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Abstract. String matching is the problem of finding all the substrings of a text which
match a given pattern. It is one of the most investigated problems in computer science,
mainly due to its very diverse applications in several fields. Recently, much research in
the string matching field has focused on the efficiency and flexibility of the searching
procedure and quite effective techniques have been proposed for speeding up the exist-
ing solutions. In this context, algorithms based on factors recognition are among the
best solutions.
In this paper, we present a simple and very efficient algorithm for string matching based
on a weak factor recognition and hashing. Our algorithm has a quadratic worst-case
running time. However, despite its quadratic complexity, experimental results show
that our algorithm obtains in most cases the best running times when compared, un-
der various conditions, against the most effective algorithms present in literature. In
the case of small alphabets and long patterns, the gain in running times reaches 28%.
This makes our proposed algorithm one of the most flexible solutions in practical cases.

Keywords: string matching, text processing, design and analysis of algorithms, ex-
perimental evaluation

1 Introduction

The exact string matching problem is one of the most studied problem in computer
science. It consists in finding all the (possibly overlapping) occurrences of an input
pattern x in a text y, over a given alphabet Σ of size σ. A huge number of solutions
has been devised since the 1980s [6,16] and, despite such a wide literature, much
work has been produced in the last few years, indicating that the need for efficient
solutions to this problem is still high.

Solutions to the exact string matching problem can be divided in two classes:
counting solutions simply return the number of occurrences of the pattern in the
text, whereas reporting solutions provide also the exact positions at which the pattern
occurs. Solutions in the first class are in general faster than the ones in the second
class. In this paper we are interested in algorithms belonging to the class of reporting
solutions.

From a theoretical point of view, the exact string matching problem has been
studied extensively. If we denote by m and n the lengths of the pattern and of the
text, respectively, the problem can be solved in O(n) worst-case time complexity [18].
However, in many practical cases it is possible to avoid reading all the characters of
the text, thus achieving sublinear performances on the average. The optimal average
O(n log

σ
m

m
) time complexity [22] has been reached for the first time by the Backward

DAWG Matching algorithm [7] (BDM). However, all algorithms with a sublinear
average behaviour may have to possibly read all the text characters in the worst
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case. It is interesting to note that many of those algorithms have an O(nm)-time
complexity in the worst-case. Interested readers can refer to [6,13,16] for a detailed
survey of the most efficient solutions to the problem.

The BDM algorithm computes the Directed Acyclic Word Graph (DAWG) of the
reverse xR of the pattern x. Such graph is an automaton which recognizes all and only
the factors of xR, and can be computed in O(m) time. During the searching phase, the
BDM algorithm moves a window of size m on the text. For each new position of the
window, the automaton of xR is used to search for a factor of x from the right to the
left of the window. The basic idea of the BDM algorithm is that when the backward
search fails on a letter c after reading a word u, then cu can not be a factor of p, so
that moving the window just after c is safe. In addition, the algorithm maintains the
length of the last recognized suffix of xR, which is a prefix of the pattern. If a suffix
of length m is recognized, then an occurrence of the pattern is reported.

We say that the DAWG of a string performs an exact factor recognition since the
accepted language coincides exactly with the set of the factors of the string. On the
other hand, we say that a structure performs a weak factor recognition when it is
able to recognize at least all the factors of the string, but maybe something more.
For instance, the Factor Oracle [1] of a string x performs a weak factor recognition
of the factors of x. It is an automaton which recognizes all the factors of x acting like
an oracle: if a string is accepted by the automaton, it may be a factor of x. However,
all the factors of x are accepted. Due to its relaxed recognition approach, the Factor
Oracle can be constructed and handled using less resources than the DAWG, both in
terms of space and time.

The Backward Oracle Matching algorithm [1] (BOM) works in the same way as
the BDM algorithm, but makes use of the Factor Oracle of the reverse pattern, in
place of the DAWG. In practical cases, the resulting algorithm performs better than
the BDM algorithm [16].

Both BDM and BOM algorithms have been recently improved in various way. For
instance, very fast BDM-like algorithms based on the bit-parallel simulation of the
nondeterministic factor automaton [2] have been presented in [20], whereas efficient
extensions of the BOM algorithm appeared in [11].

In this paper we present a new fast string matching algorithm based on a(n)
(even more) weak factor recognition approach. Our solution uses a hash function to
recognize all the factors of the input pattern. Such method leads to a simple and very
fast recognition mechanism and makes the algorithm very effective in practical cases.
In Section 2, we introduce and analyze our proposed algorithm, whereas in Section
3 we compare experimentally its performance against the most effective solutions
present in the literature. Finally, we draw our conclusions in Section 4.

2 An Efficient Weak-Factor-Recognition Approach

In this section we present an efficient algorithm for the exact string matching prob-
lem based on a weak-factor-recognition approach with hashing. Though the resulting
algorithm has a quadratic worst-case time complexity, on average it shows a sublinear
behaviour.

Let x be a pattern of length m and y a text of length n. In addition, let us
assume that both strings x and y are drawn from a common alphabet Σ of size σ.
Our proposed algorithm, named Weak Factor Recognition (Wfr) is able to count
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and report all the occurrences of x in y. It consists in a preprocessing and a searching
phase. These are described in detail in the following sections.

2.1 The Preprocessing Phase

During the preprocessing phase, all subsequences of the pattern x are indexed to fa-
cilitate their search during the searching phase. Specifically, we define a hash function
h : Σ∗ → {0 . . 2α − 1}, which associates an integer value 0 ≤ v < 2α (for a given
bound α)1 with any string over the alphabet Σ. Here, we shall make the assumption
that each character c ∈ Σ can be handled as an integer value, so that arithmetic op-
erations can be performed on characters. For instance, in many practical applications,
input strings can be handled as sequences of ASCII characters. Thus each character
can be seen as an 8-bit value corresponding to its ASCII code.

For each string x ∈ Σ∗ of length m ≥ 0, the value of h(x) is recursively defined
as follows

h(x) :=

{

0 if m = 0
(h(x[1 . . m− 1])× 2 + x[0]) mod 2α otherwise.

Observe that, for each string x ∈ Σ∗, we have 0 ≤ h(x) < 2α.
The preprocessing phase of our algorithm, which is reported in Fig. 1 (on the left),

consists in computing the hash values of all possible substrings of the pattern x.
A bit vector F of size 2α is maintained for storing the hash values corresponding

to the factors of x. Thus, if z is a factor of x, then the bit at position h(z) in F is set
(i.e., F [h(z)] := 1), otherwise it is set to 0. More formally, for each value v in the bit
vector, with 0 ≤ v < 2α, we have

F [v] :=

{

1 if h(x[i . . j]) = v, for some 0 ≤ i ≤ j < m
0 otherwise.

Given two strings x, z ∈ Σ∗, it is easy to prove that if z is a factor of x then F [h(z)] =
1; on the other hand, when F [h(z)] = 1, in general we can not conclude that z is a
factor of x.

Let w be the number of bits in a computer word of the target machine. Then
the bit vector F can be implemented as a table of 2α/w words.2 The procedure
SetBit(F, i) and the function TestBit(F, i) (both reported in Fig. 1, on the left)
are used to quickly set and query, respectively, the bit at position i in the vector F .
Such procedures are very fast and can be executed in constant time.

Since the set of all nonempty factors of a string x of length m has size m2, the
preprocessing phase of the algorithm requires O(2α) space and O(m2) time.

2.2 The Searching Phase

As in the BDM and BOM algorithms, during the searching phase a window of size m
is opened on the text, starting at position 0. After each attempt, the window is shifted
to the right until the end of the text is reached. During an attempt at a given position

1 In our setting, the value α has been fixed to 16, so that each hash value fits into a single 16-bit
register.

2 In our setting, we have w = 8 and F has been implemented as a table of 8, 192 chars, corresponding
to a bit-vector of 65,536 bits.
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SetBit(F, v)
1. p← ⌊v/w⌋
2. b← v mod w
3. F [p]← F [p] or (1≪ b)

TestBit(F, v)
1. p← ⌊v/w⌋
2. b← v mod w
3. return (F [p] and (1≪ b)) 6= 0

Preprocessing(x,m)
1. for v ← 0 to 2α − 1 do
2. F [v]← 0
3. for i← m− 1 downto 0 do
4. v ← 0
5. for j ← i downto 0 do
6. v ← (v ≪ 2) + x[j]
7. SetBit(F, v)
8. return F

Check(x,m, y, i)
1. k ← 0
2. while (k < m and x[k] = y[i+ k]) do
3. k ← k + 1
4. if k = m then return true
5. return false

Wfr(x,m, y, n,)
1. F ←Preprocessing(x,m)
2. j ← m− 1
3. while (j < n) do
4. v ← y[j]
5. i← j −m+ 1
6. while (j > i and TestBit(F, v)) do
7. j ← j − 1
8. v ← (v ≪ 2) + y[j]
9. if (j = i and TestBit(F, v)) then
10. if Check(x,m, y, i) then return i
11. j ← j +m

Figure 1. The pseudo-code of the Wfr algorithm and of some auxiliary procedures.

i of the text, the current window is opened on the substring y[i . . j] of the text, with
j = i+m− 1. Our algorithm starts computing the hash value h(y[j]) corresponding
to the rightmost character of the window. If the corresponding bit in F is set, then
such substring may be a factor of x. In this case, the algorithm computes the hash
value of the subsequent substring, namely, h(y[j − 1 . . j]).

More precisely, the hash value y[j−k . . j] of the suffixes of the window is computed
for increasing values of k, until k reaches the value m or until the corresponding bit
in F is not set.

Observe that by using the following relation

h(y[j − k . . j]) =
(

(h(y[j − k + 1 . . j])≪ 1) + y[j − k]
)

mod 2α ,

the hash value of the suffix y[j − k . . j] can be computed in constant time in terms
of h(y[j − k + 1 . . j]).

When an attempt ends up with k = m, a naive check is performed in order
to verify whether the substring y[i . . j] matches the pattern (see procedure Check
shown in Fig. 1). Such verification can obviously be performed in O(m) time. In this
case, the shift advancement is of a single character to the right.

Table 1 shows the average number of occurrences (α value) versus the average
number of verifications (β value) for every 1024Kb. Values have been computed
during the searching phase in our experimental tests described in Section 3. Notice
that the number of exceeding verifications is negligible and, in most cases, equal to 0.

The pseudo-code provided in Fig. 1 (on the right) reports the skeleton of the
algorithm. If a naive check were performed after each attempt of the algorithm, then
a shift of one position would be performed at each iteration. This leads to a O(nm)
worst-case time complexity. However, the experimental results reported in Section 3
show that, in practical cases, the Wfr algorithm has a sublinear behaviour.
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m 4 8 16 32 64 128 256 512 1024

Genome-α 4068,40 23,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
Genome-β 4068,40 24,40 0,20 0,20 0,20 0,20 0,20 0,20 0,20

Protein-α 17,00 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20
Protein-β 21,40 0,20 0,20 0,20 0,20 0,20 0,20 0,20 0,20

English-α 1275,80 28,60 2,00 0,40 0,20 0,20 0,20 0,20 0,20
English-β 1280,40 28,80 2,20 0,40 0,20 0,20 0,20 0,20 0,20

Table 1. The average number of occurrences (α value) versus the average number of verifications
(β value) for every 1024Kb. Values have been computed in the searching phase of the experimental
tests described in Section 3.

2.3 Some Improvements

Practical improvements of theWfr algorithm can be obtained by means of a chained-
loop on the characters of the pattern in the implementation of the searching phase.
Such a technique consists in dropping the call to TestBit in the while-loop at line
6, while computing the hash value. The test is performed only every k cycles, for
a fixed value of k. This leads to a fast computation of the hash values even if the
corresponding shifts are shorter on average.

For instance, if k is set to 2, then lines 4, 7, and 8 of the Wfr algorithm are
implemented in the following way:

4. v ← (y[j]≪ 1) + y[j − 1]
. . .

7. j ← j − 2
8. v ← (v ≪ 4) + (y[j]≪ 2) + y[j − 1]

The resulting algorithm maintains the same space and time complexity, but in
practice it shows a sensible increase of its performance, as shown in the next section.

3 Experimental Results

We report the experimental results of the performance evaluation of the Wfr al-
gorithm and its variants with a k-chained-loop against the most efficient solutions
present in literature for the online exact string matching problem. Specifically, the
following 15 algorithms (implemented in 79 variants, depending on the values of their
parameters) have been compared:

– AOSOq: the Average-Optimal variant [17] of the Shift-Or algorithm [2] using
q-grams, with 1 ≤ q ≤ 6;

– BNDMq: the Backward-Nondeterministic-DAWG-Matching algorithm [20] imple-
mented using q-grams, with 1 ≤ q ≤ 8;

– BSDMq: the Backward-SNR-DAWG-Matching algorithm [14] using condensed
alphabets with groups of q characters, with 1 ≤ q ≤ 8;

– BXSq: the Backward-Nondeterministic-DAWG-Matching algorithm [20] with Ex-
tended Shift [8] implemented using q-grams, with 1 ≤ q ≤ 8;

– EBOM: the extended version [11] of the BOM algorithm [1];
– FSBNDMqs: the Forward Simplified version [21,11] of the BNDM algorithm [20]
implemented using q-grams s-forward characters (with 1 ≤ q ≤ 8 and 1 ≤ s ≤ 6);
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– KBNDM: the Factorized variant [5] BNDM algorithm [20];
– SBNDMq: the Simplified version of the Backward-Nondeterministic-DAWG-Matching
algorithm [1] implemented using q-grams, with 1 ≤ q ≤ 8;

– FS-w: the Multiple Windows version [15] of the Fast Search algorithm [3] imple-
mented using w sliding windows, with 2 ≤ w ≤ 6;

– HASHq: the Hashing algorithm [19] using q-grams, with 3 ≤ q ≤ 5;
– IOM: the Improved Occurrence Matcher [4]
– WOM: the Worst Occurrence Matcher [4];
– JOM: the Jumping Occurrence Matcher [4];
– WFR: the new Weak Factors Recognition algorithm;
– WFRq: the newWeak Factors Recognition variants implemented with a k-chained-
loop (with 2 ≤ k ≤ 4);

For the sake of completeness, we evaluated also the following two string matching
algorithms for counting occurrences (however, we did not take them into account in
our comparison since they simply count the number of matching occurrences):

– EPSM: the Exact Packed String Matching algorithm [10];
– TSOq: the Two-Way variant of [9] the Shift-Or algorithm [2] implemented with
a loop unrolling of q characters, with q = 5;

All algorithms have been implemented in the C programming language and have
been tested using the Smart tool [12].3 All experiments have been executed locally
on a MacBook Pro with 4 Cores, a 2 GHz Intel Core i7 processor, 16 GB RAM 1600
MHz DDR3, 256 KB of L2 Cache and 6 MB of Cache L3. All algorithms have been
compared in terms of their running times, including any preprocessing time.

We report experimental evaluations on three real data sets (see Tables 2, 3, and 4).
Specifically, we used a genome sequence, a protein sequence, and an English text. All
sequences have a length of 5MB; they are provided by theSmart research tool and
are available online for download.

In the experimental evaluation, patterns of length m were randomly extracted
from the sequences, with m ranging over the set of values {2i | 2 ≤ i ≤ 10}. For each
case, the mean over the running times (expressed in hundredths of seconds) of 500
runs has been reported.

The following tables summarize the running times of our evaluations. Each table
is divided into four blocks. The first and the second block present the most effective
algorithms known in literature based on automata and comparison of characters,
respectively. The best results among these two sets of algorithms have been bold-
faced in order to easily locate them. The third block contains the running times of
our newly proposed algorithm and its variant, including the speed up (in percentage)
obtained against the best running time in the first two blocks. Positive values indicate
a breaking of the running time whereas a negative percentage represent a performance
improvement. Running times which represent an improvement of the performance
have been bold-faced.

The last block reports the running times obtained by the best two algorithms for
counting occurrences (however, as already remarked, these have not been included in
our comparison).

3 The Smart tool is available online at http://www.dmi.unict.it/~faro/smart/.

http://www.dmi.unict.it/~faro/smart/
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m 4 8 16 32 64 128 256 512 1024

AOSOq 16.98(2) 9.63(2) 3.93(4) 3.39(4) 2.98(6) 2.97(6) 2.99(6) 3.00(6) 3.03(6)

BNDMq 11.13(4) 4.10(4) 2.99(4) 2.47(4) 2.38(4) 2.39(4) 2.41(4) 2.47(4) 2.45(4)

BSDMq 8.37(4) 3.71
(4)

2.78
(4)

2.46
(4)

2.25
(8)

2.15
(8)

2.11
(8)

2.16
(6)

2.11
(6)

BXSq 11.86(2) 4.78(4) 3.25(4) 2.53(6) 2.50(6) 2.52(4) 2.49(4) 2.55(4) 2.54(4)

EBOM 7.72 7.15 5.66 4.10 3.17 2.67 2.40 2.32 2.41

FSBNDMqs 6.46
(3,1) 3.87(4,1) 2.94(4,1) 2.38(4,1) 2.35(6,2) 2.31(6,1) 2.33(6,1) 2.38(3,1) 2.37(6,1)

KBNDM 10.88 8.21 6.15 4.17 3.27 3.09 3.10 3.13 3.14

SBNDMq 8.75(2) 3.95(4) 2.97(4) 2.47(4) 2.39(4) 2.39(4) 2.36(4) 2.38(4) 2.38(4)

FS-w 12.33(2) 9.39(2) 7.76(2) 6.89(2) 6.16(2) 5.63(2) 5.06(2) 4.73(2) 4.42(2)

FJS 18.60 16.69 16.96 15.96 16.09 16.80 16.71 16.61 16.59

HASHq 18.09(3) 7.68(3) 4.67(5) 3.31(5) 2.78(5) 2.60(5) 2.63(5) 2.51(5) 2.40(5)

IOM 14.41 11.88 11.08 11.17 11.17 11.13 11.03 11.03 10.98
WOM 16.69 12.48 9.88 8.61 7.75 7.16 6.72 6.29 6.11

WFR 13.85 8.77 5.70 3.73 2.69 2.28 1.98 1.72 1.57

WFRq 8.67(2) 4.42(4) 2.98(4) 2.36
(4)

2.08
(4)

1.97
(4)

1.86
(4)

1.62
(4)

1.52
(4)

speed-up +34% +19% +7.1% -4.0% -7.5% -8.3% -11% -25% -28%

EPSM 5.87 3.72 2.50 1.93 1.75 1.72 1.66 1.62 1.65

TSOq 5.54(5) 3.85(5) 3.08(5) 2.42(5) 2.05(5) - - - -

Table 2. Experimental results on a genome sequence.

m 4 8 16 32 64 128 256 512 1024

AOSOq 10.80(2) 4.27(4) 3.84(4) 3.81(4) 3.18(4) 3.17(4) 3.16(4) 3.16(4) 3.16(4)

BNDMq 12.20(4) 4.29(4) 3.06(4) 2.46(4) 2.45(4) 2.43(4) 2.42(4) 2.40(4) 2.40(4)

BSDMq 4.68(2) 3.71(2) 2.75(4) 2.35(4) 2.06
(4)

1.98
(4)

1.97
(4)

1.97
(4)

1.94
(4)

BXSq 6.91(2) 4.29(2) 3.12(2) 2.52(2) 2.48(2) 2.52(2) 2.50(2) 2.51(2) 2.52(2)

EBOM 3.87 2.94 2.57 2.29 2.11 2.18 2.20 2.24 2.42

FSBNDMqs 4.32(2,0) 3.28(2,0) 2.59(3,1) 2.26(3,1) 2.22(3,1) 2.25(3,1) 2.25(3,1) 2.20(3,1) 2.26(3,1)

KBNDM 7.46 4.97 3.81 3.24 3.04 3.01 2.95 2.96 2.95

SBNDMq 5.25(2) 3.67(2) 2.79(2) 2.34(2) 2.45(4) 2.41(4) 2.42(4) 2.41(4) 2.40(4)

FS-w 6.18(2) 4.33(2) 3.55(2) 3.20(2) 3.05(2) 2.94(2) 2.90(2) 2.87(2) 2.86(2)

FJS 9.68 18.54 4.18 3.02 2.92 2.89 2.82 3.16 4.11

HASHq 19.92(3) 8.36(3) 5.05(3) 3.75(5) 3.19(5) 2.99(5) 2.92(5) 2.76(5) 2.66(5)

IOM 8.87 6.36 5.02 4.41 4.04 3.92 3.86 3.86 3.79
WOM 9.31 6.61 5.13 4.32 4.03 3.72 3.56 3.43 3.33

WFR 6.79 5.80 4.43 3.21 2.65 2.38 2.12 1.87 1.70

WFRq 4.85(2) 3.69(2) 2.98(4) 2.36(4) 2.03
(4)

1.93
(4)

1.89
(4)

1.75
(4)

1.66
(4)

speed-up +25% +25% +15% +3.0% -1.4% -2.5% -4.0% -11% -14%

EPSM 6.67 5.55 2.77 2.16 1.91 1.91 1.90 1.83 1.86

TSOq 5.41(5) 3.90(5) 3.29(5) 2.59(5) 2.17(5) - - - -

Table 3. Experimental results on a protein sequence.
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m 4 8 16 32 64 128 256 512 1024

AOSOq 11.14(2) 4.58(4) 3.89(4) 3.76(4) 3.16(6) 3.16(6) 3.18(6) 3.21(6) 3.16(6)

BNDMq 12.30(4) 4.35(4) 3.17(4) 2.49(4) 2.53(4) 2.52(4) 2.51(4) 2.54(4) 2.51(4)

BSDMq 4.73(2) 3.85(2) 2.86
(4)

2.35
(4)

2.20
(4)

2.09
(4)

2.07
(4)

2.02
(4)

2.00
(4)

BXSq 7.38(2) 4.85(2) 3.43(4) 2.59(4) 2.59(4) 2.64(4) 2.62(4) 2.62(4) 2.63(4)

EBOM 4.33 3.47 3.05 2.74 2.54 2.51 2.40 2.40 2.57

FSBNDMqs 4.66(2,0) 3.55(3,1) 2.77(3,1) 2.39(3,1) 2.39(3,1) 2.38(3,1) 2.41(3,1) 2.42(3,1) 2.43(3,1)

KBNDM 7.84 5.49 4.22 3.59 3.28 3.08 3.04 3.03 3.03

SBNDMq 5.75(2) 4.18(2) 3.13(4) 2.43(4) 2.52(4) 2.50(4) 2.52(4) 2.51(4) 2.52(4)

FS-w 6.05(6) 4.25(6) 3.39(6) 2.89(6) 2.73(6) 2.54(6) 2.43(6) 2.40(6) 2.39(6)

FJS 7.06 25.33 3.68 2.95 2.96 2.81 3.18 3.42 3.83

HASHq 19.96(3) 8.34(3) 5.02(3) 3.68(5) 3.17(5) 2.95(5) 2.96(5) 2.76(5) 2.65(5)

IOM 9.37 6.67 5.26 4.38 3.96 3.73 3.47 3.30 3.20
WOM 9.98 7.01 5.28 4.32 3.91 3.53 3.25 3.11 3.02

WFR 8.25 6.47 4.67 3.61 2.78 2.47 2.17 1.89 1.75

WFRq 5.20(4) 3.89(4) 3.08(4) 2.42(4) 2.08
(4)

1.97
(4)

1.91
(4)

1.76
(4)

1.69
(4)

speed-up +20% +12% +7.6% +2.9% -5.4% -5.7% -7.72% -12% -15%

EPSM 6.72 6.36 2.86 2.13 1.94 1.94 1.92 1.86 1.87

TSOq 5.54(5) 4.05(5) 3.26(5) 2.61(5) 2.23(5) - - - -

Table 4. Experimental results on a natural language sequence.

Experimental results show that the BSDMq algorithm obtains the best running
times among previous solutions, especially in the case of long patterns. However it is
second to the EBOM algorithm in the case of short patterns.

Our proposed Wfr algorithm performs well in several cases and turns out to be
competitive against previous solutions. It even turns out to be faster than the BSDMq
algorithm in the case of very long patterns (m ≥ 256), since the shift performed by
the Wfr algorithm are longer on average than the shifts performed by the BSDMq
algorithm.

When the Wfr algorithm is implemented using unchained-loop, the performance
increases further. Specifically, the Wfrq algorithm turns out to be the fastest so-
lution for patterns with a moderate length and for long patterns (m ≥ 32). Better
performances are obtained in the case of small alphabets, where the gain is up to
25%, whereas in the case of large alphabets the gain is up to 14%.

4 Conclusions

In this paper we investigated a weak-factor-recognition approach to the exact string
matching problem and devised an algorithm which, despite its quadratic worst case
time complexity, shows a sublinear behaviour in practical cases. Experimental results
show that under suitable conditions, our algorithm obtains better running times than
the most efficient algorithms known in literature. It would be interesting to investigate
whether multiple hashing functions can be used to reduce the number of false positives
in the searching phase, in order to obtain better results. A deeper analysis of the
implemented hash function and of the implemented data structure will be performed
in future works.
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