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Abstract. Given a pattern and text, both over a common ordered alphabet, the order-
preserving pattern matching problem consists in finding all substrings of the text with
the same relative order as the pattern. This problem, an approximate variant of the
well-known exact pattern matching problem, finds applications in such fields as time
series analysis (e.g., share prices on stock markets), weather data analysis, musical
melody matching, etc., and has gained increasing attention in recent years. In this
paper we present a new efficient approach to this problem inspired to the well-known
Skip Search algorithm for the exact string matching problem. It makes use of efficient
SIMD SSE instructions in order to speed up the searching phase. Experimental results
show that our proposed algorithm is up to twice as faster than previous solutions.

1 Introduction

Given a pattern x of length m and a text y of length n, both over a common alphabet
Σ, the exact string matching problem consists in finding all occurrences of the string x
in y. String matching is a very important source of challenging problems in the wider
domain of text processing. String matching algorithms are often basic components
in practical softwares existing under most operating systems They also emphasize
programming methods that serve as paradigms in other fields of computer science.

The worst-case lower bound O(n) for the string matching problem has been
achieved for the first time by the well-known Knuth-Morris-Pratt algorithm [13]
(KMP, for short). However, several string matching algorithms with a sublinear
O(n logm/m) performance on average have also been developed over the years.
Among them, the Boyer-Moore algorithm [2] deserves a special mention, since it
has been particularly successful and has inspired much work.

The order-preserving pattern matching problem [2,3,8,9] (OPPM, in short) is an
approximate variant of the exact pattern matching problem in which the pattern x
and text y are drawn from a totally ordered alphabet Σ and one is searching for all
the substrings of y with the same relative order as x. For instance, when the alphabet
is the set N of natural numbers with the standard order relation, the relative order
of the sequence x = 〈6, 5, 8, 4, 7〉 is the sequence 〈2, 1, 4, 0, 3〉 since 6 has rank 2, 5 has
rank 1, and so on. Thus x has an order-preserving occurrence in the string

y = 〈8, 11, 10, 16, 15, 20, 13, 17, 14, 18, 20, 18, 25, 17, 20, 25, 26〉
at position 3, since x and the subsequence 〈16, 15, 20, 13, 17〉 share the same relative
order. Another order-preserving occurrence of x in y is at position 10 (see Fig. 1).
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Domenico Cantone, Simone Faro, M. Oğuzhan Külekci: An Efficient Skip-Search Approach to the Order-Preserving Pattern Matching Problem, pp. 22–35.
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y = 8 11 10 16 15 20 13 17 14 18 20 18 25 17 24 25 26

x = 6 5 8 4 7

Figure 1. Example of a pattern x of length 5 over an integer alphabet with two order preserving
occurrences in a text y of length 17, at positions 3 and 10.

The OPPM problem finds applications in all situations in which one is interested
only in the “shape” of the pattern (intended as the relative order of its characters)
rather than in the pattern itself. For instance, it can be applied successfully to time
series analysis like share prices on stock markets and weather data, or to melody
matching of musical scores.

In the last few years some solutions have been proposed for the OPPM problem.
The first solution was presented by Kubica et al. [12] in 2013. They proposed a O(n+
m logm) solution over generic ordered alphabets based on the KMP algorithm [13]
and aO(n+m) solution in the case of integer alphabets. A few months later, Kim et al.
presented in [11] a similar solution running in O(n+m logm) time, still based on the
KMP approach. Although Kim et al. stressed some doubts about the applicability of
the Boyer-Moore approach [2] to the OPPM problem, in 2013 Cho et al. [5] presented
a method for deciding the order-isomorphism between two sequences showing that
the Boyer-Moore approach can be applied also to the order-preserving variant of the
pattern matching problem. More recently, Chhabra and Tarhio [4] presented a more
practical solution based on approximate string matching techniques. Specifically, their
solution consists in converting the input sequences into binary sequences and then
applying any standard algorithm for exact string matching as a filtration method.

In this paper we present a new algorithm for the OPPM problem which turns
out to be more effective in practice than currently available solutions. Our proposed
algorithm is based on the well-known Skip Search algorithm [3] for the exact string
matching problem, which consists in processing separately chunks of the text for
any occurrence of the pattern. For all substrings of a given length of the pattern,
a fingerprint is computed and indexed. Then, by using this information, candidate
occurrences of the pattern are located in the text. We propose to use efficient SIMD

SSE instructions [10] for computing the fingerprints of the pattern substrings. Exper-
imental results show that our proposed approach leads to algorithmic variants that
are up to twice as faster than previous solutions present in the literature.

The paper is organized as follows. In Section 2 we review some preliminary notions
and properties relative to the OPPM problem and give an overview of the Skip Search
algorithm and its searching approach. We present our proposed algorithm for the
OPPM problem in Section 3 and then compare its performance with previous known
algorithms in Section 4. Finally, we draw our conclusions in Section 5.
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2 Preliminaries

A string x over an ordered alphabet Σ, of size σ, is defined as a sequence of elements
in Σ. We shall assume that a total order relation “�” is defined on it.

By |x| we denote the length of a string x. We refer to the i-th element in x as
x[i] and use the notation x[i .. j] to denote the subsequence of x from the element at
position i to the element at position j (including the extremes), where 0 ≤ i ≤ j < |x|.

2.1 Order-Isomorphism and Related Properties

We say that two (nonnull) sequences x, y over Σ are order-isomorphic if the relative
order of their elements is the same. More formally:

Definition 1 (Order-isomorphism). Two nonnull sequences x, y of the same length,
over a totally ordered alphabet (Σ,�), are said to be order-isomorphic, and we write
x ≈ y, if the following condition holds

for 0 ≤ i, j < |x| , x[i] � x[j] ⇐⇒ y[i] � y[j].

The following lemma states some elementary properties of order-isomorphism
which follow directly from the definition.

Lemma 2. Let x and y be two nonnull sequences of the same length, over a totally
ordered alphabet (Σ,�), such that x ≈ y. Then

(a) x[j] ≺ x[i] iff y[j] ≺ y[i], for 0 ≤ i, j < |x|;
(b) x[j] = x[i] iff y[j] = y[i], for 0 ≤ i, j < |x|. ⊓⊔

From a computational point of view, it is convenient to characterize the order of
a sequence by means of two functions: the rank and the equality functions. These are
defined below, together with some of their elementary properties.

Definition 3 (Rank function). Let x be a nonnull sequence over a totally ordered
alphabet (Σ,�). The rank function of x is the bijection from {0, 1, . . . , |x| − 1} onto
itself defined, for 0 ≤ i < |x|, by

rkx(i) =Def

∣

∣{k : x[k] ≺ x[i] or (x[k] = x[i] and k < i)}
∣

∣ .

The following properties are easy consequences of Definition 3.

Lemma 4. Given a nonnull sequence x over a totally ordered alphabet (Σ,�), we
have:

(a) if x[j] ≺ x[i], then rkx(j) < rkx(i), for 0 ≤ i, j < |x|;
(b) if x[j] = x[i] and 0 ≤ j < i < |x|, then rkx(j) < rkx(i). ⊓⊔

Corollary 5. Let x be a nonnull sequence over a totally ordered alphabet (Σ,�).
Then we have x[rk−1

x (i)] � x[rk−1
x (i+ 1)], for 0 ≤ i < |x| − 1. ⊓⊔

For any nonnull sequence x, we shall refer to the sequence

〈rk−1
x (0), rk−1

x (1), . . . , rk−1
x (|x| − 1)〉

as the relative order of x (see Example 8).
From Corollary 5, it follows that the relative order of x can be computed in time

proportional to the time required to (stably) sort x.
The rank function alone allows one to characterize order-isomorphic sequences

only when characters are pairwise distinct. To handle the more general case in which
multiple occurrences of the same character are permitted, we also need the equality
function.
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Definition 6 (Equality function). Let x be a sequence of length m ≥ 2 over
a totally ordered alphabet (Σ,�). The equality function of x is the binary map
eqx : {0, 1, . . . ,m− 2} → {0, 1} where, for 0 ≤ i ≤ m− 2,

eqx(i) =Def

{

1 if x[rk−1
x (i)] = x[rk−1

x (i+ 1)]
0 otherwise.

The rank and equality functions allow to fully characterize order-isomorphism, as
stated in the following lemma, whose proof can be found in the Appendix.

Lemma 7. For any two sequences x and y of the same length m ≥ 2, over a totally
ordered alphabet, we have

x ≈ y iff rkx = rk y and eqx = eqy . ⊓⊔

Example 8. Consider the following three sequences of length 7:

x = 〈6, 3, 8, 3, 10, 7, 10〉, y = 〈2, 1, 4, 1, 5, 3, 5〉, z = 〈6, 3, 8, 4, 9, 7, 10〉.

They have the same rank function 〈2, 0, 4, 1, 5, 3, 6〉 and, therefore, the same relative
order 〈1, 3, 0, 5, 2, 4, 6〉. However, x and y are order-isomorphic, whereas x and z (as
well as y and z) are not. Notice that, in agreement with Lemma 7, we have eqx =
eqy = 〈1, 0, 0, 0, 0, 1〉 and eqz = 〈0, 0, 0, 0, 0, 0〉.

Based on the preceding lemma, in order to establish whether two given sequences
of the same length m are order-isomorphic, it is enough to compute their rank and
equality functions, and then compare them. The cost of such a test is dominated by
the cost O(m logm) of sorting the two sequences. However, if one needs to find all
the sequences from a set S that are order-isomorphic to a fixed sequence (all the
sequences having the same size m), the simple iteration of the previous test would
lead to an overall complexity of O(|S| · m logm). In this case a better approach is
possible, based on the following characterization of order-isomorphism which requires
the computation of the rank and equality functions of the fixed sequence only, yielding
an overall complexity of O

(

(|S|+ logm) ·m
)

.

Lemma 9. Let x and y be two sequences of the same length m ≥ 2, over a totally
ordered alphabet. Then x ≈ y iff the following conditions hold:

(i) y[rk−1
x (i)] � y[rk−1

x (i+ 1)], for 0 ≤ i < m− 1
(ii) y[rk−1

x (i)] = y[rk−1
x (i+ 1)] if and only if eqx(i) = 1, for 0 ≤ i < m− 1. ⊓⊔

Based on Lemma 9, the procedureOrder-Isomorphic in Fig. 2 correctly verifies
whether a sequence y is order-isomorphic to a sequence x of the same length as y. It
receives as input the functions rkx and eqx and the sequence y, and returns true if
x ≈ y, false otherwise. A mismatch occurs when one of the three conditions of lines 2,
3, or 4 holds. Notice that the time complexity of the procedure Order-Isomorphic
is linear in the size of its input sequence y.

The OPPM problem consists in finding all the substrings of the text with the
same relative order as the pattern. More precisely,

Definition 10 (Order-preserving pattern matching). Let x and y be two se-
quences of length m and n, respectively, with n > m, both over an ordered alphabet
(Σ,�). The order-preserving pattern matching problem consists in finding all posi-
tions i, with 0 ≤ i ≤ n−m, such that y[i .. i+m− 1] ≈ x.
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Order-Isomorphic(inv-rk, eq, y)
1. for i← 0 to |y| − 2 do

2. if (y[inv-rk(i)] ≻ y[inv-rk(i+ 1)]) then return false

3. if (y[inv-rk(i)] ≺ y[inv-rk(i+ 1)] and eq(i) = 1) then return false

4. if (y[inv-rk(i)] = y[inv-rk(i+ 1)] and eq(i) = 0) then return false

5. return true

Figure 2. The procedure to verify whether a sequence y is order-isomorphic to a sequence of length
|y|, whose inverse rank and equality functions are the parameters inv-rk and eq, respectively.

If y[i .. i +m − 1] ≈ x, we say that x has an order-preserving occurrence in y at
position i.

In Section 3, we shall present an algorithm for the OPPM problem, based on the
Alpha Skip Search algorithm. For convenience, we briefly review it next.

2.2 The Skip Search Algorithm and its Alpha Variant

The Skip Search algorithm is an elegant and efficient solution to the exact pattern
matching problem, firstly presented in [3] and subsequently adapted to many other
problems and variants of the exact pattern matching problem.

Let x and y be a pattern and a text of lengthm and n, respectively, over a common
alphabet Σ of size σ. For each character c of the alphabet, the Skip Search algorithm
collects in a bucket B[c] all the positions of that character in the pattern x, so that
for each c ∈ Σ we have:

B[c] =Def {i : 0 ≤ i ≤ m− 1 and x[i] = c}.

Plainly, the space and time complexity needed for the construction of the array B of
buckets is O(m+ σ). Notice that when the pattern is shorter than the alphabet size,
buckets are empty.

The search phase of the Skip Search algorithm examines all the characters y[j] in
the text at positions j = km − 1, for k = 1, 2, . . . , ⌊n/m⌋. For each such character
y[j], the bucket B[y[j]] allows one to compute the possible positions h of the text in
the neighborhood of j at which the pattern could occur.

By performing a character-by-character comparison between x and the subse-
quence y[h .. h+m− 1] until either a mismatch is found, or all the characters in the
pattern x have been considered, it can be tested whether x actually occurs at position
h of the text.

The Skip Search algorithm has a quadratic worst-case time complexity, however,
as shown in [3], the expected number of text character inspections is O(n).

Among the variants of the Skip Search algorithm, the most relevant one for our
purposes is the Alpha Skip Search algorithm [3], which collects buckets for substrings
of the pattern rather than for its single characters.

During the preprocessing phase of the Alpha Skip Search algorithm, all the factors
of length ℓ = ⌊logσ m⌋ occurring in the pattern x are arranged in a trie Tx, for fast
retrieval. In addition, for each leaf ν of Tx a bucket is maintained which stores the
positions in x of the factor corresponding to ν. Provided that the alphabet size is
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considered as a constant, the worst-case running time of the preprocessing phase is
linear.

The searching phase consists in looking into the buckets of the text factors y[j .. j+
ℓ− 1], for all j = k(m− ℓ+ 1)− 1 such that 1 ≤ k ≤ ⌊(n− ℓ)/m⌋, and then test, as
in the previous case, whether there is an occurrence of the pattern at the indicated
positions of the text.

The worst-case time complexity of the searching phase is quadratic, though the
expected number of text character comparisons is O(n logσ m/(m− logσ m)).

3 A New Order-Preserving Pattern Matching Algorithm

In this section we present a new algorithm, called Order-Preserving-Skip-Search, for
the Order-Preserving Pattern Matching problem. However, for brevity, in the follow-
ing we shall often refer to it as SkSop algorithm.

Our algorithm combines the same approach of the Skip Search algorithm with the
power of the SIMD (Single Instruction Multiple Data) instruction set, and specifically
the Intel SSE (Streaming SIMD Extensions) instruction set, as discussed below.

In the last two decades a lot of effort has been spent exploiting the power of the
word-RAM model of computation in order to speed-up string matching algorithms
for a single pattern.

In this model, the computer operates on words of length w, so that usual arith-
metic and logic operations on words all take one unit of time. Most of the solutions
which exploit the word-RAM model are based on the bit-parallelism technique [1] or
on the packed string matching technique [8,9]. In the packed string matching tech-
nique, multiple characters can be packed into a single word, so that the characters
can be compared in bulk rather than individually.

Next we discuss our model in details.

3.1 The Model

In the design of our algorithm, we use specialized word-size packed string matching
instructions, based on the Intel streaming SIMD extensions (SSE) technology. SIMD

instructions exist in many recent microprocessors supporting parallel execution of
some operations on multiple data via a set of special instructions working on a limited
number of special registers.

In our model of computation we assume that w is the number of bits in a word
and σ is the size of the alphabet. The packing factor α = w/log σ (or, rather, its
floor) is the number of characters which fit in a single computer word, whereas the
number of bits used to encode an alphabet character is γ = log σ.

In most practical applications we have σ = 256 (ASCII code). Moreover SSE spe-
cialized instructions allow one to work on 128-bit registers, so that blocks of sixteen
8-bit characters can be read and processed in a single time unit (α = 16). In par-
ticular, our algorithm makes use of specialized word-size packed instructions which
we call wsrv (word-size rank vector) and wsrp (word-size relative position). These are
reviewed next.

The instruction wsrv

The instruction wsrv(B, i) computes an α-bit fingerprint from a w-bit register B
handled as a block of α small integers values. Assuming that B[0 .. α − 1] is a w-bit
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integer parameter, wsrv(B, i) returns an α-bit value r[0 .. α − 1], where r[j] = 1 iff
B[i] ≥ B[j], and r[j] = 0 otherwise.

The wsrv(B, i) specialized instruction can be emulated in constant time by the
following sequence of specialized SIMD instructions:

wsrv(B, i)
D ← mm set1 epi8(B[i])
C ← mm cmpgt epi8(B,D)
r ← mm movemask epi8(C)
return r

Specifically the mm set1 epi8(B[i]) instruction creates a w-bit register D han-
dled as a block of α small integers values, where D[j] = B[i] for 0 ≤ j < α. The
mm cmpgt epi8(B,D) instruction compares the α integers in B and the α integers
in D for “greater than”. It creates a w-bit register C handled as a block of α small
integers where C[j] = 1γ if B[j] ≥ D[j], and C[j] = 0γ otherwise, and where we
remember that γ = log σ is the number of bits to encode an alphabet character.
Finally, the mm movemask epi8(D) instruction gets a 128 bit parameter D, handled
as sixteen 8-bit integers, and creates a 16-bit mask from the most significant bits of
the 16 integers in D, and zero extends the upper bits.

The instruction wsrp

The instruction wsrp(B) computes an α-bit fingerprint from a w-bit register B han-
dled as a block of α small integers values. Assuming that B[0 .. α − 1] is a w-bit
integer parameter, wsrp(B) returns an α-bit value r[0 .. α − 1], where r[j] = 1 iff
B[j] ≥ B[j + 1], and r[j] = 0 otherwise (we put r[α− 1] = 0).

The wsrp(B) specialized instruction can be emulated in constant time by the
following sequence of specialized SIMD instructions

wsrp(B)
D ← mm slli si128(B, 1)
C ← mm cmpgt epi8(B,D)
r ← mm movemask epi8(C)
return r

where the mm slli si128(B, 1) instruction shifts the w-bit register in B to the left
by one position (α bits) while shifting in zeros and the mm cmpgt epi8 and the
mm movemask epi8 instructions are as described above.

3.2 The Fingerprint Functions

The preprocessing phase of the algorithm indexes the subsequences of the pattern (of
length q) in order to locate them during the searching phase. For efficiency reasons,
each numeric sequence of length q is converted into a numeric value, called fingerprint,
which is used to index the substring. A fingerprint value ranges in the interval {0 .. τ−
1}, for a given bound τ . The value τ is set to 216, so that a fingerprint can fit into a
single 16-bit register.

The procedure fng for computing the fingerprints is shown in Fig. 3 (on the left).
Given a sequence x of lengthm, an index i such that 0 ≤ i < m−q, and two integers k
and q such that k ≤ q ≤ m, the procedure fng combines k different values computed
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fng(x, i, q, k)
1. B ← 0α−q.x[i .. i+ q − 1]
2. v ← wsrp(B)
3. for j ← 0 to k − 2 do

4. v ← (v ≪ 1)+ wsrv(B,α− q + j)
5. return v

Example (q = 5, k = 3, and α = 8)
x[i .. i+ q − 1] = 〈3, 6, 2, 4, 7〉

B = [0, 0, 0, 3, 6, 2, 4, 7]
wsrp(B) = [0, 0, 0, 1, 0, 1, 1, 0] = 2210

wsrv(B, 3) = [0, 0, 0, 1, 1, 0, 1, 1] = 2710
wsrv(B, 4) = [0, 0, 0, 0, 1, 0, 0, 1] = 910
v = 22× 22 + 27× 21 + 9 = 15110

Figure 3. On the left: the pseudo-code of the procedure fng for the computation of the fingerprint
of a substring a length q combining k distinct fingerprints. On the right: an example of a computation
of a fingerprint by the procedure fng.

on the substring x[i .. i + q − 1] in order to compute the fingerprint v. Preliminarily,
the substring x[i .. i+ q− 1] is inserted in the rightmost portion of a w-bit register B.
Then the fingerprint v is computed as

v = wsrp(B)× 2k−1 +
k−2
∑

j=0

(

wsrv(B,α− q + j)× 2k−2−j
)

.

Plainly, the time complexity of the procedure fng is O(k).
Fig. 3 (on the right) shows an example of how the procedure fng works on a

subsequence x[i .. i+ q − 1] = 〈3, 6, 2, 4, 7〉 of length q = 5, combining k = 3 different
values.

3.3 The Order-Preserving Skip Search algorithm

We are now ready to briefly describe our algorithm for the OPPM problem, based on
the Alpha variant of the Skip Search algorithm. We distinguish in it a preprocessing
and a searching phase.

The preprocessing phase of the SkSop algorithm, which is reported in Fig. 4 (on
the left), consists in compiling the fingerprints of all possible substrings of length q
contained in the pattern x. Thus a fingerprint value v, with 0 ≤ v < 2α, is computed
for each subsequence x[i .. i+ q − 1], for 0 ≤ i < m− q.

To this purpose a table F of size 2α is maintained for storing, for any possible
fingerprint value v, the set of positions i such that fng(x, i, q, k) = v. More precisely,
for 0 ≤ v < 2α, we have

F [v] =
{

i | 0 ≤ i < m− q and fng(x, i, q, k) = v
}

.

The preprocessing phase of the SkSop algorithm requires some additional space to
store the (m − q) possible alignments in the 2α locations of the table F . Thus, the
space requirement of the algorithm is O(m−q+2α) that approximates to O(m), since
α is constant. The first loop of the preprocessing phase just initializes the table F ,
while the second loop is run (m− q) times, which makes the overall time complexity
of the preprocessing phase O(m+ 2α) that, again, approximates to O(m).

The basic idea of the searching phase is to compute a fingerprint value every (m−q)
positions of the text y and to check whether the pattern appears in y, involving the
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Preprocessing(x, q,m, k)
1. for v ← 0 to 2α − 1 do

2. F [v]← ∅
3. for i← 0 to m− q do

4. v ← fng(x, i, q, k)
5. F [v]← F [v] ∪ {(i+ q − 1)}
6. return F

SkSop(x, r, y, n, q, k)
1. F ←Preprocessing(x, q,m, k)
2. for j ← m− 1 to n step m− q + 1 do

3. v ← fng(y, j, q, k)
4. for each i ∈ F [v] do
5. z ← y[j − i .. j − i+m− 1]
6. if Order-Isomorphic(rk−1

x , eqx, z)
7. then output (j)

Figure 4. The pseudo-code of the SkSop algorithm for the OPPM problem.

block y[j .. j + q − 1]. If the fingerprint value indicates that some of the alignments
are possible, then the candidate positions are checked naively for matching.

The pseudo-code provided in Fig. 4 (on the right) reports the skeleton of the
SkSop algorithm. The main loop investigates the blocks of the text y in steps of
(m−q+1) blocks. If the fingerprint v computed on y[j .. j+q−1] points to a nonempty
bucket of the table F , then the positions listed in F [v] are verified accordingly.

In particular F [v] contains a linked list of the values i marking the pattern x and
the beginning position of the pattern in the text. While looking for occurrences on
y[j .. j+q−1], if F [v] contains the value i, this indicates the pattern x may potentially
begin at position (j − i) of the text. In that case, a matching test is to be performed
between x and y[j − i .. j − i+m− 1] via a character-by-character inspection.

The total number of filtering operations is exactly n/(m − q). At each attempt,
the maximum number of verification requests is (m − q), since the filter provides
information about that number of appropriate alignments of the patterns. On the
other hand, if the computed fingerprint points to an empty location in F , then there
is obviously no need for verification. The verification cost for a pattern x of length m
is assumed to be O(m), with the brute-force checking approach. Hence, in the worst
case the time complexity of the verification is O(m(m− q)), which happens when all
alignments in x must be verified at any possible beginning position. Hence, the best
case complexity is O(n/(m− q)), while the worst case complexity is O(nm).

4 Experimental Evaluations

In this section we present experimental results in order to evaluate the performance
of our Skip-Search based algorithm SkSop. In particular we tested our algorithm
against the filter approach of Chhabra and Tarhio [4], which is, to the best of our
knowledge, the most effective solution to the OPPM problem in practical cases. In
the experimental evaluations reported in [4], the sbndm2 and sbndm4 algorithms [7]
turned out to be the most effective exact string matching algorithms which can be
used in combination with the filter technique. In our experimental evaluations, we
used the sbndm2 algorithm to test the filter approach by Chhabra and Tarhio. In
our dataset we use the following short names to identify the algorithms that we have
tested:

– Fct: the sbndm2 algorithm based on the filter approach by Chhabra and Tarhio
presented in [4];
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– SkSop(k, q): our Skip Search-based algorithm presented in Section 3, which
combines k different fingerprint values on subsequences of length q.

More specifically, in our tests, we considered the SkSop(k, q) algorithm, for k ∈
{1, 2, 3, 4, 5} and q ∈ {3, 4, 5, 6, 7, 8}.

The Boyer-Moore approach by Cho et al. [5] has not been included in our evalua-
tions, as it was shown to be less efficient than the algorithm by Chhabra and Tarhio
in all cases.

All algorithms have been evaluated in terms of efficiency, i.e. running times, and
accuracy, i.e., number of verifications performed during the searching phase. In par-
ticular, they have been tested on sequences of small integer values (i.e., in the range
[0 .. 256]), big integer values (i.e., in the range [0 .. 10.000]) and real numbers (i.e., in
the range [0, 0 .. 10.000, 99]). However, we did not observe any significant difference in
the results; thus, for brevity, in the following table we report only the results relative
to small integer sequences. Each text consists in a sequence of 1 million elements. In
particular we tested our algorithm on the following set of small integer sequences:

– Rand-δ: a sequence of random integer values ranging around a fixed mean µ with
a variability of δ and a uniform distribution, i.e. each value is uniformly distributed
in the range {µ− δ .. µ+ δ};

– Periodic-ρ: a sequence of random integer values uniformly ranging around a
cyclic function with a period of ρ elements.

For each text in the set, we randomly selected 100 patterns extracted from the text
and computed the average running time over 100 runs. We also computed the average
number of false positives detected by the algorithms during the search. Algorithms
have been implemented using the C programming language and have been compiled
using the gcc compiler Apple LLVM version 5.1 (based on LLVM 3.4svn) with 8Gb
Ram. Compilation has been performed with the -O3 optimization option.

For each value of k, we have also reported in round parentheses the value of q
which led to the best performance.

Average Number of Verifications

We evaluated the accuracy of our solutions in terms of the number of verifications
performed during the search. Specifically, we counted the average number of veri-
fications that each algorithm performs every 210 text characters and computed the
mean of such value over 100 runs. Table 1 and Table 2 show, respectively, the results
obtained on Rand-δ sequences, with δ = 5, 20, 40, and on Periodic-ρ sequences,
with ρ = 8, 16, 32. Best results have been underlined.

Results on Rand-δ sequences (Table 1) show that the difference in the number
of verifications performed during the search is sensible when different fingerprints
are used. Using a single fingerprint (algorithm SkSop(1, q)) leads to a quite high
number of verifications, up to 50 every 220 characters. The best results are obtained
by combining 4 different fingerprint values (algorithm SkSop(4, q)), in which case
the number of verifications decreases to 0.25 every 220 characters.

When we combine more than 4 fingerprint values (algorithm SkSop(5, q)), the
number of verifications sensibly increases to 0.5. This behavior is due to the com-
bination process which uses a final hash value of 16 bits and which causes loss of
information.



32 Proceedings of the Prague Stringology Conference 2015

δ m SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 52.64
(8)

3.87
(8)

1.20
(8)

0.25
(8)

0.43
(8)

12 46.22
(8)

4.27
(8)

1.02
(8)

0.25
(8)

0.41
(8)

16 45.65
(8)

4.01
(8)

1.06
(8)

0.24
(8)

0.41
(8)

5 20 48.13
(8)

4.18
(8)

1.09
(8)

0.24
(8)

0.42
(8)

24 45.02
(8)

4.13
(8)

1.05
(8)

0.24
(8)

0.42
(8)

28 44.92
(8)

4.05
(8)

1.03
(8)

0.24
(8)

0.41
(8)

32 46.99
(8)

4.23
(8)

1.04
(8)

0.23
(8)

0.44
(8)

8 37.78
(8)

3.96
(8)

1.02
(8)

0.23
(8)

0.51
(8)

12 40.65
(8)

4.17
(8)

1.04
(8)

0.25
(8)

0.52
(8)

16 39.78
(8)

4.65
(8)

1.00
(8)

0.25
(8)

0.52
(8)

20 20 39.05
(8)

4.12
(8)

1.02
(8)

0.24
(8)

0.49
(8)

24 39.24
(8)

4.35
(8)

1.02
(8)

0.25
(8)

0.50
(8)

28 40.15
(8)

4.34
(8)

1.00
(8)

0.24
(8)

0.49
(8)

32 40.00
(8)

4.39
(8)

1.01
(8)

0.25
(8)

0.51
(8)

8 42.34
(8)

4.37
(8)

1.03
(8)

0.27
(8)

0.54
(8)

12 35.64
(8)

4.50
(8)

0.99
(8)

0.25
(8)

0.49
(8)

16 41.08
(8)

4.40
(8)

1.01
(8)

0.26
(8)

0.54
(8)

40 20 40.71
(8)

4.29
(8)

1.05
(8)

0.26
(8)

0.54
(8)

24 37.77
(8)

4.33
(8)

0.96
(8)

0.25
(8)

0.52
(8)

28 39.98
(8)

4.51
(8)

1.02
(8)

0.25
(8)

0.53
(8)

32 38.26
(8)

4.46
(8)

0.99
(8)

0.26
(8)

0.54
(8)

Table 1. Average number of verifications performed every 210 characters, computed on a Rand-δ
small integer sequence, with δ = 5, 20, and 40.

ρ m SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 92.22
(8)

37.40
(8)

14.22
(8)

8.01
(8)

8.83
(8)

12 98.48
(8)

35.46
(8)

14.72
(8)

8.27
(8)

10.38
(8)

16 98.27
(8)

36.46
(8)

15.71
(8)

8.77
(8)

10.46
(8)

8 20 96.95
(8)

35.91
(8)

15.14
(8)

8.47
(8)

10.12
(8)

24 96.88
(8)

36.06
(8)

14.87
(8)

8.34
(8)

10.18
(8)

28 97.63
(8)

35.79
(8)

14.60
(8)

7.94
(8)

9.67
(8)

32 97.65
(8)

35.93
(8)

15.09
(8)

8.31
(8)

10.23
(8)

8 173.85
(8)

40.23
(8)

5.19
(8)

3.74
(8)

7.03
(8)

12 179.84
(8)

46.64
(8)

5.35
(8)

4.25
(8)

7.62
(8)

16 179.20
(8)

46.94
(8)

5.59
(8)

4.35
(8)

7.57
(8)

16 20 176.24
(8)

45.61
(8)

5.40
(8)

4.20
(8)

7.07
(8)

24 181.67
(8)

46.50
(8)

5.53
(8)

4.24
(8)

7.31
(8)

28 176.67
(8)

46.27
(8)

5.47
(8)

4.18
(8)

7.09
(8)

32 179.96
(8)

46.12
(8)

5.55
(8)

4.34
(8)

7.52
(8)

8 125.55
(8)

35.52
(8)

3.23
(8)

2.26
(8)

3.96
(8)

12 134.48
(8)

35.41
(8)

3.19
(8)

2.13
(8)

3.84
(8)

16 136.69
(8)

39.27
(8)

3.34
(8)

2.31
(8)

4.07
(8)

32 20 140.14
(8)

40.58
(8)

3.51
(8)

2.33
(8)

3.99
(8)

24 138.36
(8)

39.70
(8)

3.52
(8)

2.39
(8)

4.15
(8)

28 139.04
(8)

37.90
(8)

3.44
(8)

2.35
(8)

4.05
(8)

32 136.39
(8)

39.09
(8)

3.44
(8)

2.33
(8)

4.06
(8)

Table 2. Average number of verifications performed every 210 characters, computed on a Periodic-
ρ small integer sequence, with ρ = 8, 16, and 32.

Results on Periodic-ρ sequences show how the number of verifications performed
by the algorithms is affected by the value of ρ. Specifically the number of verifications
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δ m Fct SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 42.32 0.81
(5)

1.14
(4)

1.22
(4)

1.27
(4)

1.27
(4)

12 27.09 0.80
(7)

1.21
(5)

1.35
(5)

1.37
(5)

1.34
(5)

16 20.38 0.83
(8)

1.33
(6)

1.44
(5)

1.52
(5)

1.50
(5)

5 20 16.59 0.88
(8)

1.39
(7)

1.54
(6)

1.58
(5)

1.56
(6)

24 13.56 0.89
(8)

1.44
(7)

1.60
(6)

1.61
(6)

1.63
(6)

28 11.50 0.85
(8)

1.47
(7)

1.56
(7)

1.59
(5)

1.62
(6)

32 9.97 0.81
(8)

1.47
(7)

1.57
(7)

1.59
(6)

1.60
(6)

8 42.13 0.81
(4)

1.12
(4)

1.22
(4)

1.19
(4)

1.14
(4)

12 27.41 0.84
(6)

1.24
(5)

1.40
(5)

1.40
(5)

1.35
(5)

16 19.78 0.85
(7)

1.28
(6)

1.43
(6)

1.46
(5)

1.40
(5)

20 20 15.73 0.90
(8)

1.33
(7)

1.49
(6)

1.51
(5)

1.50
(6)

24 13.24 0.89
(8)

1.40
(7)

1.51
(6)

1.55
(6)

1.55
(6)

28 11.37 0.86
(8)

1.45
(7)

1.57
(6)

1.57
(6)

1.58
(6)

32 9.89 0.85
(8)

1.42
(7)

1.58
(7)

1.56
(6)

1.54
(7)

8 41.32 0.81
(4)

1.11
(4)

1.19
(4)

1.16
(4)

1.11
(4)

12 27.36 0.83
(6)

1.22
(5)

1.38
(5)

1.39
(5)

1.34
(5)

16 19.78 0.84
(7)

1.27
(6)

1.42
(6)

1.43
(5)

1.40
(6)

40 20 16.21 0.90
(8)

1.34
(7)

1.51
(6)

1.52
(6)

1.52
(6)

24 13.26 0.90
(8)

1.40
(7)

1.51
(7)

1.54
(6)

1.57
(6)

28 11.38 0.86
(8)

1.43
(7)

1.56
(7)

1.56
(6)

1.57
(6)

32 9.93 0.84
(8)

1.43
(8)

1.56
(7)

1.58
(6)

1.58
(7)

Table 3. Running times on a Rand-δ small integer sequence, with δ = 5, 20 and 40. Running times
(in milliseconds) are reported for the Fct algorithm, while speed-up values are reported for the
SkSop(k, q) algorithms.

increases when the period of the function decreases. This is due to the high presence
of similar patterns in the text. In addition, in this case, the best results are obtained
by the SkSop(k, q) algorithm. Good results are obtained also by combining 3 or 5
fingerprint values.

We observe also that in all cases the number of verifications for each text character
is less than 0.1 and is not affected by the length of the pattern. Thus we can observe
that the SkSop(k, q) algorithm has a linear behavior on average, as will become
apparent in the following evaluation of the running times.

Running Times

The performance of the algorithms presented has been evaluated in terms of their
running times. We compared the time required by each algorithm while searching the
text for the set of 100 patterns. Table 3 and Table 4 show, respectively, the experi-
mental results obtained on Rand-δ sequences, with δ = 5, 20, 40, and on Periodic-ρ
sequences, with ρ = 8, 16, 32. Running times are expressed in milliseconds. Best re-
sults have been underlined.

In particular, for the Fct algorithm we reported the average running times ob-
tained as the mean of 100 runs. Instead, in the case of the execution of SkSop(k, q)
algorithms, we reported the speed up of the running times obtained when compared
with the time taken by the fct algorithm. Specifically, if time(fct) is the running
time of the fct algorithm and t is the running time of our algorithm, then the speed
up is computed as time(fct)/t.

Experimental results on Rand-δ sequences (Table 3) show that the performances
of all algorithms are not affected by the value of δ. The Fct algorithm is dominated
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ρ m Fct SkSop(1, q) SkSop(2, q) SkSop(3, q) SkSop(4, q) SkSop(5, q)

8 39.90 0.79
(3)

0.87
(4)

0.89
(4)

0.87
(4)

0.87
(4)

12 32.94 0.87
(5)

1.09
(6)

1.19
(6)

1.24
(6)

1.17
(6)

16 27.21 0.90
(7)

1.24
(7)

1.44
(7)

1.55
(7)

1.46
(7)

8 20 21.47 0.90
(8)

1.21
(7)

1.44
(7)

1.60
(7)

1.50
(7)

24 19.29 0.94
(8)

1.27
(7)

1.59
(8)

1.77
(7)

1.68
(8)

28 16.90 0.91
(8)

1.28
(7)

1.65
(8)

1.81
(7)

1.77
(8)

32 15.58 0.89
(8)

1.28
(7)

1.68
(8)

1.87
(8)

1.83
(8)

8 37.40 0.68
(4)

0.83
(4)

0.93
(4)

0.93
(4)

0.90
(4)

12 25.03 0.60
(5)

0.79
(4)

1.03
(5)

1.04
(5)

0.99
(5)

16 18.63 0.60
(6)

0.80
(7)

1.15
(6)

1.15
(6)

1.10
(6)

16 20 15.22 0.53
(8)

0.81
(8)

1.22
(7)

1.19
(7)

1.15
(7)

24 12.75 0.50
(7)

0.78
(8)

1.26
(7)

1.24
(7)

1.19
(7)

28 10.52 0.45
(7)

0.73
(8)

1.21
(7)

1.20
(7)

1.14
(7)

32 10.01 0.43
(8)

0.78
(8)

1.31
(8)

1.29
(7)

1.23
(8)

8 38.82 0.76
(4)

1.00
(4)

1.11
(4)

1.09
(4)

1.05
(4)

12 24.86 0.65
(6)

0.91
(4)

1.16
(5)

1.18
(5)

1.15
(5)

16 18.85 0.61
(6)

0.89
(5)

1.24
(6)

1.27
(5)

1.24
(6)

32 20 15.02 0.58
(6)

0.86
(6)

1.31
(6)

1.34
(6)

1.30
(6)

24 12.32 0.52
(7)

0.83
(7)

1.31
(7)

1.32
(6)

1.28
(6)

28 10.89 0.50
(8)

0.85
(8)

1.38
(7)

1.38
(6)

1.34
(6)

32 9.50 0.48
(8)

0.81
(8)

1.37
(7)

1.38
(6)

1.34
(7)

Table 4. Running times on a Periodic-δ integer sequence, with δ = 5, 20, and 40. Running times
(in milliseconds) are reported for the Fct algorithm, while speed-up values are reported for the
SkSop(k, q) algorithms.

by our Skip Search-based algorithms in all cases, especially for long patterns. When
the length of the pattern is between 8 and 20, the SkSop(4, q) algorithm obtains the
best results, whereas the SkSop(5, q) algorithm is the best solution when the length
of the pattern is greater or equal to 20. In this latter case, the SkSop(5, q) algorithm
obtains a significant speed up of 1.60 if compared with the Fct algorithm.

Experimental results on Periodic-ρ sequences (Table 4) show that the algorithm
SkSop(4, q) obtains the best results in most of the cases, with the best speed up (up
to 1.9) most of the times, especially for long patterns.

The Fct algorithm is still the fastest solution only when the pattern is very short
(m = 8), while the SkSop(3, q) algorithm obtains very good results when the length
of the pattern is between 8 and 20.

5 Conclusions

In this paper we discussed the Order-Preserving Pattern Matching Problem and pre-
sented a new algorithm to solve such problem, based on the well-known Skip Search
approach. It turns out that our solution is much more effective in practice than exist-
ing algorithms. Our algorithm uses SIMD SSE instructions to speed up the searching
process. Experimental results show that our solution is up to twice as faster than
previous solutions, while exhibiting a linear behavior on average.
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