and tl
$\cdots c_{j}^{l_{j}} \notin P^{\prime}$ or
+1 , if $z=0$,
ithm returns
nt. Based on

rization of R can then be computed by iteratively calling LFgiven call to LF-RLE-NEXT returns, the factorization algorithm $u v$ starting at positions $k, k+(j-i), \ldots, k+(q-1)(j-i)$ and tion at position $k+q(j-i)$. The code of the algorithm is shown in ove that the algorithm runs in $O(\rho)$ time. First, observe that, by torization, the for loop at line 4 is executed $O(\rho)$ times. Suppose iterations of the while loop at line 2 is n and let $k_{1}, k_{2}, \ldots, k_{n+1}$ gg values of k, with $k_{1}=0$ and $k_{n+1}=|R|$. We now show that -RLE-NEXT performs less than $2\left(k_{s+1}-k_{s}\right)$ iterations, which will yield $O(\rho)$ number of iterations in total. This analysis is analogous to the one used by Duval. Suppose that i^{\prime}, j^{\prime} and z^{\prime} are the values of i, j and z at the end of the s-th call to LF-Rle-next. The number of iterations performed during this call is equal to $j^{\prime}-k_{s}$. We have $k_{s+1}=k_{s}+q\left(j^{\prime}-i^{\prime}\right)$, where $q=\left\lfloor\frac{j^{\prime}-k_{s}-z}{j-i^{\prime}}\right\rfloor$, which implies $j^{\prime}-k_{s}<2\left(k_{s+1}-k_{s}\right)+1$, since, for any positive integers $x, y, x<2\lfloor x / y\rfloor y$ holds.

6 Experiments with LF-Skip

The experiments were run on MacBook Pro with the 2.4 GHz Intel Core 2 Duo processor and 2 GB memory. Programs ogramming language and compiled with the gcc compiler (4.8
We tested the LF-skip algorithm anc
 ization level. h various texts. With MB), LF-skip gave a speed-ups for random peed-ups were larger. t newlines) from the

| $\overline{\|\Sigma\|} \mid$ Speed-up | |
| :---: | :---: |
| 2 | 9.0 |
| 3 | 7.7 |
| 4 | 7.2 |
| 5 | 6.1 |
| 6 | 4.8 |
| 8 | 4.3 |
| 10 | 3.5 |
| 12 | 3.4 |
| 15 | 2.4 |
| 20 | 2.5 |
| 25 | 2.2 |
| 30 | 1.9 |

Table 1. Speed-up of LF-skip with various alphabet sizes in a random text.

We made also some tests with texts of natural language. Because runs are very short in natural language, the benefit of LF-skip is marginal. We even tried alphabet transformations in order to vary the smallest character of the text, but that did not help.

[^1]
7 Conclusions

In this paper we have presented two variations of Duval's algorithm for computing the Lyndon factorization of a string. The first algorithm was designed for the case of small alphabets and is able to skip a significant portion of the characters of the string for strings containing runs of the smallest character in the alphabet. Experimental results show that the algorithm is considerably faster than Duval's original algorithm. The second algorithm is for strings compressed with run-length encoding and computes the Lyndon factorization of a run-length encoded string of length ρ in $O(\rho)$ time and constant space.

References

1. A. Apostolico and M. Crochemore: Fast parallel Lyndon factorization with applications. Mathematical Systems Theory, 28(2) 1995, pp. 89-108.
2. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. IV. The quotient groups of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81-95.
3. J.-P. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363-381.
4. J. Y. Gil and D. A. Scott: A bijective string sorting transform. CoRR, abs/1201.3077 2012.
5. T. I, Y. Nakashima, S. Inenaga, H. Bannai, and M. Takeda: Faster lyndon factorization algorithms for SLP and LZ78 compressed text, in SPIRE, O. Kurland, M. Lewenstein, and E. Porat, eds., vol. 8214 of Lecture Notes in Computer Science, Springer, 2013, pp. 174-185.
6. M. Kufleitner: On bijective variants of the Burrows-Wheeler transform, in Proceedings of the Prague Stringology Conference 2009, J. Holub and J. Ždárek, eds., 2009, pp. 65-79.
7. M. Lothaire: Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, 1997.
8. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: Sorting suffixes of a text via its Lyndon factorization, in Proceedings of the Prague Stringology Conference 2013, J. Holub and J. Žďárek, eds., 2013, pp. 119-127.
9. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics, 52000.
10. K. Roh, M. Crochemore, C. S. Iliopoulos, and K. Park: External memory algorithms for string problems. Fundam. Inform., 84(1) 2008, pp. 17-32.
11. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string matching. Inf. Process. Lett., 110(4) 2010, pp. 148-152.

[^0]: * Supported by the Academy of Finland (grant 134287).

[^1]: ${ }^{1} \mathrm{http}: / /$ pizzachili.dcc.uchile.cl/

