An Efficient Skip-Search Approach to the Order-Preserving Pattern Matching Problem*

Domenico Cantone ${ }^{1}$, Simone Faro ${ }^{1}$, and M. Oğuzhan Külekci ${ }^{2}$
${ }^{1}$ Università di Catania, Department of Mathematics and Computer Science, Italy
${ }^{2}$ ERLAB Software Co. ITU ARI Teknokent, İstanbul, Turkey
\{cantone, faro\}@dmi.unict.it, oguzhankulekci@gmail.com

Abstract

Given a pattern and text, both over a common ordered alphabet, the orderpreserving pattern matching problem consists in finding all substrings of the text with the same relative order as the pattern. This problem, an approximate variant of the well-known exact pattern matching problem, finds applications in such fields as time series analysis (e.g., share prices on stock markets), weather data analysis, musical melody matching, etc., and has gained increasing attention in recent years. In this paper we present a new efficient approach to this problem inspired to the well-known Skip Search algorithm for the exact string matching problem. It makes use of efficient SIMD SSE instructions in order to speed up the searching phase. Experimental results show that our proposed algorithm is up to twice as faster than previous solutions.

1 Introduction

Given a pattern x of length m and a text y of length n, both over a common alphabet Σ, the exact string matching problem consists in finding all occurrences of the string x in y. String matching is a very important source of challenging problems in the wider domain of text processing. String matching algorithms are often basi in practical softwares existing under most operating systems They a programming methods that serve as paradigms in other fields of comp

The worst-case lower bound latching prob achieved for the first time by tl (KMP, for short). However, seve $\mathcal{O}(n \log m / m)$ performance on a Among them, the Boyer-Moore has been particularly successful as

The order-preserving pattern , approximate variant of the exact and text y are drawn from a tota the substrings of y with the same relative is the set \mathbb{N} of natural numbers with the Morris-Pratt of the sequence $x=\langle 6,5,8,4,7\rangle$ is the sequence $\langle 2,1,4,0,3\rangle$ since 6 rank 1 , and so on. Thus x has an order-preserving occurrence in the $y=\langle 8,11,10,16,15,20,13,17,14,18,20,18,25,17,20,25$
3 , since x and the subsequence $\langle 16,15,20,13,17\rangle$ share t
ther order-preserving occurrence of x in y is at position 1 $y=\langle 8,11,10,16,15,20,13,17,14,18,20,18,25,17,20,25$
at position 3, since x and the subsequence $\langle 16,15,20,13,17\rangle$ share t

order. Another order-preserving occurrence of x in y is at position 1 $$
y=\langle 8,11,10,16,15,20,13,17,14,18,20,18,25,17,20,25
$$

at position 3, since x and the subsequence $\langle 16,15,20,13,17\rangle$ share t
order. Another order-preserving occurrence of x in y is at position 1

[^0]in short) is an the pattern x arching for all n the alphabet relative order

Figure 1. Example of a pattern x of length 5 over an integer alphabet with two order preserving occurrences in a text y of length 17 , at positions 3 and 10 .

The OPPM problem finds applications in all situations in which one is interested only in the "shape" of the pattern (intended as the relative order of its characters) rather than in the pattern itself. For inctance it can he annlied successfully to time series analysis like share prices on st er data, or to molody matching of musical scores.

solution consists in converting the input sequences is applying any standard algorithm for exact string m

In this paper we present a new algorithm for out to be more effective in practice than currently algorithm is based on the well-known Skip Search match any oc
a finge occurr SSE in imenta are up
ad then thod. n1ch turns proposed act string e text for e pattern, candidate ient SIMD attern substrings. Experalgorithmic variants that the literature.

2 Preliminaries

A string x over an ordered alphabet Σ, of size σ, is defined as a sequence of elements in Σ. We shall assume that a total order relation " \preceq " is defined on it.

By $|x|$ we denote the length of a string x. We refer to the i-th element in x as $x[i]$ and use the notation $x[i . . j]$ to denote the subsequence of x from the element at position i to the element at position j (including the extremes), where $0 \leq i \leq j<|x|$.

2.1 Order-Isomorphism and Related Properties

We say that two (nonnull) sequences x, y over Σ are order-isomorphic if the relative order of their elements is the same. More formally:
Definition 1 (Order-isomorphism). Two nonnull sequences x, y of the same length, over a totally ordered alphabet (Σ, \preceq), are said to be order-isomorphic, and we write $x \approx y$, if the following condition holds

$$
\text { for } 0 \leq i, j<|x|, \quad x[i] \preceq x[j] \quad \Longleftrightarrow \quad y[i] \preceq y[j] .
$$

The following lemma states some elementary properties of order-isomorphism which follow directly from the definition.
Lemma 2. Let x and y be two nonnull sequences of the same length, over a totally ordered alphabet (Σ, \preceq), such that $x \approx y$. Then
(a) $x[j] \prec x[i] \quad$ iff $\quad y[j] \prec y[i], \quad$ for $0 \leq i, j<|x|$;
(b) $x[j]=x[i] \quad$ iff $\quad y[j]=y[i], \quad$ for $0 \leq i, j<|x|$.

From a computational point of view, it is convenient to characterize the order of a sequence by means of two functions: the rank and the equality functions. These are defined below, together with some of their elementary properties.
Definition 3 (Rank function). Let x be a nonnull seouence over a totallu ordered alphabet (Σ, \preceq). The rank function of x is the bijecti 1$\}$ onto itself defined, for $0 \leq i<|x|$, by

$$
r k_{x}(i)=_{\text {Def }} \mid\{k: x[k] \prec x[i] \text { or }(x[k]=x
$$

The following properties are easy consequences of
Lemma 4. Given a nonnull sequence x over a tota have:
(a) if $x[j] \prec x[i]$, then $r k_{x}(j)<r k_{x}(i)$, for $0 \leq i, j<$
(b) if $x[j]=x[i]$ and $0 \leq j<i<|x|$, then $r k_{x}(j)<r k_{x}(i)$.

Corollary 5. Let x be a nonnull sequence over a totally ordered alphabet (Σ, \preceq).

Definition 6 (Equality function). Let x be a sequence of length $m \geq 2$ over a totally ordered alphabet (Σ, \preceq). The equality function of x is the binary map $e q_{x}:\{0,1, \ldots, m-2\} \rightarrow\{0,1\}$ where, for $0 \leq i \leq m-2$,

$$
e q_{x}(i)=_{\text {Def }}\left\{\begin{array}{lc}
1 & \text { if } x\left[r k_{x}^{-1}(i)\right]=x\left[r k_{x}^{-1}(i+1)\right] \\
0 & \text { otherwise } .
\end{array}\right.
$$

The rank and equality functions allow to fully characterize order-isomorphism, as stated in the following lemma, whose proof can be found in the Appendix.

Lemma 7. For any two sequences x and y of the same length $m \geq 2$, over a totally ordered alphabet, we have

$$
x \approx y \quad \text { iff } \quad r k_{x}=r k_{y} \text { and } e q_{x}=e q_{y} .
$$

Example 8. Consider the following three sequences of length 7:

$$
x=\langle 6,3,8,3,10,7,10\rangle, \quad y=\langle 2,1,4,1,5,3,5\rangle,
$$

They have the same rank function $\langle 2,0,4,1,5,3,6\rangle$ and
 of the same length m are order-isomorphic, it is enougl k and equality functions, and then compare them. The cost of such a test is dommated by the cost $\mathcal{O}(m \log m)$ of sorting the two sequences. However, if one needs to find all the sequences from a set \mathcal{S} that are order-isomorphic to a fixed sequence (all the sequences having the same size m), the simple iteration of the previous test would lead to an overall complexity of $\mathcal{O}(|\mathcal{S}| \cdot m \log m)$. In this case a better approach is possible, based on the following characterization of order-isomorphism which requires the computation of the rank and equality functions of the fixed sequence only, yielding an overall complexity of $\mathcal{O}((|\mathcal{S}|+\log m) \cdot m)$.
Lemma 9. Let x and y be two sequences of the same length $m \geq 2$, over a totally
 is linear in the size of its input sequence y.

The OPPM problem consists in finding all the substrings of the text with the same relative order as the pattern. More precisely,
Definition 10 (Order-preserving pattern matching). Let x and y be two sequences of length m and n, respectively, with $n>m$, both over an ordered alphabet (Σ, \preceq). The order-preserving pattern matching problem consists in finding all positions i, with $0 \leq i \leq n-m$, such that $y[i . . i+m-1] \approx x$.

```
Order-Isomorphic (inv-rk, eq, y)
1. for \(i \leftarrow 0\) to \(|y|-2\) do
2. if ( \(y[\) inv-rk \((i)] \succ y[\) inv-rk \((i+1)])\) then return false
3. if \((y[i n v-r k(i)] \prec y[\operatorname{inv}-r k(i+1)]\) and \(e q(i)=1)\) then return false
4. if \((y[i n v-r k(i)]=y[\operatorname{inv-rk}(i+1)]\) and \(e q(i)=0)\) then return false
5. return true
```

Figure 2. The procedure to verify whether a sequence y is order-isomorphic to a sequence of length $|y|$, whose inverse rank and equality functions are the parameters $i n v-r k$ and $e q$, respectively.

$$
B[c]==_{\text {Def }}\{i: 0 \leq i \leq m-1 \text { and } x[i]=c\} .
$$

Plainly, the space and time complexity needed for the construction of the array B of buckets is $\mathcal{O}(m+\sigma)$. Notice that when the pattern is shorter than the alphabet size, buckets are empty.

The search phase of the Skip Search algorithm examines all the characters $y[j]$ in the text at positions $j=k m-1$, for $k=1,2, \ldots,\lfloor n / m\rfloor$. For each such character $y[j]$, the bucket $B[y[j]]$ allows one to compute the possible positions h of the text in the neighborhood of j at which the pattern could occur.

By performing a character-by-character comparison between x and the subsequ ntil either a mismatch is found, or all the characters in the pa dered, it can be tested whether x actually occurs at position

of length $\ell=\left\lfloor\log _{\sigma} m\right\rfloor$ occurring i
retrieval. In addition, for each lea time complexity, however, spections is $\mathcal{O}(n)$.
most relevant one for our lects buckets for substrings ch algorithm, all the factors anged in a trie T_{x}, for fast aintained which stores the positions in x of the factor corresponding to ν. Provided that the alphabet size is
considered as a constant, the worst-case running time of the preprocessing phase is linear.

The searching phase consists in looking into the buckets of the text factors $y[j . . j+$ $\ell-1$], for all $j=k(m-\ell+1)-1$ such that $1 \leq k \leq\lfloor(n-\ell) / m\rfloor$, and then test, as in the previous case, whether there is an occurrence of the pattern at the indicated positions of the text.

The worst-case time complexity of the searching phase is quadratic, though the expected number of text character comparisons is $\mathcal{O}\left(n \log _{\sigma} m /\left(m-\log _{\sigma} m\right)\right)$.

3 A New Order-Preserving Pattern Matching Algorithm

In this section we present a new algorithm, called Order-Preserving-Skip-Search, for the Order-Preserving Pattern Matching problem. However, for brevity, in the following we shall often refer to it as SkSop algorithm.

Our algorithm combines the same approach of the Skip Search algorithm with the power of the SIMD (Single Instruction Multiple Data) instruction set, and specifically the Intel SSE (Streaming SIMD Extensions) instruction set, as discussed below.

In the last two decades a lot of effort has been spent exploiting the power of the word-RAM model of computation in order to speed-up string matc for a single pattern.

In this model, the computer metic and logic operations on w which exploit the word-RAM m on the packed string matching nique, multiple characters can can be compared in bulk rather

Next we discuss our model i
igth w, so t time. Most parallelism acked string yord, so tha

3.1 The Model

In the design of our algorithm, we use specialized word-size packed string matching instructions, based on the Intel streaming SIMD extensions (SSE) technology. SIMD instructions exist in many recent microprocessors supporting parallel execution of some operations on multiple data via a set of special instructions working on a limited number of special registers.

In our model of computation we assume that w is the number of bits in a word and σ is the size of the alphabet. The packing factor $\alpha=w / \log \sigma$ (or, rather, its floor) is the number of characters which fit in a single computer word, whereas the number of bits used to encode an alphabet character is $\gamma=\log \sigma$.

In most practical applications we have $\sigma=256$ (ASCII code). Moreover SSE specialized instructions allow one to work on 128-bit registers, so that blocks of sixteen 8 -bit characters can be read and processed in a single time unit $(\alpha=16)$. In particular, our algorithm makes use of specialized word-size packed instructions which we call wsrv (word-size rank vector) and wsrp (word-size relative position). These are reviewed next.

The instruction wsrv

The instruction wsrv (B, i) computes an α-bit fingerprint from a w-bit register B handled as a block of α small integers values. Assuming that $B[0 . . \alpha-1]$ is a w-bit
integer parameter, wsrv (B, i) returns an α-bit value $r[0 \ldots \alpha-1]$, where $r[j]=1$ iff $B[i] \geq B[j]$, and $r[j]=0$ otherwise.

The wsrv (B, i) specialized instruction can be emulated in constant time by the following sequence of specialized SIMD instructions:

```
wsrv (B,i)
    D}\leftarrow _mm_set1_epi8(B[i]
    C\leftarrow_mm_cmpgt_epi8(B,D)
    r\leftarrow _mm_movemask_epi8(C)
    return r
```

Specifically the _mm_set1_epi8 $(B[i])$ instruction creates a w-bit register D handled as a block of α small integers values, where $D[j]=B[i]$ for $0 \leq j<\alpha$. The _mm_cmpgt_epi8 (B, D) instruction compares the α integers in B and the α integers in D for "greater than". It creates a w-bit register C handled as a block of α small integers where $C[j]=1^{\gamma}$ if $B[j] \geq D[j]$, and $C[j]=0^{\gamma}$ otherwise, and where we remember that $\gamma=\log \sigma$ is the number of bits to encode an alphabet character. Finally, the _mm_movemask_epi8 (D) instruction gets a 128 bit parameter D, handled as sixteen 8 -bit integers, and creates a 16 -bit mask from the most significant bits of the 16 integers in D, and zero extends the upper bits.

The instruction wsrp

The instruction wsrp (B) computes an α-bit fingerprint from a w-bit register B handled as a block of α small integers values. Assuming that $B[0 . . \alpha-1]$ is a w-bit integer parameter, $\operatorname{wsrp}(B)$ returns an α-bit value $r[0 \ldots \alpha-1]$, where $r[j]=1 \mathrm{iff}$ $B[j] \geq B[j+1]$, and $r[j]=0$ otherwise (we put $r[\alpha-1]=0$).

The $\operatorname{wsrp}(B)$ specialized instruction can be emulated in constant time by the following sequence of specialized SIMD instructions

```
wsrp \((B)\)
    \(D \leftarrow\) _mm_slli_si128 \((B, 1)\)
    \(C \leftarrow\) _mm_cmpgt_epi \((B, D)\)
    \(r \leftarrow\) _mm_movemask_epi8( \(C\) )
    return \(r\)
```

where the _mm_slli_si128 $(B, 1)$ instruction shifts the w-bit register in B to the left by one position (α bits) while shifting in zeros and the _mm_cmpgt_epi8 and the _mm_movemask_epi8 instructions are as described above.

3.2 The Fingerprint Functions

The preprocessing phase of the algorithm indexes the subsequences of the pattern (of length q) in order to locate them during the searching phase. For efficiency reasons, each numeric sequence of length q is converted into a numeri which is used to index the substring. A fingerprint value ran $1\}$, for a given bound τ. The value τ is set to 2^{16}, so that
 single 16 -bit register.
The procedure FNG for computing the fingerprints is shc Given a sequence x of length m, an index i such that $0 \leq i \leftharpoonup$ and q such that $k \leq q \leq m$, the procedure FNG combines k
$\operatorname{FNG}(x, i, q, k)$

1. $B \leftarrow 0^{\alpha-q} . x[i . . i+q-1]$
2. $v \leftarrow \operatorname{wsrp}(B)$
3. for $j \leftarrow 0$ to $k-2$ do
4. $\quad v \leftarrow(v \ll 1)+\operatorname{wsrv}(B, \alpha-q+j)$
5. return v
$\operatorname{ExAmple}(q=5, k=3$, and $\alpha=8)$
$x[i . . i+q-1]=\langle 3,6,2,4,7\rangle$
$B=[0,0,0,3,6,2,4,7]$
$\operatorname{wsrp}(B)=[0,0,0,1,0,1,1,0]=22_{10}$
$\operatorname{wsrv}(B, 3)=[0,0,0,1,1,0,1,1]=27_{10}$
$\operatorname{wsrv}(B, 4)=[0,0,0,0,1,0,0,1]=9_{10}$
$v=22 \times 2^{2}+27 \times 2^{1}+9=151_{10}$

Figure 3. On the left: the pseudo-code of the procedure FNG for the computation of the fingerprint of a substring a length q combining k distinct fingerprints. On the right: an example of a computation of a fingerprint by the procedure FNG.
on the substring $x[i . . i+q-1]$ in order to compute the fingerprint v. Preliminarily, the substring $x[i . . i+q-1]$ is inserted in the rightmost portion of a w-bit register B. Then the fingerprint v is computed as

We are now ready to briefly describe our algorithm for the OPPM pr the Alpha variant of the Skip Search algorithm. We distinguish in it and a searching phase.

The preprocessing phase of the SkSop algorithm, which is repor the left), consists in compiling the fingerprints of all possible subst contained in the pattern x. Thus a fingerprint value v, with $0 \leq v<$ for each subsequence $x[i . . i+q-1]$, for $0 \leq i<m-q$.

To this purpose a table F of size 2^{α} is maintained for storing, fingerprint value v, the set of positions i such that $\operatorname{FNG}(x, i, q, k)=v$. More precisely, for $0 \leq v<2^{\alpha}$, we have

$$
F[v]=\{i \mid 0 \leq i<m-q \text { and } \mathrm{FNG}(x, i, q, k)=v\}
$$

The preprocessing phase of the SkSop algorithm requires some additional space to store the $(m-q)$ possible alignments in the 2^{α} locations of the table F. Thus, the space requirement of the algorithm is $\mathcal{O}\left(m-q+2^{\alpha}\right)$ that approximates to $\mathcal{O}(m)$, since α is constant. The first loop of the preprocessing phase just initializes the table F, while the second loop is run $(m-q)$ times, which makes the overall time complexity of the preprocessing phase $\mathcal{O}\left(m+2^{\alpha}\right)$ that, again, approximates to $\mathcal{O}(m)$.

The basic idea of the searching phase is to compute a fingerprint value every $(m-q)$ positions of the text y and to check whether the pattern appears in y, involving the

Preprocessing (x, q, m, k)	$\operatorname{SkSop}(x, r, y, n, q, k)$
1. for $v \leftarrow 0$ to $2^{\alpha}-1$ do	1. $F \leftarrow \operatorname{Preprocessing}(x, q, m, k)$
2. $F[v] \leftarrow \emptyset$	2. for $j \leftarrow m-1$ to n step $m-q+1$ do
3. for $i \leftarrow 0$ to $m-q$ do	3. $v \leftarrow$ FNG (y, j, q, k)
4. $v \leftarrow \operatorname{FNG}(x, i, q, k)$	4. for each $i \in F[v]$ do
5. $F[v] \leftarrow F[v] \cup\{(i+q-1)\}$	5. $z \leftarrow y[j-i . . j-i+m-1]$
6. return F	6. if $\operatorname{OrDER-IsOMORPHIC}\left(r k_{x}^{-1}, e q_{x}, z\right)$
	7. \quad then output (j)

Figure 4. The pseudo-code of the SkSop algorithm for the OPPM problem.
block $y[j . . j+q-1]$. If the are possible, then the candic

The pseudo-code provid SkSop algorithm. The mai ($m-q+1$) blocks. If the finge bucket of the table F, then

In particular $F[v]$ contail

ates that some of the alignments ed naively for matching. ght) reports the skeleton of the blocks of the text y in steps of j.. $j+q-1$] points to a nonempty ; $[v]$ are verified accordingly. lues i marking the pattern x and the beginning position of the pattern in the text. While looking for occurrences on $y[j . . j+q-1]$, if $F[v]$ contains the value i, this indicates the pattern x may potentially begin at position $(j-i)$ of the text. In that case, a matching test is to be performed between x and $y[j-i . . j-i+m-1]$ via a character-by-character inspection.

The total number of filtering operations is exactly $n /(m-q)$. At each attempt, the maximum number of verification requests is $(m-q)$, since the filter provides information about that number of appropriate alignments of the patterns. On the other hand, if the computed fingerprint points to an empty location in F, then there is obviously no need for verification. The verification cost for a pattern x of length m is assumed to be $\mathcal{O}(m)$, with the brute-force checking approach. Hence, in the worst case the time complexity of the verification is $\mathcal{O}(m(m-q))$, which happens when all alignments in x must be verified at any possible beginning position. Hence, the best case complexity is $\mathcal{O}(n /(m-q))$, while the worst case complexity is $\mathcal{O}(n m)$.

4 Experimental Evaluations

- $\operatorname{SkSop}(k, q)$: our Skip Search-based algorithm presented combines k different fingerprint

More specifically, in our tests, $\{1,2,3,4,5\}$ and $q \in\{3,4,5,6,7,8$

The Boyer-Moore approach by tions, as it was shown to be less ef in all cases.

All algorithms have been evalu accuracy, i.e., number of verificatic
een included in our evaluam by Chhabra and Tarhio cy, i.e. running times, and ie searching phase. In par- ticular, they have been tested on sequences of small integer values (i.e., in the range [0..256]), big integer values (i.e., in the range $[0 . .10 .000]$) and real numbers (i.e., in the range $[0,0 . .10 .000,99]$). However, we did not observe any significant difference in the results; thus, for brevity, in the following table we report only the results relative to small integer sequences. Each text consists in a sequence of 1 million elements. In particular we tested our algorithm on the following set of small integer sequences:

- RAND- δ : a sequence of random integer values ranging around a fixed mean μ with a variability of δ and a uniform distribution, i.e. each value is uniformly distributed in the range $\{\mu-\delta . . \mu+\delta\}$;
- Periodic- ρ : a sequence of random integer values uniformly ranging around a cyclic function with a period of ρ elements.

For each text in the set, we randomly selected 100 patterns extracted from the text and computed the average running time over 100 runs. We also computed the average number of false positives detected by the algorithms during the search. Algorithms have been implemented using the C programming language and have been compiled using the gcc compiler Apple LLVM version 5.1 (based on LLVM 3.4svn) with 8Gb Ram. Compilation has been performed with the -03 optimization option.

For each value of k, we have also reported in round parentheses the value of q which led to the best performance.

Average Number of Verifications

We evaluated the accuracy o performed during the search. fications that each algorithm mean of such value over 100 r obtained on Rand- δ sequend with $\rho=8,16,32$. Best result

Results on Rand- δ seque of verifications performed du are used. Using a single finge number of verifications, up to by combining 4 different finge
 ber of verifications ge number of veriand computed the ectively, the results IODIC- ρ sequences, ence in the number fferent fingerprints $\mathrm{P}(1, q))$ leads to a quite high The best results are obtained ($\operatorname{SkSop}(4, q)$), in which case the number of verifications decreases to 0.25 every 2^{20} characters.

When we combine more than 4 fingerprint values (algorithm $\operatorname{SkSop}(5, q)$), the number of verifications sensibly increases to 0.5 . This behavior is due to the combination process which uses a final hash value of 16 bits and which causes loss of information.

δ	m	$\operatorname{SkSop}(1, q)$	$\operatorname{SkSop}(2, q)$	$\operatorname{SkSop}(3, q)$	$\operatorname{SkSop}(4, q)$	$\operatorname{SkSop}(5, q)$
5	8	$52.64{ }^{(8)}$	$3.87{ }^{(8)}$	$1.20{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	0.43 (8)
	12	$46.22^{(8)}$	$4.27{ }^{(8)}$	$1.02{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.41{ }^{(8)}$
	16	$45.65{ }^{(8)}$	$4.01{ }^{(8)}$	$1.06{ }^{(8)}$	$0.24{ }^{(8)}$	$0.41{ }^{(8)}$
	20	$48.13{ }^{(8)}$	$4.18{ }^{(8)}$	$1.09{ }^{(8)}$	$0^{0.24}{ }^{(8)}$	$0.42{ }^{(8)}$
	24	$45.02{ }^{(8)}$	$4.13{ }^{(8)}$	$1.05{ }^{(8)}$	$\underline{0.24}{ }^{(8)}$	$0.42{ }^{(8)}$
	28	$44.92^{(8)}$	$4.05{ }^{(8)}$	$1.03{ }^{(8)}$	$\underline{0.24}{ }^{(8)}$	$0.41{ }^{(8)}$
	32	$46.99{ }^{(8)}$	$4.23{ }^{(8)}$	$1.04{ }^{(8)}$	$\underline{0.23}{ }^{(8)}$	$0.44{ }^{(8)}$
20	8	$37.78{ }^{(8)}$	$3.96{ }^{(8)}$	$1.02{ }^{(8)}$	$0.23{ }^{(8)}$	$0.51{ }^{(8)}$
	12	$40.65{ }^{(8)}$	$4.17{ }^{(8)}$	$1.04{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.52{ }^{(8)}$
	16	$39.78{ }^{(8)}$	$4.65{ }^{(8)}$	$1.00{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.52{ }^{(8)}$
	20	$39.05{ }^{(8)}$	$4.12{ }^{(8)}$	$1.02{ }^{(8)}$	$\underline{0.24}{ }^{(8)}$	$0.49{ }^{(8)}$
	24	$39.24{ }^{(8)}$	$4.35{ }^{(8)}$	$1.02{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.50{ }^{(8)}$
	28	$40.15{ }^{(8)}$	$4.34{ }^{(8)}$	$1.00{ }^{(8)}$	$\underline{0.24}{ }^{(8)}$	$0.49{ }^{(8)}$
	32	$40.00{ }^{(8)}$	$4.39{ }^{(8)}$	$1.01{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.51{ }^{(8)}$
40	8	$42.34{ }^{(8)}$	$4.37^{(8)}$	$1.03{ }^{(8)}$	$\underline{0.27}{ }^{(8)}$	$0.54{ }^{(8)}$
	12	$35.64{ }^{(8)}$	$4.50{ }^{(8)}$	0.99 (8)	$\underline{0.25}{ }^{(8)}$	0.49 (8)
	16	$41.08{ }^{(8)}$	$4.40{ }^{(8)}$	$1.01{ }^{(8)}$	$0.26{ }^{(8)}$	$0.54{ }^{(8)}$
	20	$40.71{ }^{(8)}$	$4.29{ }^{(8)}$	$1.05{ }^{(8)}$	$\underline{0.26}{ }^{(8)}$	$0.54{ }^{(8)}$
	24	$37.77{ }^{(8)}$	$4.33{ }^{(8)}$	$0.96{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.52{ }^{(8)}$
	28	$39.98{ }^{(8)}$	$4.51{ }^{(8)}$	$1.02{ }^{(8)}$	$\underline{0.25}{ }^{(8)}$	$0.53{ }^{(8)}$
	32	$38.26{ }^{(8)}$	$4.46{ }^{(8)}$	$0.99{ }^{(8)}$	$\underline{0.26}{ }^{(8)}$	$0.54{ }^{(8)}$

Table 1. Average number of verifications performed every 2^{10} characters, computed on a Rand- δ small integer sequence, with $\delta=5,20$, and 40 .

ρ	m	$\operatorname{SkSop}(1, q)$	$\operatorname{SKSop}(2, q)$	$\operatorname{SkSop}(3, q)$	$\operatorname{SkSop}(4, q)$	$\operatorname{SkSop}(5, q)$
8	$\begin{aligned} & 8 \\ & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \\ & 32 \end{aligned}$	$\begin{aligned} & 92.22^{(8)} \\ & 98.48^{(8)} \\ & 98.27^{(8)} \\ & 96.95^{(8)} \\ & 96.88^{(8)} \\ & 97.63^{(8)} \\ & 97.65^{(8)} \end{aligned}$	$\begin{aligned} & 37.40^{(8)} \\ & 35.46^{(8)} \\ & 36.46^{(8)} \\ & 35.91^{(8)} \\ & 36.06^{(8)} \\ & 35.79^{(8)} \\ & 35.93^{(8)} \end{aligned}$	$\begin{aligned} & 14.22^{(8)} \\ & 14.72^{(8)} \\ & 15.71^{(8)} \\ & 15.14^{(8)} \\ & 14.87^{(8)} \\ & 14.60^{(8)} \\ & 15.09^{(8)} \end{aligned}$	$\begin{aligned} & \underline{8.01}^{(8)} \\ & \underline{8.27}^{(8)} \\ & \underline{8.75} \\ & \underline{8.47}^{(8)} \\ & \underline{8.34}^{(8)} \\ & \underline{\underline{7.94}}^{(8)} \\ & \underline{8}^{8.31} \end{aligned}$	$\begin{gathered} 8.83^{(8)} \\ 10.38^{(8)} \\ 10.46^{(8)} \\ 10.12^{(8)} \\ 10.18^{(8)} \\ 9.67^{(8)} \\ 10.23^{(8)} \end{gathered}$
16	$\begin{aligned} & 8 \\ & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \\ & 32 \end{aligned}$	$\begin{aligned} & 173.85^{(8)} \\ & 179.84^{(8)} \\ & 179.20^{(8)} \\ & 176.24^{(8)} \\ & 181.67^{(8)} \\ & 176.67^{(8)} \\ & 179.96^{(8)} \end{aligned}$	$\begin{aligned} & 40.23^{(8)} \\ & 46.64^{(8)} \\ & 46.94^{(8)} \\ & 45.61^{(8)} \\ & 46.50^{(8)} \\ & 46.27^{(8)} \\ & 46.12^{(8)} \end{aligned}$	$\begin{aligned} & 5.19^{(8)} \\ & 5.35^{(8)} \\ & 5.59^{(8)} \\ & 5.40^{(8)} \\ & 5.53^{(8)} \\ & 5.47^{(8)} \\ & 5.55^{(8)} \end{aligned}$		$\begin{aligned} & 7.03^{(8)} \\ & 7.62^{(8)} \\ & 7.57^{(8)} \\ & 7.07^{(8)} \\ & 7.31^{(8)} \\ & 7.09^{(8)} \\ & 7.52^{(8)} \end{aligned}$
32	$\begin{aligned} & 8 \\ & 12 \\ & 16 \\ & 20 \\ & 24 \\ & 28 \\ & 32 \end{aligned}$	$\begin{aligned} & 125.55^{(8)} \\ & 134.48^{(8)} \\ & 136.69^{(8)} \\ & 140.14^{(8)} \\ & 138.36^{(8)} \\ & 139.04^{(8)} \\ & 136.39^{(8)} \end{aligned}$	$\begin{aligned} & 35.52^{(8)} \\ & 35.41^{(8)} \\ & 39.27^{(8)} \\ & 40.58^{(8)} \\ & 39.70^{(8)} \\ & 37.90^{(8)} \\ & 39.09^{(8)} \end{aligned}$	$\begin{aligned} & 3.23^{(8)} \\ & 3.19^{(8)} \\ & 3.34^{(8)} \\ & 3.51^{(8)} \\ & 3.52^{(8)} \\ & 3.44^{(8)} \\ & 3.44^{(8)} \end{aligned}$		$\begin{aligned} & 3.96^{(8)} \\ & 3.84^{(8)} \\ & 4.07^{(8)} \\ & 3.99^{(8)} \\ & 4.15{ }^{(8)} \\ & 4.05^{(8)} \\ & 4.06 \end{aligned}$

Table 2. Average number of verifications performed every 2^{10} characters, computed on a Periodicρ small integer sequence, with $\rho=8,16$, and 32 .

Results on Periodic- ρ sequences show how the number of verifications performed by the algorithms is affected by the value of ρ. Specifically the number of verifications

δ	m	FCT	$\operatorname{SkSop}(1, q)$	SkSop (2, q)	$\operatorname{SkSop}(3, q)$	$\operatorname{SkSop}(4, q)$	$\operatorname{SkSop}(5, q)$
5	8	42.32	$0.81{ }^{(5)}$	$1.14{ }^{(4)}$	$1.22{ }^{(4)}$	$1.27{ }^{(4)}$	$1.27{ }^{(4)}$
	12	27.09	$0.80{ }^{(7)}$	$1.21{ }^{(5)}$	$1.35{ }^{(5)}$	$1.37{ }^{(5)}$	$1.34{ }^{(5)}$
	16	20.38	$0.83{ }^{(8)}$	1.33 (6)	$1.44{ }^{(5)}$	$1.52{ }^{(5)}$	$1.50{ }^{(5)}$
	20	16.59	$0.88{ }^{(8)}$	$1.39{ }^{(7)}$	$1.54{ }^{(6)}$	$1.58{ }^{(5)}$	$1.56{ }^{(6)}$
	24	13.56	$0.89{ }^{(8)}$	$1.44{ }^{(7)}$	$1.60{ }^{(6)}$	$1.61{ }^{(6)}$	$1.63{ }^{(6)}$
	28	11.50	$0.85{ }^{(8)}$	$1.47{ }^{(7)}$	$1.56{ }^{(7)}$	1.59 (5)	$1.62{ }^{(6)}$
	32	9.97	$0.81{ }^{(8)}$	$1.47{ }^{(7)}$	$1.57{ }^{(7)}$	$1.59{ }^{(6)}$	$1.60{ }^{(6)}$
20	8	42.13	$0.81{ }^{(4)}$	$1.12{ }^{(4)}$	$1.22{ }^{(4)}$	$1.19{ }^{(4)}$	$1.14{ }^{(4)}$
	12	27.41	$0.84{ }^{(6)}$	$1.24{ }^{(5)}$	$1.40{ }^{(5)}$	$1.40{ }^{(5)}$	$1.35{ }^{(5)}$
	16	19.78	$0.85{ }^{(7)}$	$1.28{ }^{(6)}$	$1.43{ }^{(6)}$	$1.46{ }^{(5)}$	$1.40{ }^{(5)}$
	20	15.73	$0.90{ }^{(8)}$	$1.33{ }^{(7)}$	$1.49{ }^{(6)}$	$1.51{ }^{(5)}$	$1.50{ }^{(6)}$
	24	13.24	$0.89{ }^{(8)}$	$1.40{ }^{(7)}$	$1.51{ }^{(6)}$	$1.55{ }^{(6)}$	$1.55{ }^{(6)}$
	28	11.37	$0.86{ }^{(8)}$	$1.45{ }^{(7)}$	$1.57{ }^{(6)}$	$1.57{ }^{(6)}$	$1.58{ }^{(6)}$
	32	9.89	$0.85{ }^{(8)}$	$1.42{ }^{(7)}$	$1.58{ }^{(7)}$	$1.56{ }^{(6)}$	$1.54{ }^{(7)}$
40	8	41.32	$0.81{ }^{(4)}$	$1.11{ }^{(4)}$	$1.19{ }^{(4)}$	$1.16{ }^{(4)}$	$1.11{ }^{(4)}$
	12	27.36	$0.83{ }^{(6)}$	$1.22{ }^{(5)}$	$1.38{ }^{(5)}$	$1.39{ }^{(5)}$	$1.34{ }^{(5)}$
	16	19.78	$0.84{ }^{(7)}$	$1.27{ }^{(6)}$	$1.42{ }^{(6)}$	$1.43{ }^{(5)}$	$1.40{ }^{(6)}$
	20	16.21	$0.90{ }^{(8)}$	$1.34{ }^{(7)}$	$1.51{ }^{(6)}$	$1.52{ }^{(6)}$	$1.52{ }^{(6)}$
	24	13.26	$0.90{ }^{(8)}$	$1.40{ }^{(7)}$	$1.51{ }^{(7)}$	$1.54{ }^{(6)}$	$1.57{ }^{(6)}$
	28	11.38	$0.86{ }^{(8)}$	$1.43{ }^{(7)}$	$1.56{ }^{(7)}$	$1.56{ }^{(6)}$	$1.57{ }^{(6)}$
	32	9.93	$0.84{ }^{(8)}$	$1.43{ }^{(8)}$	$1.56{ }^{(7)}$	$1.58{ }^{(6)}$	$\underline{1.58}{ }^{(7)}$

Table 3. Running times on a Rand- δ small integer sequence, with $\delta=5,20$ and 40 . Running times (in milliseconds) are reported for the FCT algorithm, while speed-up values are reported for the $\operatorname{SkSop}(k, q)$ algorithms.
increases when the period of the function decreases. This is due to the high presence of similar patterns in the text. In addition, in this case, the best results are obtained by the $\operatorname{SkSop}(k, q)$ algorithm. Good results are obtained also by combining 3 or 5 fingerprint values.

We observe also that in all cases the number of verifications for each text character is less than 0.1 and is not affected by the length of the pattern. Thus we can observe that the $\operatorname{SkSop}(k, q)$ algorithm has a linear behavior on average, as will become apparent in the following evaluation of the running times.

Running Times

The performance of the alg running times. We compared text for the set of 100 patte mental results obtained on P sequences, with $\rho=8,16,3$ 2

ed in terms of their while searching the ectively, the experiand on Periodic- ρ tilliseconds. Best results have been underlined.

In particular, for the Fo e running times obtained as the mean of 100 runs. Instead, in the case of the execution of $\operatorname{SkSop}(k, q)$ algorithms, we reported the speed up of th with the time taken by the FCT algorithm time of the FCT algorithm and t is the runn up is computed as time $(\mathrm{FCT}) / t$.

Experimental results on Rand- δ sequen of all algorithms are not affected by the val

d when compared
т) is the running m , then the speed
the performances
thm is dominated

ρ	m	FCT	$\operatorname{SkSop}(1, q)$	$\operatorname{SkSop}(2, q)$	$\operatorname{SkSop}(3, q)$	$\operatorname{SkSop}(4, q)$	$\operatorname{SkSop}(5, q)$
8	8	39.90	$0.79{ }^{(3)}$	$0.87{ }^{(4)}$	$0.89{ }^{(4)}$	$0.87{ }^{(4)}$	$0.87{ }^{(4)}$
	12	32.94	$0.87{ }^{(5)}$	$1.09{ }^{(6)}$	1.19 (6)	$1.24{ }^{(6)}$	$1.17{ }^{(6)}$
	16	27.21	$0.90{ }^{(7)}$	$1.24{ }^{(7)}$	$1.44{ }^{(7)}$	1.55 (7)	$1.46{ }^{(7)}$
	20	21.47	$0.90{ }^{(8)}$	$1.21{ }^{(7)}$	$1.44{ }^{(7)}$	$1.60{ }^{(7)}$	$1.50{ }^{(7)}$
	24	19.29	$0.94{ }^{(8)}$	$1.27{ }^{(7)}$	$1.59{ }^{(8)}$	$\underline{1.77}{ }^{(7)}$	$1.68{ }^{(8)}$
	28	16.90	$0.91{ }^{(8)}$	$1.28{ }^{(7)}$	$1.65{ }^{(8)}$	$1.81{ }^{(7)}$	$1.77{ }^{(8)}$
	32	15.58	$0.89{ }^{(8)}$	$1.28{ }^{(7)}$	$1.68{ }^{(8)}$	$1.87{ }^{(8)}$	$1.83{ }^{(8)}$
16	8	37.40	$0.68{ }^{(4)}$	$0.83{ }^{(4)}$	$\underline{0.93}{ }^{(4)}$	$0.93{ }^{(4)}$	$0.90^{(4)}$
	12	25.03	$0.60{ }^{(5)}$	$0.79{ }^{(4)}$	$1.03{ }^{(5)}$	$1.04{ }^{(5)}$	$0.99{ }^{(5)}$
	16	18.63	$0.60{ }^{(6)}$	$0.80{ }^{(7)}$	$1.15{ }^{(6)}$	$1.15{ }^{(6)}$	$1.10{ }^{(6)}$
	20	15.22	$0.53{ }^{(8)}$	$0.81{ }^{(8)}$	$1.22{ }^{(7)}$	1.19 (7)	$1.15{ }^{(7)}$
	24	12.75	$0.50{ }^{(7)}$	$0.78{ }^{(8)}$	$\underline{1.26}{ }^{(7)}$	$1.24{ }^{(7)}$	$1.19{ }^{(7)}$
	28	10.52	$0.45{ }^{(7)}$	$0.73{ }^{(8)}$	$\underline{1.21}{ }^{(7)}$	$1.20{ }^{(7)}$	$1.14{ }^{(7)}$
	32	10.01	$0.43{ }^{(8)}$	$0.78{ }^{(8)}$	$1.31{ }^{(8)}$	$1.29{ }^{(7)}$	$1.23{ }^{(8)}$
32	8	38.82	$0.76{ }^{(4)}$	$1.00{ }^{(4)}$	$1.11{ }^{(4)}$	$1.09{ }^{(4)}$	$1.05{ }^{(4)}$
	12	24.86	$0.65{ }^{(6)}$	$0.91{ }^{(4)}$	$1.16{ }^{(5)}$	$1.18{ }^{(5)}$	$1.15{ }^{(5)}$
	16	18.85	$0.61{ }^{(6)}$	$0.89{ }^{(5)}$	$1.24{ }^{(6)}$	$1.27{ }^{(5)}$	$1.24{ }^{(6)}$
	20	15.02	$0.58{ }^{(6)}$	$0.86{ }^{(6)}$	$1.31{ }^{(6)}$	$1.34{ }^{(6)}$	$1.30{ }^{(6)}$
	24	12.32	$0.52{ }^{(7)}$	$0.83{ }^{(7)}$	$1.31{ }^{(7)}$	$1.32{ }^{(6)}$	$1.28{ }^{(6)}$
	28	10.89	$0.50{ }^{(8)}$	$0.85{ }^{(8)}$	$1.38{ }^{(7)}$	$1.38{ }^{(6)}$	$1.34{ }^{(6)}$
	32	9.50	$0.48{ }^{(8)}$	$0.81{ }^{(8)}$	$1.37{ }^{(7)}$	$1.38{ }^{(6)}$	$1.34{ }^{(7)}$

Table 4. Running times on a Periodic- δ integer sequence, with $\delta=5,20$, and 40. Running times (in milliseconds) are reported for the FCT algorithm, while speed-up values are reported for the $\operatorname{SkSop}(k, q)$ algorithms.
by our Skip Search-based algorithms in all cases, especially for long patterns. When
the length of the pattern is between 8 and $20, t$ best results, whereas the $\operatorname{SkSop}(5, q)$ algorithr of the pattern is greater or equal to 20 . In this obtains a significant speed up of 1.60 if compa

Experimental results on Periodic- ρ sequer $\operatorname{SkSop}(4, q)$ obtains the best results in most of
 5,q) algorithm thm. the algorithm t speed up (up to 1.9) most of the times, especially for long p

The FCT algorithm is still the fastest solutid ($m=8$), while the $\operatorname{SkSop}(3, q)$ algorithm obta of the pattern is between 8 and 20 .

5 Conclusions

In this paper we discussed the Order-Preserving Pattern Matching Problem and presented a new algorithm to solve such problem, based on the well-known Skip Search approach. It turns out that our solution is much more effective in practice than existing algorithms. Our algorithm uses SIMD SSE instructions to speed up the searching process. Experimental results show that our solution is up to twice as faster than previous solutions, while exhibiting a linear behavior on average.

References

1. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Comm. of the ACM, 35(10), 1992, pp. 74-82.
2. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the ACM 20(10), 1977, pp. 762-772.
3. C. Charras, T. Lecroq, and J. D. Pehoushek: A very fast string matching algorithm for small alphabets and long patterns, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Matching, M. Farach-Colton, ed., Piscataway, New Jersey, vol. 1448 of Lecture Notes in Computer Science, Springer-Verlag, Berlin 1998, pp. 55-64.
4. T. Chhabra and J. Tarhio: Order-preserving matching with filtration, in Proc. SEA '14, 13th International Symposium on Experimental Algorithms, vol. 8504 of Lecture Notes in Computer Science, Springer 2014, pp. 307-314.
5. S. Cho, J. C. Na, K. Park, and J. S. Sim: Fast order-preserving pattern matching, in Widmayer, P., Xu, Y., Zhu, B., eds., COCOA 2013, vol. 8287 of Lecture Notes in Computer Science, Springer, Chengdu 2013, pp. 295-305.
6. M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P. Pissis, J. Radoszewski, W. Rytter, and T. Walen: Order-preserving incomplete suffix trees and order-preserving indexes, in Proc. SPIRE 2013, 20th International Symposium, vol. 8214 of Lecture Notes in Computer Science, Springer, Jerusalem 2013, pp. 84-95.
7. B. Durian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string matching. Information Processing Letters 110(4), 2010, pp. 148-152.
8. S. Faro and M. O. Külekci: Fast Packed String Matching for Short Patterns, in Proc. of the 15th Meeting on Algorithm Engineering and Experiments, 2013, pp. 113-121.
9. S. Faro and M. O. Külekci: Fast and flexible packed string matching. J. Discrete Algorithms vol. 28, 2014, pp. 61-72.
10. Intel Corporation: Intel (R) 64 and IA-32 Architectures Optimization Reference Manual, 2011.
11. J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi, and T. Tokuyama: Order preserving matching. Theoretical Computer Science 525, 2014, pp. 68-79.
12. M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, and T. Walen: A linear time algorithm for consecutive permutation pattern matching. Information Processing Letters 113(12), 2013, pp. 430-433.
13. D. E. Knuth, J. M. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM Journal on Computing 6(2), 1977, pp. 323-350.
14. G. Navarro and M. Raffinot: Flexible pattern matching in strings: Practical on-line search algorithms for texts and biological sequences. Cambridge University Press, New York, NY 2002.

[^0]: * This work has been supported by the Scientific \& Technological Research (TUBITAK), the Department Of Science Fellowships \& Grant Programs (BII ship Program, and by G.N.C.S., Istituto Nazionale di Alta Matematica "Fran

