
Computing All Approximate Enhanced Covers

with the Hamming Distance

Ondřej Guth

Department of Theoretical Computer Science
Faculty of Information Technology

Czech Technical University in Prague
ondrej.guth@fit.cvut.cz

Abstract. A border p of a string x is an enhanced cover of x if the number of positions
of x that lie within some occurrence of p is the maximum among all borders of x. In this
paper, more general notion based on the enhanced cover is introduced: a k-approximate
enhanced cover, where fixed maximum number of errors k in the Hamming distance is
considered. The k-approximate enhanced cover of x is its border and its k-approximate
occurrences are also considered in the covered number of positions of x. An O(n2)-
time and a O(n)-space algorithm that computes all k-approximate enhanced covers of
a string of length n is presented.

Keywords: string regularity, approximate cover, enhanced cover, quasiperiodicity, suf-
fix automaton, Hamming distance, border

1 Introduction

Searching repetitive structures of strings, so-called regularities of strings, has been
intensively studied for many years in many fields of computer science, e.g., combi-
natorics on strings, pattern matching, data compression and molecular biology, and
many related notions have been introduced: periods, squares, covers, seeds, etc. [10]
Those long-time known repetitive structures provide compact description of a string.
However, they are quite restrictive and it is rare that an arbitrary string has a non-
trivial regularity of that kind (e.g., not every string has a cover shorter than itself).
Therefore, there have been attempts to introduce more relaxed repetitive structures,
e.g., their approximate versions. Quite recently, a term of enhanced cover [3] has been
introduced; every string having a (non-empty) border has also an enhanced cover.

In order to provide even more general notion, the enhanced cover is extended to
its approximate version in this paper, see Fig. 1. The problem of computing all k-
approximate enhanced covers of a string with fixed maximum Hamming distance is
solved using finite automata in a way which is easy to implement and understand and
also consistent with finite automata based algorithms for similar problems. There is
no other known solution of this problem.

This paper is organised as follows. Section 1.1 contains definitions of terms used
through the text and also definition of the problem solved in this paper; in the section,
previous and related work is also summarized. In Section 2, the algorithm solving the
stated problem is presented; it starts with a description of a basic idea found in
another paper, the algorithm is then described in words and also its pseudocode is
shown; the time and space complexity is then stated and proved. In Section 3, a
behaviour of an implementation of the presented algorithm is shown, depending on
various input parameters.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance, pp. 146–157.

Proceedings of PSC 2016, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05996-8 c© Czech Technical University in Prague, Czech Republic

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 147

border a: abacaccababa

border aba: abacaccababa

cover aba (not possible): abacaccababa

1-approximate cover aba (not possible): abacaccababa

2-approximate cover aba: abacaccababa

2-approximate cover ababa: abacaccababa

enhanced cover aba (8 covered positions): abacaccababa

1-approximate enhanced cover (10 covered positions): abacaccababa

Figure 1. Regularities of the string x = abacaccababa

1.1 Preliminaries

An alphabet is a finite set of symbols, denoted by A. A string x over alphabet A is a
finite sequence of symbols of A, denoted by x ∈ A∗. An empty string is denoted by ε.
An i-th symbol of a string x is denoted by x[i], i.e., the first symbol of x is denoted
by x[1]. A substring of x starting at an i-th and ending at an j-th symbol is denoted
by x[i..j], i.e., x = x[1..|x|]. Assuming strings p, s,u,x ∈ A∗, where x = pus, the
string p is a prefix of x, the string s is a suffix of x, and the string u is a factor
(also known as a substring) of x. An editing operation replace in a string x ∈ A∗ is
replacing a symbol x[i] with another symbol of A. Assuming strings x,y ∈ A∗ such
that |x| = |y|, the Hamming distance of the strings x,y, denoted by H(x,y), is the
minimum number of operations replace necessary to convert x to y. Assuming strings
p, s,u,v,w ∈ A∗ and an integer k ≥ 0, the string v is a k-approximate factor of the
string w if w may be written as pus and H(u,v) ≤ k. The string u has an occurrence
in the string w if u is a factor of w. A factor u of w occurs at position i (that is
also called an end position) in the string w if for all j ∈ {1, . . . , |u|} it holds that
u[j] = w[i− |u| + j]. A position l of a string w lies within some occurrence of u in
w if u occurs at a position i in w and i− |u| < l ≤ i. A k-approximate factor v of w
k-approximately occurs at position i (that is also called a k-approximate end position)
if there exists a factor u of w that occurs at the position i in w and H(u,v) ≤ k.
A position l of a string w lies within some k-approximate occurrence of v in w if v
k-approximately occurs at a position i in w and i− |v| < l ≤ i.

A border of a string x is simultaneously a prefix and a suffix of x. A string w

is a cover of x if every position of x lies within some occurrence of w in x. A w is
a k-approximate cover of x if w is a factor of x and every position of x lies within
some k-approximate occurrence of w in x. A border u of a string y is an enhanced
cover of y if the number of positions of y which lie within some occurrence of u in y

is the maximum among all borders of y [3].
A deterministic finite automaton M is a quintuple (Q,A, δ, q0, F) where

– Q is a nonempty finite set of states,
– A is a nonempty finite input alphabet,
– δ : Q×A 7→ Q is a transition function (partially defined, i.e., for some pair (q, a),
where q ∈ Q, a ∈ A, is δ(q, a) undefined),

– q0 ∈ Q is an initial state,
– F ⊆ Q is a set of final states.

An extended transition function of a deterministic automatonM = (Q,A, δ, q0, F) is
denoted by δ∗ and it is defined for q ∈ Q, a ∈ A,u ∈ A∗ inductively: δ∗(q, ε) = q,
δ∗(q,ua) = δ(δ∗(q,u), a). String w is accepted by M if and only if δ∗(q0,w) ∈ F .

148 Proceedings of the Prague Stringology Conference 2016

An automaton M accepts a set of strings B if and only if for all u ∈ B holds
that u is accepted by M. A nondeterministic finite automaton MN is a quintuple
(Q,A, δ, q0, F) where

– Q is a nonempty finite set of states,
– A is a nonempty finite input alphabet,
– δ : Q× A 7→ P(Q) is a transition function,
– q0 ∈ Q is an initial state,
– F ⊆ Q is a set of final states.

An extended transition function of a nondeterministic finite automatonMN is denoted
by δ∗ and it is defined for q1, q2 ∈ Q, a ∈ A,u ∈ A∗ inductively: δ∗(q1, ε) = {q1},
δ∗(q1,ua) =

⋃
q2∈δ∗(q1,u) δ(q2, a). A finite automaton (also known as a finite state

machine) is either a deterministic or a nondeterministic finite automaton. A suffix
automaton for a string u is a finite automaton that accepts a set of all suffixes of u.
Let us have a set S of k-approximate suffixes of a string u defined as: v ∈ S if and
only if for all suffixes s of u, H(s,v) ≤ k; a k-approximate suffix automaton for the
string u is a finite automaton that accepts a set of k-approximate suffixes S of u. A
d-subset of a state of a deterministic finite automaton is an ordered set of elements.
Each element e is represented by two integers: depth(e) and level(e), where depth(e)
corresponds to an end position and level(e) represents the Hamming distance of some
factor of u.

Definition 1 (k-approximate enhanced cover). A string w is a k-approximate
enhanced cover of a string x if w is a border of x and the number of positions of x
which lie within some k-approximate occurrence of w in x is the maximum among
all borders of x.

See an example of a k-approximate enhanced cover in Fig. 1.

Problem definition Given a string w and an integer k, the problem of computing all k-
approximate enhanced covers of w is to find all borders of w that satisfy Definition 1.

Related Work. The idea of a quasipediodic string (i.e., a string having a cover)
was introduced by Apostolico and Ehrenfeucht [1], Moore and Smyth gave a linear-
time algorithm for computing all covers of a given string [6,7]. An algorithm for
computing all covers in generalized strings based on a suffix automaton was introduced
by Voráček and Melichar [11].

Computing approximate covers was introduced by Sim et al. [9]. Christodoulakis
et al. [2] implemented the algorithm based on dynamic programming and showed
its practical time complexity for Hamming, edit and weighted edit distance. Guth,
Melichar, and Baĺık [4] gave an algorithm for computing all approximate covers with
the Hamming distance based on a suffix automaton.

In 2013, Flouri et al. [3] introduced a notion of the enhanced cover and gave a
linear time algorithm for computing the minimum enhanced cover of a given string.

2 Problem Solution

2.1 Basic Idea

The presented solution of the problem of computing all k-approximate enhanced
covers of a given string is based on the algorithm for computing all k-approximate

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 149

covers [4]. The referenced algorithm works in two phases: find candidate factors and
compute the smallest Hamming distance for each candidate to cover the given string.
To find the candidate factors, a subset construction [8][5, Alg. 1.40] of a deterministic
k-approximate suffix automaton for the Hamming distance is used. This way, positions
of each k-approximate occurrence of each factor of the given string is obtained. In
the second phase, each factor is checked, whether it k-approximately covers the given
string. To do that, subsequent positions (obtained by the subset construction) are
compared with the factor length – there must be no gap between subsequent k-
approximate occurrences of the factor. In order to reduce space complexity, only part
of the deterministic automaton is stored in a memory – a depth-first search is done
and all unnecessary states are removed.

The above mentioned algorithm [4] is used to solve the problem of computing all
k-approximate enhanced covers after some modifications.

The idea found in [5, Section 4] and used in [4] is to use a nondeterministic
k-approximate suffix automaton MN for a string x as an indexing structure. This
automaton accepts all k-approximate suffixes of x. Moreover, every string u “read”
byMN reaches a set B of states, i.e. δ∗(q0,u) = B. With the proper labelling, depth i

of each such state q ∈ B is equal to a k-approximate end position of u in x, and level
j of q is the minimum Hamming distance such that i is a j-approximate end position
of u in x and there exists no l < j such that i is an l-approximate end position of
u in x. Therefore, in addition to accept all k-approximate suffixes of x,MN is able
to identify all k-approximate end positions of all k-approximate factors of x. See an
example of a nondeterministic k-approximate suffix automaton in Fig. 2.

0

start

1 2 3 4 5 6 7 8 9 10 11 12

1′ 2′ 3′ 4′ 5′ 6′ 7′ 8′ 9′ 10′ 11′ 12′

a b a c a c c a b a b a

b
a

c
a

c
c

a
b

a
b

a

b a c a c c a b a b a

a b a c a c c a b a b a

b
a

c
a

c
c

a
b

a
b

a

Figure 2. Example of a nondeterministic k-approximate suffix automaton for the string
abacaccababa ∈ A∗ (a denotes supplement, i.e. a = A \ {a}; a state depth is denoted by an
integer, a state level is denoted by the number of primes, a final state is denoted by a double circle)

To obtain a k-approximate deterministic suffix automaton M, the subset con-
struction [5,8] may be used. Instead of the subset construction, similar algorithm

150 Proceedings of the Prague Stringology Conference 2016

that represents states of M as subsets of MN with preserved depths and levels, is
used in [4]. An advantage of the deterministic k-approximate suffix automaton for x
over the nondeterministic one is that processing a string u usingM takes linear time
in the length of u, regardless of the length of x.

Note that in the algorithm presented in this paper, the nondeterministic automa-
ton is not constructed, it is used just to describe the concept. Instead, states of
the deterministic automaton are constructed directly, utilising the knowledge of the
regular structure ofMN.

2.2 The Algorithm

From the definition of a k-approximate enhanced cover for a given string x follows
that every k-approximate enhanced cover of x is a border (exact) of x. Every border
of x is accepted by a k-approximate suffix automaton for x and even by its part, a
backbone.

Definition 2 (Backbone). [5, Def. 3.12 and Sec. 3.4.1] Assume a k-approximate
deterministic suffix automatonM = (Q,A, δ, q0, F) for a string x. A backbone ofM
is a deterministic automaton MB = (QB, A, δB, q0, FB) such that for all 0 < i ≤ |x|
holds QB = {qi : qi ∈ Q}, δB(qi−1,x[i]) = qi, and FB = {q : q ∈ QB ∩ F}.

In other words, the backbone is the part of M that enables “reading” of x (and of
all its prefixes) exactly. See an example of a backbone in Fig. 3.

0start

1 2′ 3 4′ 5 6′ 7′ 8 9′ 10 11′ 12

2 4′ 6′ 9 11

3 5′ 10 12

4 6′ 11′

5 12′ 6

a

b

a

c

a

c

Figure 3. An example of a backbone of a deterministic k-approximate suffix automaton for the string
abacaccababa – the part useful for computing borders (the d-subset element depth is denoted by
an integer, the level is denoted by number of primes, a final state is denoted by a double circle)

In order to find k-approximate enhanced covers of x among its borders, the number
of symbols of x that lie within some k-approximate occurrence of the border must be
computed. This may be obtained from k-approximate occurrences of the border by
summing the letters that lie within each occurrence, counting each letter only once.
Considering each two subsequent k-approximate positions i, j; i < j of a border p of
x, there are three cases:

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 151

Input : A state q of a deterministic k-approximate suffix automaton for x
Output: The number of letters of x covered by a border corresponding to q

1 begin

2 r ← 0;
3 ef is the first d-subset element of q (one with the minimum depth);
4 m← depth(ef);
5 E is an array of d-subset elements of q having the same order as they are appended;
6 for i ∈ 2..|E| do
7 if depth(E[i])− depth(E[i− 1]) < m then

8 r ← r + depth(E[i])− depth(E[i− 1]);
9 else

10 r ← r +m;
11 end

12 end

13 return r;

14 end

Function distEnhCov

overlap (j − i < |p|) add j − i to the number of letters covered by p

square (j − i = |p|) add |p| to the number of letters covered by p

gap (j − i > |p|) add |p| to the number of letters covered by p

The pseudocode of this computation is listed as Function distEnhCov. All the k-
approximate occurrences of each border of x are obtained from d-subsets of the
backbone of the deterministic k-approximate suffix automaton for x.

As in the algorithm for computing all k-approximate covers [4], the number of
covered symbols of x for each of its borders is computed just after the state of the
backbone is constructed. This state may be removed just after the next state is
constructed, therefore at most two states are needed to be stored at a time. Unlike in
the algorithm in [4], all the borders with the maximum number of covered symbols
must be stored along with their number of covered symbols, because it is unknown
what the number is, before the algorithm finishes.

In order to further reduce space complexity, the borders with the maximum num-
ber of covered symbols are not actually stored directly. Because every k-approximate
enhanced cover is a prefix, the length is enough to specify it and therefore only the
prefix length is stored and reported (variable p in Algorithm 1).

Example 3 (Computing all k-approximate enhanced covers). Let us have a string x =
abacaccababa and maximum Hamming distance k = 1. The set of all 1-approximate
enhanced covers of x is computed using Alg. 1. A d-subset of the first state q1 of the
backbone (see Fig. 3) is 1 2′ 3 4′ 5 6′ 7′ 8 9′ 10 11′ 12. Because the related prefix
length is p = 1 and k = 1, no meaningful result may be obtained for this state. A
d-subset of the second constructed state is 2 4′ 6′ 9 11. After its construction, q1 and
its d-subset are removed from a memory. Because depth of the last d-subset element
is 11, it is not a final state (and does not represent a border of x). A d-subset of
the next constructed state is 3 5′ 10 12. Again, the previous state is now removed.
Because the depth of the last element is 12 (equal to the length of x) and its level
is 0, the related prefix aba is a border of x. The number of positions of x covered
by 1-approximate occurrences of aba in x is now computed. The end positions (read
from the d-subset) are 3, 5, 10, 12 and therefore the number of covered positions is
10. This is the maximum, the variable h is updated and aba is added to the set C.
The subsequent backbone state is not final and the next state 5 12′ is not final as well

152 Proceedings of the Prague Stringology Conference 2016

Input : A string x, the maximum Hamming distance k

Output: A set C of k-approximate enhanced covers of x (border lengths)
1 begin

2 C ← ∅;
3 h← 0;
4 q1 is a state;
5 for i ∈ 1..|x|; // construct a d-subset of the first state

6 do

7 e is a d-subset element such that depth(e)← i;
8 if x[1] = x[i] then
9 level(e)← 0;

10 append e to q1

11 else if k > 0 then

12 level(e)← 1;
13 append e to q1

14 end

15 end

16 p← 1; // a prefix length

17 qp ← q1;
18 for i ∈ 2..|x| do
19 p← p+ 1;
20 qn is a state;
21 for ep ∈ qp; // construct a d-subset of the next state

22 do

23 if depth(ep) < |x| then
24 en is a d-subset element such that depth(en)← depth(ep) + 1;
25 if x[i] = x[depth(en)] then
26 level(en)← level(ep);
27 append en to qn;

28 else if level(ep) < k then

29 level(en)← level(ep) + 1;
30 append en to qn;

31 end

32 end

33 end

34 destroy qp;
35 if number of d-subset elements of qn is less than 2 then

36 stop ; // all borders of x are examined

37 end

38 el is the last d-subset element of qn;
39 if depth(el) = |x| and level(el) = 0 and |p| > k; // qn is final

40 then

41 hn ← distEnhCov (qn);
42 if hn > h then

43 h← hn;
44 C ← ∅;

45 end

46 if hn = h then

47 append p to C;
48 end

49 end

50 end

51 end

Algorithm 1: Computing all k-approximate enhanced covers

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 153

(although the last element depth is 12, its level is 1, i.e. it represents an approximate
occurrence and therefore not an exact border of x). The subsequent state d-subset
contains only one element and therefore cannot represent a border (it represents a
string that occurs only once in x). It is not needed to construct any further state,
as the construction starting at line 21 cannot create a state with multiple d-subset
elements.

2.3 Time and Space Complexity

Theorem 4 (Space complexity). Given a string x, |x| = n, and an integer k,
Algorithm 1 needs at most 4n space.

Proof. The following is needed to be stored in a memory: the input string x, the set
of results C, a length p of actual prefix, states and d-subsets. A state is represented by
its d-subset. Every d-subset is an array of elements and its size is always known. Each
d-subset element is represented by two integers, every integer used in this algorithm
is between 0 and max(n, k).

The for loop starting at line 6 is iterated n times. Within each iteration, at most
one d-subset element is added, therefore q1 needs at most 2n+ 1 space.

During construction of a next state qn (starting at line 21), for each d-subset
element of qp (there are at most n), a new d-subset element is constructed. The new
element is not stored in two cases only: exceeding the maximum level k, or the depth
of the element over the length of x (checked at line 23). Therefore the maximum
number of d-subset elements of a state are: n for a first state, n − 1 for a second
state, etc. Due to the line 34, at most two states are in a memory at a time, therefore
d-subset elements need at most 4n space. For some states, the integer p is added to
C, so total maximum size of C is n. ⊓⊔

Theorem 5 (Time complexity). Given a string x, |x| = n, and an integer k,
Alg. 1 needs at most O(n2) time.

Proof. The for loop starting at the line 6 needs O(n) time. The for loop starting
at the line 21 needs O(|qp|) time (see the proof of Theorem 4). All the statements
whithin this loop are evaluated in constant time (a d-subset is an array, each element
is an object with two associated integers). Therefore the evaluation of the for loop

(the line 21) takes
∑n

i=2 n− i+ 1 = n2
−n
2

. The line 34 takes the same time as the
above for loop. Computing the Function distEnhCov takes at most 5(n− 2) for the

second state (recall the d-subset size in the proof of Theorem 4), so it takes 5n2
−15n
2

for the whole input. ⊓⊔

Example 6. For the input string x = aa · · · a, quadratic time regarding |x| is needed
for Alg. 1.

3 Experimental Results

The algorithm has been implemented using the C++ programming language. It has
been compiled using the gcc 5.3.0 with the O3 optimisation level, and run on the i5-
2520M (4-core) machine under the Hardened Gentoo Linux 4.3.5 with disabled swap.
As input data, Saccharomyces cerevisiae S288c chromosome IV1 was used. For various

1 The sequence was downloaded from http://www.ncbi.nlm.nih.gov/nuccore/NC_001136.10.

http://www.ncbi.nlm.nih.gov/nuccore/NC_001136.10

154 Proceedings of the Prague Stringology Conference 2016

input lengths, the input string consists the of first n characters of the chromosome.
For each input length n and the maximum Hamming distance k, the following values
were measured using the GNU time utility:

– elapsed time as total number of CPU-seconds that the implemented program spent
in user mode,

– memory consumption as maximum resident set size of the implemented program.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000

40000

60000

80000

100000

120000

140000

0

5

10

15

20

25

30

35

40

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

maximum Hamming distance

time n = 138254
memory n = 138254

time n = 466608
memory n = 466608

Figure 4. Time and memory consumption, when processing the chromosome, depending on the
maximum distance k when the input length n is fixed

Both the time and memory consumption is shown in Figs. 4 and 5. Values of the
time consumption are always shown in seconds at the left border of each figure, values
of memory consumption are shown in megabytes at the right border of each figure.
It is distinguished by a line type whether the time or the memory consumption is
being plotted. Because the consumption depends on both the input length and the
maximum allowed distance, the distance is fixed in the plots shown in Fig. 5 and the
input length is fixed in the plot shown in Fig. 4. The value of the fixed length, or the
distance, respectively, is shown in a key of each figure, and distinguished by a line
type.

In the plots shown in Fig. 5, the time and memory consumption is shown depend-
ing on varying input string length when the maximum allowed Hamming distance is
fixed to a few arbitrary values.

Note that although the time and space complexity (Theorems 4 and 5) do not
depend on k, the real consumption is varying for different k. The reason is that the
complexities in the above theorems are maximal, however, for the data used in the
experiment, k is limiting the number of d-subset elements. The limiting effect of k is
better shown in Fig. 4. In the plots shown in this figure, the consumption is shown
depending on varying maximum allowed Hamming distance while the input string
length is fixed to a few arbitrary values.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 155

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

35

40

45

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 0
memory k = 0

time k = 1
memory k = 1

0

200

400

600

800

1000

1200

0 100000

200000

300000

400000

500000

600000

700000

0

10

20

30

40

50

60

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 18205
memory k = 18205

Figure 5. Time and memory consumption, when processing the chromosome, depending the on
string size when the maximum Hamming distance k is fixed

156 Proceedings of the Prague Stringology Conference 2016

The plots in Fig. 5 seem to show linear growth of the time consumption depending
on the input string length. This is due to the input data (small number of repeating
factors). With a regular input string, e.g. ab repeating many times, time needed for
processing the string is apparently quadratic (see Fig. 6) with respect to the input
string length (according to Theorem 5).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100000

200000

300000

400000

500000

600000

700000

0

5

10

15

20

25

30

35

40

u
se
r-
m
o
d
e
C
P
U

ti
m
e
[s
]

p
ea
k
m
em

or
y
u
sa
ge

[M
iB
]

input length [no of symbols]

time k = 1
memory k = 1

Figure 6. The time and memory consumption for input string (ab)4026308608 depending on the input
string length when the maximum Hamming distance k = 1 is fixed

4 Conclusions

In this paper, new problem related to string covering has been stated and an algorithm
solving the problem has been presented.

As future work, problem solutions with less than quadratic time complexity may
be explored. It is probably achievable using a different data structure and technique
than indexing with the subset construction of a suffix automaton. Also, the problem
statement may be extended to find approximate borders that cover the maximum
number of positions of a given string among all approximate borders. Also the notion
of an enhanced left-cover array, introduced in [3], may be extended to accommodate
the Hamming distance.

Ondřej Guth: Computing All Approximate Enhanced Covers with the Hamming Distance 157

References

1. A. Apostolico and A. Ehrenfeucht: Efficient detection of quasiperiodicities in strings.
Theoretical Computer Science, 119(2) 1993, pp. 247–265.

2. M. Christodoulakis, C. S. Iliopoulos, K. S. Park, and J. S. Sim: Implementing ap-

proximate regularities. Mathematical and Computer Modelling, 42 October 2005, pp. 855–866.
3. T. Flouri, C. S. Iliopoulos, T. Kociumaka, S. P. Pissis, S. J. Puglisi, W. Smyth,

and W. Tyczyński: Enhanced string covering. Theoretical Computer Science, 506 2013,
pp. 102–114.

4. O. Guth, B. Melichar, and M. Balık: Searching all approximate covers and their distance

using finite automata. Information technologies–applications and theory, 2008, pp. 21–26.
5. B. Melichar, J. Holub, and T. Polcar: Text searching algorithms, Volume I, Novem-

ber 2005, Available from: http://stringology.org/athens.
6. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.

Information Processing Letters, 50 1994, pp. 101–103.
7. D. Moore and W. F. Smyth: A correction to “An optimal algorithm to compute all the

covers of a string”. Information Processing Letters, 54(2) 1995, pp. 101–103.
8. M. O. Rabin and D. Scott: Finite automata and their decision problems. IBM journal of

research and development, 3(2) 1959, pp. 114–125.
9. J. S. Sim, K. S. Park, S. R. Kim, and J. S. Lee: Finding approximate covers of strings.

Journal of Korea Information Science Society, 29 2002, pp. 16–21.
10. W. Smyth: Computing regularities in strings: a survey. European Journal of Combinatorics,

34(1) 2013, pp. 3–14.
11. M. Voráček and B. Melichar: Searching for regularities in strings using finite automata, in

Proceedings of Workshop 2005, vol. A, Czech Technical University in Prague, 2005, pp. 264–265.

http://stringology.org/athens

