
The Use and Usefulness of Fibonacci Codes

(Invited talk)

Shmuel T. Klein

Computer Science Department, Bar Ilan University, Israel
tomi@cs.biu.ac.il

1 Introduction

Contrary to our intuition led by the knowledge that the price for digital storage is
constantly dropping, compression techniques are not becoming obsolete, and in fact
research in data compression is flourishing as can be seen by the large number of
papers published constantly on the topic. For instance, very large textual databases
as those found in large Information Retrieval Systems, could contain hundreds of
millions of words, which should be compressed by some method giving, in addition
to good compression performance, also very fast decoding and the ability to search
for the appearance of some strings directly in the compressed text.

Classical Huffman coding, when applied to individual characters, gives relatively
poor compression, but when every word of a large textual database is considered as
an atomic element to be encoded, this so-called Huffword variant may compete with
the best other compression methods [11]. Yet the codewords of a binary Huffman code
are not necessarily aligned on byte boundaries, which complicates both the decoding
process and the ability to perform searches in the compressed file. The next step was
therefore to pass to 256-ary Huffman coding, in which every codeword consists of an
integral number of 8-bit bytes [4]. The loss incurred in the compression efficiency,
which is only a few percent for large enough alphabets, is compensated for by the
advantages of the easier processing.

When searches in the compressed text should also be supported, Huffman codes
suffer from a problem of synchronization: denoting by E the encoding function, the
compressed form E(x) of an element x may appear in the compressed text E(T ), with-
out corresponding to an actual occurrence of x in the text T , because the occurrence
of E(x) is not necessarily aligned on codeword boundaries. This problem has been
overcome in [8], relying on the tendency of Huffman codes to resynchronize quickly
after errors, but the suggested solution is probabilistic and may produce wrong re-
sults. As alternative, [4] propose to reserve the first bit of each byte as tag , which
is used to identify the last byte of each codeword, thereby reducing the order of the
Huffman tree to 128-ary. These Tagged Huffman codes have then been replaced by
End-Tagged Dense codes (ETDC) in [3] and by (s, c)-Dense codes (SCDC) in [2].
The two last mentioned codes consist of fixed codewords which do not depend on the
probabilities of the items to be encoded. Thus their construction is simpler than that
of Huffman codes: all one has to do is to sort the items by non-increasing frequency
and then assign the codewords accordingly, starting with the shortest ones.

We show here that similar properties, and in fact some interesting others, can be
obtained by Fibonacci codes [7], which have been suggested in the context of com-
pression codes for the unbounded transmission of strings [1] and because of their
robustness against errors in data communication applications [5]. They are also stud-
ied as a simple alternative to Huffman codes in [12]. The properties of representing

Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes, pp. 1–5.

Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic



2 Proceedings of the Prague Stringology Conference 2016

integers in a Fibonacci based numeration system have been known long before the
codes were suggested [13], and the following challenging quote appeared on page 211
in the book Computer Number Systems and Arithmetic by N.R. Scott in 1985:

The Fibonacci number system (so-called by Knuth)
is another remarkable and

remarkably useless number system.

This obviously has been taken as an incentive to look for ever more useful appli-
cations of Fibonacci codes, not only as alternatives to dense codes for large textual
word-based compression systems. They are in particular mentioned: in [10] as a good
choice for compressing a set of small integers; in [6] to improve modular exponentia-
tion; and in [9] as a basis to devise a rewriting code to enhance the repeated use of
flash memory.

In the next section, we review the relevant features of Fibonacci codes of order
m ≥ 2. Examples of several applications will then be given in the talk itself.

2 Fibonacci codes

Fibonacci numbers of order m ≥ 2, denoted by F
(m)
i , are defined by the following

recurrence relation:

F (m)
n = F

(m)
n−1 + F

(m)
n−2 + · · ·+ F

(m)
n−m for n > 0,

and the boundary conditions

F
(m)
0 = 1 and F (m)

n = 0 for −m < n < 0.

For fixed order m, the number F
(m)
n can be represented as a linear combination of

the nth powers of the roots of the corresponding polynomial P (m) = xm − xm−1 −
· · · − x− 1. P (m) has only one real root that is larger than 1, which we shall denote
by φ(m), the other m− 1 roots are complex numbers with norm < 1 (for m = 2, the
second root is also real and its absolute value is < 1). Therefore, when representing

F
(m)
n as such a linear combination, the term with φn

(m) will be the dominant one, and
the others will rapidly become negligible for increasing n.

For example, m = 2 corresponds to the classical Fibonacci sequence and φ(2) =
1+

√

5
2

= 1.6180 is the well-known golden ratio. As a matter of fact, the entire Fibonacci

sequence can be obtained by F
(m)
n = [a(m)φ

n
(m)], where a(m) is the coefficient of the

dominating term in the above mentioned linear combination, and [x] means that the
value of the real number x is rounded to the closest integer. Table 1 lists the first few
elements of the Fibonacci sequences of order up to 6. The column headed General

Term brings the values of a(m) and φ(m). For larger n, the numbers a(m)φ
n
(m) are

usually quite close to integers.
The standard representation of an integer as a binary string is based on a numera-

tion system whose basis elements are the powers of 2. If B is represented by the k-bit
string bk−1bk−2 · · · b1b0, then B =

∑k−1
i=0 bi2

i. But many other possible binary repre-
sentations do exist, and those using the Fibonacci sequences as basis elements have
some interesting properties. Let us first consider the standard Fibonacci numbers of
order 2.



Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes 3

F
(m)
n General Term 1 2 3 4 5 6 7 8 9 10 11 12 13

m = 2 0.7236 (1.6180)n 1 2 3 5 8 13 21 34 55 89 144 233 377
m = 3 0.6184 (1.8393)n 1 2 4 7 13 24 44 81 149 274 504 927 1705
m = 4 0.5663 (1.9275)n 1 2 4 8 15 29 56 108 208 401 773 1490 2872
m = 5 0.5379 (1.9659)n 1 2 4 8 16 31 61 120 236 464 912 1793 3525
m = 6 0.5218 (1.9836)n 1 2 4 8 16 32 63 125 248 492 976 1936 3840

Table 1. Fibonacci numbers of order m = 2, 3, 4, 5, 6

Any integer B can be represented by a binary string of length r, crcr−1 · · · c2c1,
such that B =

∑r

i=1 ciF
(2)
i . The representation will be unique if one uses the following

procedure to produce it: given the integer B, find the largest Fibonacci number F
(2)
r

smaller or equal to B; then continue recursively with B − F
(2)
r . For example, 45 =

34 + 8 + 3, so its binary Fibonacci representation would be 10010100. As a result
of this encoding procedure, there are never consecutive Fibonacci numbers in any of
these sums, implying that in the corresponding binary representation, there are no
adjacent 1s.

This property can be exploited to devise an infinite code whose set of codewords
consists of the Fibonacci representations of the integers: to assure the code being
uniquely decipherable (UD), each codeword is prefixed by a single 1-bit, which acts
like a comma and permits to identify the boundaries between the codewords. The first
few elements of this code would thus be {u1, u2, . . .} = {11, 110, 1100, 1101, 11000,
11001,. . .}, where the separating 1 is put in boldface for visibility. A typical com-
pressed text could be 1100111001101111101, which is easily parsed as u6u3u4u1u4.
Though being UD, this is not a prefix code, so decoding may be somewhat more
involved. In particular, the first codeword 11, which is the only one containing no
zeros, complicates the decoding, because if a run of several such codewords appears,
the correct decoding of the codeword preceding the run depends on the parity of
the length of the run. Consider for example the encoded string 11011111110: a first
attempt to parse it as 110 11 11 11 10 = u2u1u1u110 would fail, because the
tail 10 is not a codeword; hence only when trying to decode the fifth codeword do
we realize that the first one is not correct, and that the parsing should rather be
1101 11 11 110 = u4u1u1u2.

To overcome this problem, [1,5] suggest to reverse all the codewords, yielding the
set {v1, v2, . . .} = {11, 011, 0011, 1011, 00011, 10011, . . .}, which is a prefix code, since
all codewords are terminated by 11 and this substring does not appear anywhere in
any codeword, except at its suffix. In addition, we show below that having a reversed
representation, with the bits corresponding to increasing basis elements running from
left to right rather than as usual, is advantageous for fast decoding. Table 2 brings
a larger sample of this set of codewords in the column headed Fib2. Note that the
order of the elements is not lexicographic, e.g., 10011 precedes 01011.

The generalization to higher order seems at first sight straightforward: any integer

B can be uniquely represented by the string dsds−1 · · · d2d1 such that B =
∑s

i=1 diF
(m)
i

using the iterative encoding procedure mentioned above. In this representation, there
are no consecutive substrings of m 1s. For example, the representations of the integers
10, 11, 12 and 13 using F (3) are, respectively, 1011, 1100, 1101 and 10000. But simply
adding now m − 1 1’s as commas and reversing the strings does not yield a prefix



4 Proceedings of the Prague Stringology Conference 2016

code for m > 2, and in fact the code so obtained is not even UD. For example,
for m = 3, the above numbers would give the codewords {v10, . . . , v13} = {110111,
001111, 101111, 0000111}, but the encoding of the fourth element of the sequence
would be v4 = 00111, which is a prefix of v11. The string 0011110111 could be parsed
both as 00111 10111 = v4v5 and as 001111 0111 = v11v2. The problem stems from
the fact that for m > 2, there can be more than one leading 1 in the representation
of an integer, so adding m − 1 1s may give a string of up to 2m − 2 consecutive 1s.
The fact that a string of m 1s appears only as a suffix is thus only true for m = 2.
To turn the sequence into a prefix code, the definition has to be amended as follows:
the set Fibm will be defined as the set of binary codewords of lengths ≥ m, such
that every codeword contains exactly one occurrence of the substring consisting of m
consecutive 1s, and this occurrence is the suffix of every codeword. The first elements
of these codes for m ≤ 4 are given in Table 2. For m = 2, this last definition is

equivalent to the one above based on the representation with basis elements F
(2)
n ; for

m > 2, only a subset of the corresponding numbers is taken. There is nevertheless
a connection between the codewords and the higher order Fibonacci numbers: for
m ≥ 2, and n ≥ 0, the code Fibm consists of

F (m)
n codewords of length n+m.

index Fib2 Fib3 Fib4
1 11 111 1111

2 011 0111 01111

3 0011 00111 001111

4 1011 10111 101111

5 00011 000111 0001111

6 10011 100111 1001111

7 01011 010111 0101111

8 000011 110111 1101111

9 100011 0000111 00001111

10 010011 1000111 10001111

11 001011 0100111 01001111

12 101011 1100111 11001111

13 0000011 0010111 00101111

14 1000011 1010111 10101111

15 0100011 0110111 01101111

16 0010011 00000111 11101111

17 1010011 10000111 000001111

18 0001011 01000111 100001111

19 1001011 11000111 010001111

20 0101011 00100111 110001111

21 00000011 10100111 001001111

22 10000011 01100111 101001111

23 01000011 00010111 011001111

24 00100011 10010111 111001111

25 10100011 01010111 000101111

26 00010011 11010111 100101111

27 10010011 00110111 010101111

28 01010011 10110111 110101111

29 00001011 000000111 001101111

30 10001011 100000111 101101111

31 01001011 010000111 011101111

32 00101011 110000111 0000001111

33 10101011 001000111 1000001111

34 000000011 101000111 0100001111

35 100000011 011000111 1100001111

Table 2. Fibonacci codes of order m = 2, 3, 4

This is visualized in Table 2, where for each code, blocks of codewords of the same
length are separated by horizontal lines. Within each such block of lengths ≥ m + 2
for Fibm, the prefixes of the codewords obtained by removing the terminating string
of 1s correspond to consecutive integers in the representation based on F (m). For
decoding, the Fibonacci representation will thus be used to get the relative index
within the block, to which the starting index of the given block has to be added.



Shmuel T. Klein: The Use and Usefulness of Fibonacci Codes 5

Many of the features of Fibonacci codes are based on the following facts. To
represent an integer n, more bits are needed in the Fibonacci than in the standard
representation, since it is less dense. In fact, it can be shown that the number of
bits needed for m = 2 is ⌊logφ2

(
√
5n) − 1⌋ ≃ 1.4404 log2 n. On the other hand, the

probability of a 1-bit drops from 1
2
to only 1

2

(

1− 1
√

5

)

= 0.276, and thus the average

number of 1-bits is only 0.389 log2 n instead of 0.5 log2 n. This can be exploited for
many applications.

References

1. A. Apostolico and A. Fraenkel: Robust transmission of unbounded strings using Fibonacci
representations. IEEE Trans. Inform. Theory, IT–33 1987, pp. 238–245.

2. N. R. Brisaboa, A. Fariña, G. Ladra, G. Navarro, and M. Esteller: (s,c)-dense
coding: an optimized compression code for natural language text databases, in Proc. Symposium
on String Processing and Information Retrieval SPIRE’03, vol. 2857, LNCS, 2010, pp. 122–136.

3. N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá: An efficient compression
code for text databases, in Advances in Information Retrieval, 25th European Conference on IR
Research, ECIR 2003, Pisa, Italy, April 14-16, 2003, Proceedings, 2003, pp. 468–481.

4. E. S. de Moura, G. Navarro, N. Ziviani, and R. A. Baeza-Yates: Fast and flexible word
searching on compressed text. ACM Trans. Inf. Syst., 18(2) 2000, pp. 113–139.

5. A. S. Fraenkel and S. T. Klein: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64(1) 1996, pp. 31–55.

6. S. T. Klein: Should one always use repeated squaring for modular exponentiation? Inf. Process.
Lett., 106(6) 2008, pp. 232–237.

7. S. T. Klein and M. K. Ben-Nissan: On the usefulness of Fibonacci compression codes.
Comput. J., 53(6) 2010, pp. 701–716.

8. S. T. Klein and D. Shapira: Pattern matching in Huffman encoded texts. Inf. Process.
Manage., 41(4) 2005, pp. 829–841.

9. S. T. Klein and D. Shapira: Boosting the compression of rewriting on flash memory, in Data
Compression Conference, DCC 2014, Snowbird, UT, USA, 26-28 March, 2014, 2014, pp. 193–202.

10. D. A. Lelewer and D. S. Hirschberg: Data compression. ACM Comput. Surv., 19(3) 1987,
pp. 261–296.

11. A. Moffat: Word-based text compression. Softw., Pract. Exper., 19(2) 1989, pp. 185–198.
12. R. Przywarski, S. Grabowski, G. Navarro, and A. Salinger: FM-KZ: an even simpler

alphabet-independent FM-index, in Proceedings of the Prague Stringology Conference, Prague,
Czech Republic, August 28-30, 2006, 2006, pp. 226–241.

13. E. Zeckendorf: Représentation des nombres naturels par une somme des nombres de Fibonacci
ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41 1972, pp. 179–182.


