
Alternative Algorithms for

Order-Preserving Matching

Tamanna Chhabra1, M. Oğuzhan Külekci2, and Jorma Tarhio1

1 Department of Computer Science, Aalto University
P.O. Box 15400, FI-00076 Aalto, Finland

firstname.lastname @aalto.fi

2 ERLAB Software Co.
ITU Ari2 Teknokent, Istanbul, Turkey

okulekci@medipol.edu.tr

Abstract. The problem of order-preserving matching is to find all substrings in the
text which have the same relative order and length as the pattern. Several online and
one offline solution were earlier proposed for the problem. In this paper, we introduce
three new solutions based on filtration. The two online solutions rest on the SIMD
(Single Instruction Multiple Data) architecture and the offline solution is based on
the FM-index scheme. The online solutions are implemented using two different SIMD
instruction sets, SSE (streaming SIMD extensions) and AVX (Advanced Vector Exten-
sions). Our main emphasis is on the practical efficiency of algorithms. Therefore, we
show with practical experiments that our new solutions are faster than the previous
solutions.

Keywords: order-preserving matching, string searching, FM-index, SIMD, SSE, AVX

1 Introduction

The string matching problem [26] of finding all occurrences of a pattern string P of
length m in a text string T of length n is one of the classical problems in computer
science. Over the last few decades, there has been active development in the field
of string matching. One string problem is to locate all the substrings in the text T
which have the same relative order and length as the pattern P . This problem is
known as order-preserving matching [1,4,7,8,21,23]. It has applications in time series
studies [20] such as the analysis of development of share prices in a stock market.

In classical string matching, the text T and the pattern P are strings of characters.
In order-preserving matching, T and P are strings of numbers. The term relative order
means the numerical order of the numbers in the string. In P = (35, 42, 29, 24, 32, 40),
number 24 is the smallest number of the pattern, 29 is the second smallest and so
on. Therefore, the relative order of P is 4, 6, 2, 1, 3, 5. The aim of order-preserving
matching is to find all the substrings in T which have the same length and relative
order as P . It can be observed that the relative order of the substring at location 4
of text T = (10, 18, 22, 30, 39, 15, 12, 20, 35, 24, 32), matches that of the pattern P as
shown in Fig. 1, where indexing of T starts from zero.

Several online [1,4,8,21,23] and one offline solution [6] have been proposed for
order-preserving matching. Kubica et al. [23] proposed the first online solution based
on the Knuth–Morris–Pratt algorithm (KMP) [22]. The second solution was put for-
ward by Kim et al. [21] which also rested on the KMP algorithm. Both the solutions
were linear. Later, Cho et al. [4] introduced a solution based on the Boyer–Moore–
Horspool (BMH) algorithm [17] and it was the first practical sublinear average-case

Tamanna Chhabra, M. Oğuzhan Külekci, Jorma Tarhio: Alternative Algorithms for Order-Preserving Matching, pp. 36–46.

Proceedings of PSC 2015, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05787-2 c© Czech Technical University in Prague, Czech Republic

T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 37

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6 7 8 9 10

text
pattern

Figure 1. Example of order preserving matching.

solution of the problem. At the same time, Belazzougui et al. [1] derived an optimal
algorithm which is sublinear on average. Independently, Chhabra and Tarhio [8] pre-
sented another sublinear average-case solution based on filtration and it was shown
to be faster in practice than the previous solutions. In the upcoming sections of the
paper, we will refer to this solution as OPMF, short for order-preserving matching
with filtration. In addition, Crochemore et al. [6] proposed an offline solution based
on indexing.

In this paper, we will introduce two new online solutions utilizing the SIMD
(single instruction, multiple data) architecture [19] and one offline solution based on
the FM-index [14]. The online solutions use specialized packed string instructions with
a low latency and throughput and turned out to be clearly faster than the previous
online solutions. The OPMF algorithm is based on computing a transformed pattern
and text by creating their respective bitmaps where a 1 bit means the successive
element is greater than the current one and a 0 bit means the opposite. In the online
solutions, we aim to perform this transformation quickly with SSE4.2 (streaming
SIMD extensions) and AVX (Advanced Vector Extensions) instructions. In the offline
solution, the computed bitmap of the text is stored in the compressed form via the
FM-index scheme. The transformed pattern is then searched in the FM-index to
get potential matches which are then verified. Our main emphasis is on the practical
efficiency of algorithms. Therefore, we compared our new solutions with OPMF which
was proven to be the fastest practical solution so far. Our experiments show that at
least one of our new online solutions is in most cases faster than the original OPMF.
And the indexing solution was the most efficient as one may expect.

The paper is organized as follows. Section 2 presents the background, Section 3
describes the problem definition, Section 4 outlines the previous solutions for the
order-preserving matching, Section 5 introduces our solution based on filtration, Sec-
tion 6 interprets the analysis of the solution, Section 7 presents the results of practical
experiments, and Section 8 concludes the article.

38 Proceedings of the Prague Stringology Conference 2015

2 Background

Our new online solutions apply filtration and the SIMD instruction set architec-
ture [19]. These instructions were originally developed for multimedia but are recently
employed for pattern matching. The general trend in the last decades for speeding up
string matching algorithms has been based on the word-RAM model, where in prac-
tice several operations on items occupying a single word are assumed to be achieved
in constant time. In that context, the advance of the SIMD technology gave rise to
packed string matching [2], where one can assume several consecutive symbols of the
underlying text are packed into a single register, and there exist special instructions
on those special registers to operate on those items individually. The SIMD instruc-
tions were used to create a filter while searching for single long patterns in [24]. The
filtration code was listed among the best performing 11 pattern matching algorithms
in a recent survey [13]. The same idea was deployed for multiple string matching [11],
and then extended to also cover short patterns [12,10]. Ladra et al. [16] investigated
the benefits of using SIMD instructions on compressed data structures, mainly on
rank/select operations, and analyzed the BMH algorithm [17] as a case study. Our
results in this paper show that SIMD instructions can also be very efficient in order-
preserving pattern matching as well.

The SIMD architecture [19] allows the execution of multiple data on single instruc-
tion. SSE (streaming SIMD extensions) [19,29] is a family of SIMD instruction sets
supported by modern processors. Intel added sixteen new 128-bit registers known as
XMM0 through XMM15. However, the registers XMM7–XMM15 are only accessible
in the 64-bit operating mode. As the registers are 128 bits long, four floating point
numbers could be handled at the same time (a single precision floating point number
is considered 32 bits long), thereby providing important speedups in algorithms. Fur-
thermore, the functionality provided by SSE instructions was extended by Intel AVX
(Advanced Vector Extensions) [29]. It provides support for 256-bit registers known
as YMM0 through YMM15. As with SSE, in AVX also the registers YMM7–YMM15
are only accessible in the 64-bit operating mode. As the registers have been extended
from 128 bits to 256 bits, hence eight floating point numbers could be managed si-
multaneously, thereby rendering substantial performance gain. Dedicated data types
are utilized in SIMD programming. In SSE4.2, we have the following data types:

– m128: four 32-bit floating point values
– m128d: two 64-bit floating point values
– m128i: 16/8/4/2 integer values, depending on the size of the integers

The similar data types are available in AVX but the length of registers is 256. These
vector data types are defined in separate header files depending on the type of in-
struction set architecture. To perform a task, we have different intrinsic functions.
The name of the function starts with mm. After that follows the name describing the
operation. The next character specifies whether the operation is on a packed vector
or on a scalar value: p stands for packed and s for scalar operation. The last charac-
ter relates to single precision or double precision floating point values. For example,
mm cmpgt ps is a function for comparing two values.

The offline solution rests on the FM-index scheme [14]. Ferragina and Manzini [14]
proposed that if the Burrows-Wheeler transform [3] is coupled with another data
structure, namely Suffix Arrays (SA) [25], we get a space efficient index which is a
sort of compressed suffix array called the FM-index. It can be used to count efficiently

T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 39

the occurrences of a pattern in the compressed text and to determine the locations
of each pattern in the text.

3 Problem definition

Problem definition. Two strings u and v of the same length over Σ are called order-
isomorphic [23], written u ≈ v, if

ui ≤ uj ⇔ vi ≤ vj for 1 ≤ i, j ≤ |u|.

In the order-preserving pattern matching problem, we want to locate all the substrings
in the text T which are order-isomorphic with the pattern P .

In the example of Section 1, the substring w = (30, 39, 15, 12, 20, 35) of T is order-
isomorphic with pattern P = (35, 42, 29, 24, 32, 40) as can also be seen in Fig. 1.

4 Previous solutions

This section describes the previous solutions formulated for the order-preserving
matching problem. First of all we explain the online solutions given so far. The first
solution was presented by Kubica et al. [23] based on Knuth–Morris–Pratt algorithm
(KMP) [22]. In this approach the fail function in the KMP algorithm was modified
to compute the order-borders table. With this table one can find out in linear time if
the text contains substring with the same relative order as that of the pattern.

The second solution to the problem was given by Kim et al. [21] and was grounded
on the prefix representation. It is based on finding the rank of each number in the
prefix. They used the dynamic order statistic tree as the data structure and the
text is searched using the KMP-order-matcher function. The total time complexity is
O(n logm). This approach was then enhanced using the nearest neighbor representa-
tion. Thereafter, the total time complexity is O(n+m logm).

However, Cho et al. [4] provided a solution based on the BMH approach [17]. They
applied the variant of BMH algorithm built on q-gram. This was the first practical
sublinear solution of the problem. The time complexity in the worst case is O(mn).
Later on, they also developed a version which is linear in the worst case [5], but that
is in practice a bit slower than the original one.

The algorithm by Belazzougui et al. [1] is optimal sublinear. They viewed the
problem in a slightly different way: T is a permutation of 1, . . . , n and P consists of
m distinct integers of [1, n]. They constructed a forward search automaton working
in O(m2 log logm+n) time which is too large for long patterns. With a Morris-Pratt
representation of the forward automaton, they accieved O(m log logm + n) search
time. Furthermore, the automaton was extended to accept a set of patterns. Besides
these linear solutions, they presented a sublinear average case algorithm. Firstly, a
tree is constructed of all isomorphic order factors of P by inserting factors one at
a time. Thereafter search is performed along the text through a window of size m.
The construction time of the tree is O(m logm

log logm
) and average-case time complexity is

O(n logm
m log logm

). However, there exists no implementation of this algorithm so far.

Another sublinear average-case solution is OPMF [8]. The solution consisted of
two phases: filtration and verification. In filtration, the pattern P and the text T
are transformed to P ′ and T ′ by creating their respective bitmaps such that a 1 bit

40 Proceedings of the Prague Stringology Conference 2015

means the successive element is greater than the current one, and a 0 bit means
otherwise. The text is transformed incrementally online in order to be able to skip
characters. Any (sublinear) exact string matching is then applied to filter out the
text. As a result, we get match candidates, which are then verified using a checking
function. In addition to exact order-preserving matching, the same filtration method
can also be applied to approximate order-preserving matching [7] and to multiple
order-preserving matching [28].

Lastly, let us consider the offline solution by Crochemore et al. [6]. This approach
is grounded on the construction of an index that handles the queries in linear time
with respect to the length of the pattern. The index is based on the incomplete
suffix tree and its construction takes O(n log log n) time. They extended their work
to complete order-preserving suffix trees and showed how these can be constructed in
O(n log n/ log log n) time. There exists no practical implementation of this algorithm.

5 Our solutions

We propose two online and one offline solutions for order preserving matching. The
online solutions utilize the SIMD architecture [19]. The first online solution employs
the SSE4.2 instruction set architecture and the second solution utilizes the AVX
instruction set architecture.

Online solution using SSE4.2

In the OPMF algorithm, the pattern P is transformed into P ′ and the text T is
transformed incrementally to T ′. We aim to perform the online transformation faster
than in OPMF. This solution for order-preserving matching consists of two parts:
filtration and verification. First the text is filtered and then the match candidates are
verified using a checking routine.

Filtration using SSE4.2. Assume that we have 32 bits long floating point numbers
and the processor has SSE4.2 support. The preprocessing of the pattern consists of
two parts. First a bit mask, which is the reverse of P ′, is formed and after that
a shift table is constructed based on the mask. For the bit mask, the consecutive
numbers in the pattern P = p0p1 · · · pm−1 are compared pairwise, (p0 > p1)(p1 >
p2)(p2 > p3) · · · (pm−2 > pm−1). This can be achieved by creating mm128 type
pointers ptr1 and ptr2 pointing to p0 and p1 respectively. Furthermore, we use the
PCMPGT instruction (mm cmpgt ps()) to compare ptr1 with ptr2 to compute
(p0 > p1)(p1 > p2)(p2 > p3)(p3 > p4) in parallel. It compares the packed single-
precision floating-point values in the source operand (the second operand) and the
destination operand (the first operand) and returns the results of the comparison to
the destination operand. The result of this instruction is 128 bits long. Additionally,
we use the MOVMSK instruction (mm128 movemask ps()) which extracts the most
significant bits from the packed single-precision floating-point value in the source
operand. The reverse of the result is stored in the four low-order bits of the destination
operand. The upper bits of the destination operand are filled with zeros. The result
will be the bit mask mask. Alg. 1 shows how the transformation of the pattern P into
mask can be carried out rapidly.

Since SSE4.2 allows four numbers to be compared in parallel, we apply binary 4-
grams and set the size of the shift table delta to 16 (=24). The construction algorithm

T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 41

Preprocessing(mask)
for (i = 0; i < 16; i++)

delta[i]=m-1

k = (mask<<3) & 0xf;

for (i = 0; i < 8 ; i++)

delta[k+i]=m-2

k = (mask<<2) & 0xf;

for (i = 0; i < 4 ; i++)

delta[k+i]=m-3

k = (mask<<1) & 0xf;

for (i = 0; i < 2 ; i++)

delta[k+i]=m-4

for (i = 0; i < m-4 ; i++)

delta[(mask>>i) & 0xf] = m-i-5

Search(Text, delta)
i=m-5;

while i<n do

k=1

while k>0 do

k = delta[simd-comp(ti,ti+1,4)]

i = i+k

for (j=i-m+5; j<i; j+=4)

z = simd-comp(tj,tj+1,4)

if (z != ((mask>>(j-i+m-5)) & 0xf))

then goto out

verify occurrence

out: i = i+1

Figure 2. The Preprocessing and Search phases.

for delta is shown in the left-hand side of Fig. 2. The computation of the parameter
mask is explained above. The entry delta[x] is zero if x is the reverse of the last 4-
gram of P ′. The entries of the table are initialized to m − 1. Thereafter, the entries
are updated according to the preprocessing algorithm of Fig. 2. Fig. 3 shows how the
shift table is formed for the pattern P of Fig. 1. At the end, entry 12 is zero. This
means that 12 = 1100 is the reverse of the last 4-gram of P ′.

Algorithm 1 (Transformation of pattern into bitmap)
mask = 0

for (i = 0; i < (m-1); i=i+4)

x ptr = mm loadu ps(pattern+i+1)

y ptr = mm loadu ps(pattern+i)

mask = mask | mm movemask ps(mm cmpgt ps(x ptr, y ptr)) << i

The search algorithm shown in the right-hand side of Fig. 2 is a variation of the
BMH algorithm [17,27] utilizing 4-grams. Inside the main loop there are two loops.
The first loop searches for occurrences of the last 4-gram of P ′ by using the shift
table delta. The tested 4-gram is formed online with SIMD instructions in the same
way as used for the pattern. The numbers are compared in parallel using PCMPGT
instruction explained above (simd-comp in Fig. 2). The second loop checks whether a
complete occurrence of P ′ is found. If an occurrence of P ′ is found, the corresponding
part of T is verified. The search algorithm uses a copy of the pattern as a sentinel
(not shown in Fig. 2) to be able to recognize the end of input.

As each occurrence of P ′ in T ′ is only a match candidate, it should be verified.
In simple words, for instance, if P = (15, 18, 20, 16) and T = (2, 4, 6, 1, 5, 3) then the
transformed pattern P ′ and T ′ are 110 and 110101 respectively where 1 indicates
increase and 0 indicates the opposite. The match candidate of P ′ at location 0 of
T ′ needs to be verified because though P ′ appears in T ′, the relative order of the
numbers is 0,2,3,1 in the pattern and 1,2,3,0 in the text. Therefore P ′ is only a match
candidate.

Verification. The verification process is the same as in OPMF. In the preprocessing
phase, the numbers of the pattern P = p0p1 · · · pm−1 are sorted. As a result, we
obtain an auxiliary table r: pr[i] ≤ pr[j] holds for each pair i < j and pr[0] is the
smallest number in P . The potential candidates obtained from the filtration phase
are traversed in accordance with the table r. If the candidate starts from tj in T , the
first comparison is done between tj+r[0] and tj+r[1].

42 Proceedings of the Prague Stringology Conference 2015

delta[0000] ← 5
delta[0001] ← 5
delta[0010] ← 5 ← 2
delta[0011] ← 5 ← 2
delta[0100] ← 5 ← 3
delta[0101] ← 5 ← 3
delta[0110] ← 5 ← 3
delta[0111] ← 5 ← 3
delta[1000] ← 5 ← 4
delta[1001] ← 5 ← 4 ← 1
delta[1010] ← 5 ← 4
delta[1011] ← 5 ← 4
delta[1100] ← 5 ← 4 ← 0
delta[1101] ← 5 ← 4
delta[1110] ← 5 ← 4
delta[1111] ← 5 ← 4

Figure 3. Computation of the shift table for mask = 11001 for P ′ = 10011.

Online solution using AVX

This is similar to the above solution with a few exceptions. The difference is in the
comparison of numbers and in computation of the shift function. Instead of four
numbers, eight floating point numbers are compared at a stretch. The comparison in-
struction is mm256 cmp ps(), which requires three operands. The predicate operand
(the third operand) specifies the type of comparison to be performed on each of the
pairs of packed values.

Offline Solution

This solution also enumerates the bitmaps but they are stored in the compressed form
via the FM-index. In this case, when a pattern is queried, we just extract the possible
candidate positions from the index, and then apply naive check. It also consists of
two parts: filtration and verification.

Filtration. In the preprocessing phase, the consecutive numbers in the pattern P =
p0p1 · · · pm−1 are compared pairwise and the pattern P is transformed into a bitmap
P ′ in the same way as in OPMF. The text is also encoded and an FM-index is created
of the encoded text. Alg. 2 below shows how the encoded text is stored in the form
of FM-index. Thereafter, the occurrences of transformed pattern P ′ are found within
the compressed text. As an occurrence of P ′ is only a potential match candidate, it
should be verified with a checking routine.

Note. It was thought that there might be an inefficiency in the FM-index for a bit
string. It is because the FM-index uses a wavelet tree, and it would be useless in the
case of a binary text. So a modified FM-index without a wavelet tree might be more
efficient. Therefore we implemented another FM-index without a wavelet tree. To
keep the FM-index compressed, the Burrows-Wheeler transform of the bit-string was
computed and was compressed via rank and select dictionaries, and then the backward
search on the compressed bit string was implemented via rank/select queries. But we
observed that this approach was slower than the standard one.

Verification. The verification process is the same as in the online solution because
once we get the potential matches they are verified using the same checking function.

T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 43

Algorithm 2 (FM-index)
std::string str((char *) & text[0], n);

construct im(fm index, str.c str(), 1);

matches=count(fm index, (const char*)P’);

auto locations=locate(fm index, (const char*)P’);

6 Analysis

Let us assume that the numbers in P = p0p1 · · · pm−1 and T = t0t1 · · · tn−1 are
integers and they are statistically independent of each other and the distribution
of numbers is discrete uniform. Let P ′ and T ′ be the corresponding bitmaps for
filtration. In case of online solutions using SIMD, the analysis is similar to the analysis
of the original OPMF algorithm. It is obvious that our SIMD search algorithms are
sublinear on average, because the search algorithm based on BMH is sublinear on
average. The verification time approaches zero when m grows, and the filtration time
dominates. When filtering the text T , it is encoded incrementally online in order to
skip characters, and the solution as a whole becomes sublinear on average. In the
worst case, the total algorithm requires O(nm) time, if for example P ′ is 1m−1 and
T ′ is 1n−1. The preprocessing phase requires O(m logm) due to sorting of the pattern
positions. See the analysis of OPMF [8] for more details.

In the case of the offline solution using the FM-index, the verification time also
approaches zero when m grows and the filtration time dominates. During the prepro-
cessing phase, the text T ′ is compressed and stored via the FM-index. The operation
count takes a pattern P ′ and returns the number of occurrences of that pattern in
the text T ′. It can count all matching positions in O(m) time. The operation lo-
cate finds the locations of all the occurrences (occ) of the pattern P ′ in T ′ in time
O(m+ occ logǫ n). However, in the worst case, this solution also requires O(nm) time
because checking a match candidate takes O(m) time.

7 Experiments

The tests were run on Intel 2.70 GHz i7 processor with 16 GB of memory. All the
algorithms were implemented in C and run in the testing framework of Hume and
Sunday [18]. In case of offline solution, the FM-index was implemented using the sdsl
library [15].

We tested our algorithms on ten different data sets. Of all the results, we present
the results on three texts: a random text and two real texts. The random data [20]
is 320 MB long. The real data comprised of time series of the Dow Jones index and
feature data [20]. The Dow Jones data consisted of 15,128 integers and feature data is
198 MB long. The patterns were randomly picked from the text. We had eight sets of
300 patterns in case of random and feature data set with lengths 5, 9, 10, 12, 15, 18, 20
and 25 and five sets of 300 patterns with lengths 5, 10, 15, 20 and 25 in case of Dow
Jones data. Each test was repeated nine times.

We compared our new solutions with our earlier OPMF solutions [9] based on the
SBNDM2 and SBNDM4 algorithms. Because the latter solutions were faster than the
other old solutions in the tests of [9], we do not present results for other methods.
Tables 1 and 2 show the average execution times of the algorithms for a set of 300
patterns for random and feature data in seconds, respectively, whereas table 3 depicts
the average execution times of the algorithms for a set of 300 patterns for Dow Jones

44 Proceedings of the Prague Stringology Conference 2015

data in 10 of milliseconds. In addition, graphs on times for random data are shown in
Fig. 4 respectively. In the tables given below, SBNDM2 represents the OPM algorithm
based on SBNDM2 filtration, SBNDM4 represents the OPM algorithm based on
SBNDM4 filtration, SSE represents the online solution based on SSE4.2 instruction
set, AVX represents the online solution based on AVX instruction set and FM-INDEX
represents the offline solution based on the FM index.

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 18.44 22.56 12.26 — 405.53
9 15.96 13.34 8.71 9.06 31.53
10 13.99 12.21 7.98 7.37 14.01
12 11.56 10.66 7.07 5.69 3.14
15 9.07 8.80 6.35 4.59 0.39
18 7.52 7.34 5.92 4.10 0.05
20 6.85 6.69 5.82 3.87 0.01
25 5.59 5.40 5.44 3.59 0.00

Table 1. Execution times of algorithms in seconds for random data

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 16.92 20.28 12.33 —– 306.26
9 9.41 8.02 5.37 5.63 21.29
10 8.26 7.32 4.86 4.58 8.52
12 6.93 6.53 4.29 3.48 3.16
15 5.42 5.27 3.80 2.81 0.32
18 4.52 4.43 3.62 2.52 0.11
20 4.06 4.30 3.45 2.36 0.04
25 3.28 3.29 3.29 2.17 0.02

Table 2. Execution time of algorithms in seconds for feature data

m SBNDM2 SBNDM4 SSE AVX FM-INDEX
5 1.14 1.49 0.83 —– 14.17
10 0.49 0.31 0.36 0.45 0.41
15 0.29 0.16 0.34 0.22 0.04
20 0.18 0.14 0.28 0.21 0.03
25 0.12 0.12 0.23 0.10 0.04

Table 3. Execution times of algorithms in 10 of milliseconds for Dow Jones data

From Tables 1, 2, and 3, it can be clearly seen that our solutions based on the
FM-index, SSE4.2 and AVX are the fastest depending on the value of m. Irrespective
of the data, the solution based on SSE4.2 is the fastest for m = 5. In case of random
and feature data, as the value of m reaches 10, the AVX solution becomes the fastest.
However, when m is greater than or equal to 12, the FM-index based solution is the
fastest. And as the value of m reaches 25, the execution time of FM-index based
solution approaches zero. However, in the case of Dow Jones data, the FM-index
based solution is the fastest as the value of m reaches 10.

The construction times of the FM-index for our Dow Jones and random texts were
0.07 and 3.2 seconds, respectively.

T.Chhabra et al.: Alternative Algorithms for Order-Preserving Matching 45

 0

 10

 20

 30

 40

 50

 5 9 10 12 15 18 20 25

T
im

e
(s

ec
on

ds
)

Pattern length

SBNDM2-OPM
SBNDM4-OPM

SSE-OPM
AVX-OPM

FM-INDEX-OPM

Figure 4. Execution times of algorithms for random data

8 Concluding remarks

We pioneered two online and one offline solution for the order-preserving matching
problem. The online solutions are based on SIMD which improves the execution time
substantially in most cases. The SIMD architecture requires careful redesigning of
an algorithm, and the outcome is not necessarily efficient for an arbitrary string
matching problem. The offline solution, which is based on the FM-index, is superior
for long patterns. However, the search algorithm of the offline solution was slower
than we expected for short patterns. We have proved with practical experiments that
our solutions are competitive with the previous solutions.

References

1. D. Belazzougui, A. Pierrot, M. Raffinot, and S. Vialette: Single and multiple consec-
utive permutation motif search, in Proceedings of 24th International Symposium on Algorithms
and Computation, ISAAC 2013, Hong Kong, China, December 16–18, 2013, pp. 66–77.

2. O. Ben-Kiki, P. Bille, D. Breslauer, L. Gasieniec, R. Grossi, and O. Weimann:
Optimal packed string matching, in Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS vol. 13, 2011, pp. 423–432.

3. M. Burrows and D.J. Wheeler: A block sorting lossless data compression algorithm. Tech-
nical Report 124, Digital Equipment Corporation, Palo Alto, California, 1994.

4. S. Cho, J. C. Na, K. Park, and J. S. Sim: Fast order-preserving pattern matching, in Wid-
mayer, P., Xu, Y., Zhu, B., eds., 7th International Conference on Combinatorial Optimization
and Applications 2013, vol. 8287 of Lecture Notes in Computer Science, 2013, pp. 295–305.

5. S. Cho, J. C. Na, K. Park, and J. S. Sim: A fast algorithm for order-preserving pattern
matching. Inf. Process. Lett., 115(2) 2015, pp. 397–402.

6. M. Crochemore, C. S. Iliopoulos, T. Kociumaka, M. Kubica, A. Langiu, S. P. Pissis,

J. Radoszewski, W. Rytter, and T. Walen: Order-preserving incomplete suffix trees and
order-preserving indexes, in Kurland, O., Lewenstein, M., Porat, E., eds., 20th String Processing
and Information Retrieval Symposium 2013, vol. 8214 of Lecture Notes in Computer Science,
2013, pp. 84–95.

7. T. Chhabra, E. Giaquinta, and J. Tarhio: Filtration algorithms for approximate order-
preserving matching. Submitted, 2015.

46 Proceedings of the Prague Stringology Conference 2015

8. T. Chhabra and J.Tarhio: Order-preserving matching with filtration, in Gudmundsso, J.,
Katajainen, J., eds., 13th International Symposium on Experimental Algorithms 2014, vol. 8504
of Lecture Notes in Computer Science, 2014, pp. 307–314.

9. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Inf. Process. Lett., 110(4) 2010, pp. 148–152.

10. S. Faro and M. O. Külekci: Fast and flexible packed string matching. Journal of Discrete
Algorithms, 28 (2014), pp. 61–72.

11. S. Faro and M. O. Külekci: Fast multiple string matching using streaming SIMD extensions
technology, in L. Calderón-Benavides et al., eds., 19th International Symposium on String
Processing and Information Retrieval 2012, vol. 7608 of Lecture Notes in Computer Science,
pp. 217–228.

12. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proceedings
of the 15th Meeting on Algorithm Engineering and Experiments 2013, pp. 113–121.

13. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Computing Surveys (CSUR), 45(2) 2013, p. 13.

14. P. Ferragina and G. Manzini: Opportunistic data structures with applications, in 41st
Annual Symposium on Foundations of Computer Science, IEEE 2000, pp. 390–398.

15. S. Gog: Succinct Data Structure Library 2.0, https://github.com/simongog/sdsl-lite.
16. S. Ladra, O. Pedreira, J. Duato, and N.R. Brisaboa: Exploiting SIMD instructions in

current processors to improve classical string algorithms, in 16th East European Conference on
Advances in Databases and Information Systems 2012, T. Morzy, T. Haerder, and R. Wrembel,
eds., vol. 7503 of Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg 2012,
pp. 254–267.

17. R. N. Horspool: Practical fast searching in strings. Software–Practice and Experience, 10(6)
1980, pp. 501–506.

18. A. Hume and D. Sunday: Fast string searching. Software–Practice and Experience, 21(11)
1991, pp. 1221–1248.

19. H. Jeong, S. Kim, W. Lee, and S.-H. Myung: Performance of SSE and AVX instruction
sets. CoRR abs/1211.0820, 2012.

20. E. Keogh, Q. Zhu, B. Hu, Y. Hao., X. Xi, L. Wei, and C. A.

Ratanamahatana: The UCR Time Series Classification/Clustering Homepage,
http://www.cs.ucr.edu/~eamonn/UCRsuite.html

21. J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C.S. Iliopoulos, K. Park, S. J. Puglisi,

and T. Tokuyama: Order preserving matching. Theor. Comp. Sci., 525 (2014), pp. 68–79.
22. D. E. Knuth, J. H. Morris Jr., and V. R. Pratt: Fast pattern matching in strings. SIAM

Journal on Computing, 6(2) 1977, pp. 323–350.
23. M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, and T. Walen: A linear

time algorithm for consecutive permutation pattern matching. Inf. Process. Lett., 113(12) 2013,
pp. 430–433.

24. M. O. Külekci: Filter based fast matching of long patterns by using SIMD instructions, in
J. Holub and J. Žďárek, eds., Prague Stringology Conference 2009, pp. 118–128.

25. U. Manber and G. Myers: Suffix arrays. A new method for on-line string searches, in 1st
Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM 1990, pp. 319–327.

26. G. Navarro and M. Raffinot: Flexible pattern matching in strings: Practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, New York, NY, 2002.

27. J. Tarhio and H. Peltola: String matching in the DNA alphabet. Software–Practice and
Experience, 27(7) 1997, pp. 851–861.

28. B. Watson: Personal Communication, 2015.
29. Intel Corporation: Intel Architecture Instruction Set Extensions Programming Reference,

https://software.intel.com/sites/default/files/m/9/2/3/41604.

https://github.com/simongog/sdsl-lite
http://www.cs.ucr.edu/~eamonn/UCRsuite.html
https://software.intel.com/sites/default/files/m/9/2/3/41604

