
Counting Mismatches with SIMD

Fernando J. Fiori⋆, Waltteri Pakalén, and Jorma Tarhio

Department of Computer Science
Aalto University, P.O.B. 15400

FI-00076 Aalto, Finland
fiorifj@gmail.com, waltteri.pakalen@aalto.fi, tarhio@iki.fi

Abstract. We consider the k mismatches version of approximate string matching for
a single pattern and multiple patterns. For these problems we present new algorithms
utilizing the SIMD (Single Instruction Multiple Data) instruction set extensions for
patterns of up to 32 characters. We apply SIMD computation in two ways: in counting
of mismatches and in calculation of fingerprints. We demonstrate the competitiveness
of our solutions by practical experiments.

1 Introduction

The string matching problem is defined as follows: given a pattern P = p0 · · · pm−1

and a text T = t0 · · · tn−1 in an alphabet Σ, find all the occurrences of P in T . In
this paper we consider the k mismatches variation of the problem where P ′ is an
occurrence of P , if |P ′| = |P | holds and P ′ has at most k mismatches with P . The
mismatch distance of two strings of equal length is also called the Hamming distance.

There are numerous good solutions for the k mismatches problem, see e.g.
Navarro’s survey [26]. In this article, we introduce new algorithms for the problem.
Besides the single pattern problem, we also consider the multiple pattern variation.
Our solutions utilize SIMD (Single Instruction Multiple Data) instruction set exten-
sions [17,20]. We apply SIMD computation in two ways: in counting of mismatches
and in calculation of fingerprints a.k.a. hash values. Our emphasis is on the practical
efficiency of the algorithms and we show the competitiveness of the new algorithms by
practical experiments. Our new algorithms for the single pattern problem are faster
than reference methods in most cases tested, and our multiple pattern algorithm
beats Fredriksson and Navarro’s algorithm [13] with a wide margin.

The rest of the paper is organized as follows. Section 2 reviews earlier solutions.
Section 3 introduces SIMD computation and the SIMD techniques applied. Section 4
and 5 describe the new algorithms, Section 6 presents the results of practical experi-
ments, and Section 7 concludes the article.

2 Earlier Solutions

There are many algorithms for the string matching with k mismatches problem. Most
of them solve the single pattern variation, whereas only few exist for the multiple
pattern counterpart. Naively, an algorithm for the single pattern variation can be
extended to solve the multiple pattern variation by executing it separately for each
pattern. In the following, we will review earlier solutions to these variations.

⋆ Visitor from Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina.

Fernando J. Fiori, Waltteri Pakalén, Jorma Tarhio: Counting Mismatches with SIMD, pp. 51–61.

Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic

52 Proceedings of the Prague Stringology Conference 2017

2.1 Single String Matching with k Mismatches

A naive algorithm works in O(mn) time in the worst case and in O(kn) time on
average if individual characters in P and T are chosen independently and uniformly
from the alphabet Σ.

Baeza-Yates and Gonnet [3] presented Shift-Add (SA), the first bit-parallel algo-
rithm for the k mismatches problem. Shift-Add works in linear time for short patterns
m ≤ w/⌈log2(k+1)+1⌉ where w is the width of the computer word. Shift-Add is still
competitive for short patterns and large k [15]. Ďurian et al. [9] presented variations
of SA, TuSA and TwSA, which process the alignment window backwards.

Approximate Boyer–Moore (ABM) by Tarhio and Ukkonen [30] is a generaliza-
tion of the Boyer–Moore–Horspool algorithm [18] to approximate string matching. In
ABM, shifting is based on a q-gram, q = k + 1. Liu et al. [24] tuned ABM for small
alphabets. Their algorithm applies wider q-grams and is called FAAST (short for a
Fast Algorithm for Approximate STring matching). Salmela et al. [28] designed an
enhanced version of FAAST. We call this algorithm EF. In Sect. 4.2 we will integrate
SIMD computation with EF.

Approximate BNDM (ABNDM) by Navarro and Raffinot [27] is based on the
BNDM algorithm [27] for exact string matching. BNDM simulates the suffix automa-
ton of the reversed pattern with bit-parallelism. ABNDM as well as ABM, FAAST,
EF, and TwSA achieve a sublinear running time on average in the case of favorable
problem parameters.

The Baeza-Yates–Perlberg algorithm (BYP) [5] is based on a partitioning scheme,
where at least one of P ’s substrings of length l = ⌊m/(k + 1)⌋ is exactly present in
an approximate occurrence of P . In the preprocessing phase it splits the pattern into
subpatterns of length l, and then it performs a multiple exact string matching search
of these subpatterns. Whenever one of the subpatterns is found, it checks if there is
an approximate pattern match with Ukkonen’s dynamic algorithm [31]. In Sect. 4.3
we will integrate SIMD computation with BYP.

Besides practically oriented algorithms mentioned above, there are other solutions
to the k mismatches problem: the kangaroo method [14,23], the algorithms based on
the fast Fourier transform and marking [1,2,12], and the O(nk2 log k/m+ n polylog
m) solution presented by Clifford et al. [7], which is the best theoretical result.

2.2 Multiple String Matching with k Mismatches

The first algorithm for multiple string matching with k mismatches was presented
by Muth and Manber [25]. For k = 1 they preprocess all the strings that result of
taking one character out of every pattern, and compute a hash value for each of them,
storing it in a table. This amounts to an O(rm) preprocessing time for r patterns.
For a text window of m characters, they compute m hash values in the same way as
for the patterns. If there is a match in the hash table, a naive verification follows.
The average search time is O(mn(1 + rm2/M)), where M is the size of the hash
table. If M = Ω(rm2), this results in O(mn). In this way, the total cost of the
algorithm is O(m(r + n)). However, if k > 1 they have to preprocess all the strings
that result from taking k characters out of every pattern, amounting for a total time
complexity of O(mk(r + n)). Hence, it allows only very small k in practice, but the
overall complexity is rather independent of the number of patterns to search, given
that n is usually much larger than r.

Fernando J. Fiori, Waltteri Pakalén, and Jorma Tarhio: Counting Mismatches with SIMD 53

Later, Baeza-Yates and Navarro [4] designed an algorithm which is based on a
similar partition scheme as in the BYP algorithm. They split every pattern into
subpatterns of length l = ⌊m/(k+1)⌋ and perform an exact multiple pattern search.
Whenever there is a subpattern occurrence, they check for the entire pattern with an
approximate single pattern matching algorithm.

The fastest algorithm to date is Fredriksson and Navarro’s algorithm [13], which
is optimal on average. It places a window over the text, in which q-grams are read in
a backwards order. Whenever an occurrence is impossible, the window is shifted past
the read q-grams. The average complexity of the algorithm is O((k+ logσ(rm))n/m)
for α < 1/2−O(1/

√
σ), where α = k/m is the difference ratio.

3 SIMD Techniques

SIMD [20] is a type of parallel architecture that allows one instruction to be operated
on multiple data items at the same time. Initially, SIMD was used in multimedia,
especially in processing images or audio files. SIMD instructions have since found
applications in other areas such as cryptography. Recently, they have also been applied
to string matching [6,10,21,22,29].

Streaming SIMD Extensions comprise of SIMD instruction sets supported by mod-
ern processors which allow computation on vectors of length 16 bytes in the case of
SSE2 and 32 bytes in the case of AVX2. In the near future, one can process 64 bytes
with AVX-512. The instructions operate on such vectors stored in special registers.
As one instruction is performed on all the data in these vectors, it is considered SIMD
computation.

Next, we describe our techniques to use SIMD in the new algorithms. In the
descriptions, the SSE2 instructions are listed for 16 bytes (= 128 bits). There are
corresponding AVX instructions for 32 bytes (= 256 bits). We assume that a byte
represents one character.

3.1 Counting of Mismatches

Counting mismatches is an usual operation in approximate string matching. It can be
done with the instructions simd-cmpeq(x, y) and simd-popcount(x) explained below.
In practice, we also need the instruction simd-load(x), which is an intrinsic function
of the compiler formally defined as

m128i mm loadu si128(x).

This instruction loads 16 bytes from the address x to a SIMD register given as the left-
hand side of an assignment statement. The instruction simd-cmpeq(x, y) is formally

mm movemask epi8(mm cmpeq epi8(m128i x, m128i y)).

The instruction mm cmpeq epi8 compares 16 bytes in x and y bytewise for equal-
ity and stores the result. The instruction mm movemask epi8 creates a bitvector
from the most significant bit of each byte of the parameter. The instruction simd-
popcount(x) counts the number of on bits in x and is formally

mm popcnt u32(x).

54 Proceedings of the Prague Stringology Conference 2017

The simd-cmpeq(x, y) instruction, therefore, makes it possible to compare up to
α characters at the same time, where α is 16 or 32. The result is a bitvector of the
pairwise comparisons. Lastly, a popcount operation on the result tells the number of
matching characters.

3.2 CRC as a Fingerprint

There are many filtration methods for approximate string matching. Those methods
contain two phases which are usually interleaved. The filtration phase selects match
candidates and the checking phase verifies them. The former often entails the calcu-
lation of a fingerprint or a hash value from a q-gram, with which precomputed tables
are accessed. Such a calculation can be performed with the simd-crc(x) instruction. A
similar instruction was first used by Faro and Külekci [10,11] in exact string matching.

The instruction simd-crc(x) returns a b-bit value by first calculating a 32-bit cyclic
redundancy checksum (CRC) of a 64-bit value, and then taking the b least significant
bits of the CRC. It is formally

mm crc32 u64(x) & mask,

where x is a 64-bit integer, mask is 2b − 1, and ‘&’ is bitparallel and. Based on our
experiments, the best value of b depends on the problem parameters.

4 Improved Solutions – Single Pattern

4.1 Variations of Naive

A straightforward approach to string matching with k mismatches is the naive count-
ing of mismatches. Alg. 1 is the pseudocode of the naive algorithm ANS (short for
Approximate Naive with SIMD). ANS counts the character matches with P starting
from the n − m + 1 first positions of the text. According to our experiments (see
Section 6), it is clearly faster than both the classic Shift-Add [3] and TuSA [9].

Algorithm 1: ANS
x← simd-load(p0 · · · pm−1)
for i← 0 to n−m do

y ← simd-load(ti · · · ti+α−1)
t← simd-cmpeq(x, y)
if simd-popcount(t) ≥ m− k then occ← occ+ 1

There is a way to make ANS even faster when α is 16. We preprocess the condition
simd-popcount(t) ≥ m − k to a Boolean array D for each vector t of 16 bits. Then
the last line of ANS is changed to

if D[t] then occ← occ+ 1

We call this variation ANS2. ANS2 is about 30% faster than ANS in our experiments
in Sect. 6.

For longer patterns, 16 < m ≤ 32, the last line will be

if D[t & mask] then if simd-popcount(t) ≥ m− k then occ← occ+ 1

Fernando J. Fiori, Waltteri Pakalén, and Jorma Tarhio: Counting Mismatches with SIMD 55

where mask is 216−1. In other words, the first 16 characters of the pattern are tested
first.

In our test environment (see Sect. 6), the computation of D takes about 2 ms,
which is tolerable. Note that the preprocessing time would grow exponentially if D
were extended for wider vectors. The speed of ANS does not depend on k, while the
speed of ANS2 obviously decreases when k approaches m for m > 16. Moreover, we
observed a further decrease in practice, as discussed in Sect. 6.1.

Besides the simd-cmpeq instruction and other basic SIMD commands, the SIMD
architecture comprises of several aggregation operations for string processing. How-
ever, they are too slow for the k mismatches problem on those processors we have
tested. Hirvola [16] implemented several algorithms similar to ANS with PCMP and
STTNI instructions, but all those algorithms are clearly slower than ANS and TuSA.

4.2 EF Enhanced with SIMD

EF contains a filtration and a checking phase. The checking method can be replaced
with ANS2 (see Sect. 4.1), while the fingerprint computation of the filtration method
can be replaced with the CRC fingerprint technique of Sect. 3. Alg. 2 shows the
pseudocode of EF.

Algorithm 2: EF
s← m− 1
while s < n do

f ←∑q−1

i=0
map(ts−i) ∗ 4i

if M [f] ≤ k then
c←M [f]
for i← 1 to m− q do

if ts−q−i+1 6= pm−q−i then
c← c+ 1
if c > k then break

if c ≤ k then occ← occ+ 1
s← s+ Sq[f]

For each q-gram u0 · · · uq−1, the preprocessing phase of EF computes the Hamming
distance with the end of all prefixes of the pattern. With this information, a shift
table Sq can be constructed (see details in [28]). M is another precomputed table.
M gives the Hamming distance of a q-gram against the last q-gram of the pattern.
Whenever M [ts−q+1 · · · ts] > k holds, the algorithm shifts forward without processing
the alignment window further. Both the tables are accessed with the fingerprint f ←
∑q−1

i=0 map(ts−i) ∗ 4i, where the function map maps each DNA character to an integer
in {0, 1, 2, 3}.

Alg. 3 is the pseudocode of EFS, which is EF enhanced with SIMD computation
for m ≤ 16. The array D is computed in the same way as for ANS2. For longer
patterns, 16 < m ≤ 32, the required change is the same as in the case of ANS2.

4.3 BYP Enhanced with SIMD

BYP looks for exact occurrences of substrings of length l = ⌊m/(k + 1)⌋ (called
subpatterns from now on) of the pattern in the text. To achieve this, we employed a
tuned version of MEPSM algorithm [11] for exact multiple string matching. MEPSM

56 Proceedings of the Prague Stringology Conference 2017

Algorithm 3: EFS
x← simd-load(p0 · · · pm−1)
s← m− 1
while s < n do

f ← simd-crc(ts−q+1 · · · ts)
if M [f] ≤ k then

y ← simd-load(ts−m+1 · · · ts)
t← simd-cmpeq(x, y)
if D[t] then occ← occ+ 1

s← s+ Sq[f]

reports subpattern occurences, which are later verified by ANS2 (see Sect. 4.1). Let
us call the total algorithm BYPS.

MEPSM computes the CRC fingerprint of every q-gram of each subpattern, where
q ≤ l is a parameter of MEPSM. The information about which q-gram the fingerprint
belongs to is stored in a table. Afterwards, during the search, the algorithm looks
for matching fingerprints of q-grams in the text. Whenever a subpattern occurrence
candidate is found, it is naively verified and reported in case of a match. After each
q-gram analysis, the algorithm shifts forwards by l − q + 1 characters.

We tuned MEPSM by setting q as large as possible, which causes less fingerprint
collisions. Conversely, larger q reduces shifts between alignments. However, this trade-
off showed to be really satisfactory, especially in the case of small subpatterns.

Our algorithm has the practical limitation that 4 ≤ l ≤ 32 must hold for l, as the
performance drops substantially otherwise.

5 Improved Solution – Multiple Patterns

We have extended BYPS algorithm to work with multiple patterns. The new algo-
rithm MBYPS works as follows:

1. In the preprocessing, we split every pattern into subpatterns of length l. Then we
compute the CRC fingerprint of every q-gram of each subpattern, where q ≤ l is
a parameter of the MEPSM algorithm. The fingerprint is used to access a table
that stores information about which subpattern of which pattern it was computed
from.

2. In the search, we compute the fingerprint of a q-gram in the text, with which we
fetch the corresponding information from the table. We perform a shift of l−q+1
characters in the text after analysing each q-gram, which is the maximum number
of characters we can skip.

3. For every subpattern associated with the fingerprint, we naively check if it appears
exactly at this point. If it does, a possible occurrence of the corresponding pattern
is reported.

4. Every time a match candidate of a pattern is found, we use an approximate single
pattern matching algorithm to verify it.

For the phase of exact multiple string matching, we use the tuned version of
MEPSM as in BYPS. For the phase of approximate single string matching, we use
ANS2 for m ≤ 32. For longer patterns, another method such as Ukkonen’s dynamic
algorithm [31] should be used.

Fernando J. Fiori, Waltteri Pakalén, and Jorma Tarhio: Counting Mismatches with SIMD 57

The phase of approximate single string matching requires the occurrences of
the subpatterns to be ordered, so as to avoid re-verifying an occurrence. However,
MEPSM does not guarantee ordering. This has been solved by executing the ap-
proximate single pattern matching algorithm in a larger window. If a subpattern
occurrence is found at position x in the text, we check for an approximate pattern
occurrence from position x− (m− l) to x+m. Thus, once an occurrence of a pattern
has been found, a newer occurrence will never precede it positionally, as shown next.

Justification. Let x and y be the text positions of an old and a new q-gram occurrence
respectively, which correspond to exact subpatterns occurrences. These subpatterns
are placed in text positions sx and sy respectively, such that x − (l − q) ≤ sx ≤ x
and y− (l− q) ≤ sy ≤ y. Then the patterns which contain such subpatterns occur at
positions px and py respectively, such that sx− (m− l) ≤ px ≤ sx and sy − (m− l) ≤
py ≤ sy. But we perform our approximate pattern matching search from sx− (m− l)
onwards. So we need to check that:

sx − (m− l) ≤ py

Which is valid if:

sx − (m− l) ≤ sy − (m− l) ⇐⇒ sx ≤ sy

Which is true if:
x ≤ y − (l − q) (1)

It could happen that x = y but MEPSM reports first the highest occurrences of a
determined supattern (i.e. it preserves ordering of occurrences of q-grams for the same
subpattern). So x+ (l − q + 1) ≤ y because we skip l − q + 1 bytes after analysing a
q-gram. Then (1) is true if:

x ≤ x+ (l − q + 1) ⇐⇒ q − 1 ≤ l

Which is true because q is the size of the q-grams of the subpatterns of length l.

6 Experiments

The tests were run on Intel Core i7-6500U 2.5 GHz with 16 GiB memory. This pro-
cessor has SSE2 and AVX2, but not AVX-512. Programs were written in the C pro-
gramming language and compiled with gcc 5.4.0 using -O3 optimization level. All
the algorithms were implemented and tested in the testing framework of Hume and
Sunday [19].

We used two texts: DNA (the genome of E. Coli, 4.6 MB) and English (the KJV
Bible, 4.0 MB) for testing. The texts were taken from the Smart corpus1. Sets of
patterns of various lengths were randomly taken from each text. In the case of single
pattern matching, each set contains 200 patterns.

A word of warning. Our experimental results hold on the processor we used in our
tests. It is possible that future processors will give different results, if the relative
speed of instructions will change. In exact string matching we have encountered such
a development several times. For example, in the case of English text, SBNDM2 [8] is
75% faster than ufast-rev-md2 [19] on our test processor for m = 5, but the situation
is almost reversed on a 20 years older processor Pentium 75: ufast-rev-md2 is 47%
faster than SBNDM2!
1 https://www.dmi.unict.it/∼faro/smart/

58 Proceedings of the Prague Stringology Conference 2017

6.1 Single String Matching with k Mismatches

The new algorithms were compared with the following earlier algorithms: SA [3],
TuSA [9], TwSA [9], EF [28] and BYP [5]. According to tests by Hirvola [16], TwSA
was the best for English data. According to tests by Salmela et al. [28], EF was the
best for DNA data.

The results are shown in Table 1 with the best times bolded. We can observe
that ANS2 is the best for several parameter combinations on both DNA and English.
Meanwhile, EFS and BYPS are the best for some cases with small k on DNA, and
TwSA is the best on English for some combinations when k > 1 and m ≥ 16.

Like SA, ANS and ANS2 work for all possible values of k, and ANS does so at
an almost constant speed independent of the value of k. On the contrary, TuSA and
TwSA are limited to small values of k for long patterns. For example, they only
work for k < 4 in the case of m = 20. Furthermore, the speed of TwSA degrades as
k grows. EF, EFS, BYP and BYPS exhibit similar behavior, with k affecting their
speed. Despite this, the growth of k can be tolerated given that m is large enough,
i.e. when we have a large difference ratios. Some timings of BYPS have been omitted
because it does not work for l < 4.

ANS2 is the best for small patterns across both texts with every value of k. As the
pattern length increases, EFS overtakes ANS2 on DNA, and TwSA overtakes ANS2
on English up to a small value of k. Once k surpasses this value, ANS2 becomes the
best again.

Lastly, in Sect. 4.1 it was stated that the speed of ANS2 obviously decreases when
k approaches m for m > 16. Beyond that, however, we observed a peak in the speed
of ANS2 for m > 16, as depicted in Figure 1. We tried two different compilers, and
multiple compilation options, but the peak persisted. It is conjectured to be caused
by branch mispredictions. Thus, ANS is the better choice over ANS2 for k > 7 on
DNA, and k > 11 on English when m > 16.

BYPS has also been tested for longer patterns. According to our experiments and
following the same line as stated by Baeza-Yates and Perlberg in [5], BYP and BYPS
obtain their best results for high difference ratios.

Table 1. Search times (in seconds) of algorithms for approximate matching with k mismatches.

m = 8 m = 12 m = 16 m = 20
k 1 2 3 1 2 3 1 2 3 1 2 3

Σ

SA 1.99 2.00 1.99 1.99 1.99 2.01 2.02 1.99 1.99 1.99 1.99 1.99
TuSA 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66 1.66

D
N
A

TwSA 1.73 2.31 2.63 1.16 1.54 1.85 0.88 1.15 1.39 0.71 0.92 1.12
ANS 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13
ANS2 0.76 0.76 0.76 0.76 0.76 0.76 0.83 0.85 0.90 0.82 0.83 0.86

EF 1.70 2.46 4.27 1.08 1.51 2.55 0.81 1.14 1.94 0.66 0.95 1.71
EFS 1.09 1.78 3.76 0.71 1.13 2.12 0.55 0.91 1.73 0.46 0.79 1.63
BYP 4.95 - - 4.54 7.20 - 4.15 6.28 9.58 4.15 6.02 8.05

BYPS 1.56 - - 1.48 1.79 - 0.42 1.53 2.21 0.41 1.57 1.62
SA 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.73

E
n
glish

TuSA 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
TwSA 0.78 1.14 1.52 0.61 0.83 1.07 0.49 0.65 0.82 0.43 0.54 0.67

ANS 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.01 0.99
ANS2 0.72 0.66 0.67 0.66 0.66 0.66 0.66 0.66 0.66 0.72 0.72 0.72
BYP 1.39 - - 1.03 1.83 - 0.86 1.50 2.16 0.72 1.27 1.83

BYPS 0.65 - - 0.43 0.78 - 0.32 0.82 0.96 0.31 0.55 0.87

Fernando J. Fiori, Waltteri Pakalén, and Jorma Tarhio: Counting Mismatches with SIMD 59

1

2

4

2 4 6 8 10 12 14 16

S
ea
rc
h
ti
m
e
(s
)

k

ANS on DNA
ANS2 on DNA
ANS on English
ANS2 on English

Figure 1. Search times of ANS and ANS2 as a function of k for m = 20.

6.2 Multiple String Matching with k Mismatches

We compare our new MBYPS algorithm with Fredriksson and Navarro’s algorithm
(FN) [13]. We used sets of 10, 100 and 1000 patterns. The results show that our
algorithm outperforms FN in all cases. There is a larger difference for larger sets of
patterns, and for larger difference ratios. We also ran tests on a Protein sequence and
obtained similar results.

It is worth mentioning that we performed thorough testing to choose the best
parameters for FN in each case. For DNA we obtained the same tuning mentioned in
[13] as the best configuration.

Table 2. Search times (in seconds) for multiple approximate matching with k mismatches.

m=8 m = 16 m = 24 m = 32
k 1 1 2 3 1 2 3 1 2 3 r Σ

FN 0.129 0.018 0.120 0.396 0.006 0.009 0.015 0.004 0.006 0.008 10

D
N
A

MBYPS 0.031 0.007 0.019 0.066 0.002 0.008 0.013 0.001 0.003 0.008
FN 1.132 0.165 0.996 4.635 0.012 0.032 0.086 0.007 0.016 0.034 100

MBYPS 0.240 0.010 0.154 0.585 0.003 0.012 0.069 0.002 0.005 0.013
FN 11.220 1.697 10.222 44.030 0.098 0.364 1.044 0.059 0.158 0.344

1000MBYPS 2.574 0.033 1.695 6.797 0.012 0.055 0.695 0.011 0.025 0.075

FN 0.026 0.008 0.014 0.027 0.005 0.008 0.012 0.004 0.006 0.009 10

E
n
glish

MBYPS 0.013 0.006 0.008 0.008 0.001 0.006 0.007 0.001 0.002 0.006
FN 0.143 0.043 0.173 0.406 0.023 0.104 0.174 0.021 0.084 0.125 100

MBYPS 0.046 0.009 0.048 0.093 0.002 0.009 0.021 0.001 0.003 0.010
FN 1.723 0.373 1.212 4.224 0.201 0.491 1.028 0.148 0.333 0.563

1000MBYPS 0.314 0.022 0.348 0.984 0.008 0.032 0.167 0.007 0.018 0.045

7 Concluding Remarks

We have demonstrated that simple SIMD solutions are competitive in searching for
approximate single pattern matches within the Hamming distance for patterns |P | ≤
32. In Sect. 4.1 and Sect. 4.2, we showed that the algorithms for naive counting of
mismatches can be used as a checking method for single pattern filtration algorithms.

60 Proceedings of the Prague Stringology Conference 2017

Meanwhile, the fingerprint calculation of a filtration method can be replaced with the
CRC fingerprint technique of Sect. 3.2.

We have also presented an effective way of using the SIMD techniques for approx-
imate multiple string matching in Sect. 5. The resulting algorithm is substantially
faster than the previous most competitive algorithm across multiple alphabets.

When AVX-512 will become widely available, it may be possible to achieve better
speed-ups, because compare and mask instructions have been merged.

References

1. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987, pp.
1039–1051.

2. A. Amir, M. Lewenstein, and E. Porat: Faster algorithms for string matching with k
mismatches. Journal of Algorithms, 50(2) 2004, pp. 257–275.

3. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Communications of
the ACM, 35(10) 1992, pp. 74–82.

4. R. Baeza-Yates and G. Navarro: New and faster filters for multiple approximate string
matching. Random Structures & Algorithms, 20(1) 2002, pp. 23–49.

5. R. Baeza-Yates and C. Perlberg: Fast and practical approximate string matching. Infor-
mation Processing Letters, 59(1) 1996, pp. 21–27.

6. T. Chhabra, S. Faro, M. O. Külekci, and J. Tarhio: Engineering order-preserving pattern
matching with SIMD parallelism. Software: Practice and Experience, 47(5) 2017, pp. 731–739.

7. R. Clifford, A. Fontaine, E. Porat, B. Sach, and T. Starikovskaya: The k-mismatch
problem revisited, in Proc. 27th ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2016,
pp. 2039–2052

8. B. Ďurian, J. Holub, H. Peltola, and J. Tarhio: Improving practical exact string match-
ing. Information Processing Letters, 110(4) 2010, pp. 148–152.

9. B. Ďurian, T. Chhabra, S. Guman, T. Hirvola, H. Peltola, and J. Tarhio: Improved
two-way bit-parallel search, in Proceedings of the Prague Stringology Conference, Prague, Czech
Republic, 2014, pp. 71–83

10. S. Faro and M. O. Külekci: Fast packed string matching for short patterns, in Proc. 15th
Meeting on Algorithm Engineering and Experiments, SIAM, 2013, pp. 113–121.

11. S. Faro and M. O. Külekci: Towards a very fast multiple string matching algorithm for short
patterns, in Proceedings of the Prague Stringology Conference, Prague, Czech Republic, 2013,
pp. 78–91.

12. K. Fredriksson and S. Grabowski: Exploiting word-level parallelism for fast convolutions
and their applications in approximate string matching. European Journal of Combinatorics,
34(1) 2013, pp. 38–51.

13. K. Fredriksson and G. Navarro: Average-optimal single and multiple approximate string
matching. ACM Journal of Experimental Algorithmics, 9 2004.

14. Z. Galil and R. Giancarlo: Improved string matching with k mismatches. ACM SIGACT
News, 17(4) 1986, pp. 52–54.

15. S. Grabowski and K. Fredriksson: Bit-parallel string matching under Hamming distance
in O(n⌈m/w⌉) worst case time. Information Processing Letters, 105(5) 2008, pp. 182–187.

16. T. Hirvola: Bit-parallel approximate string matching under Hamming distance. Master’s The-
sis, Aalto University, 2016. http://urn.fi/URN:NBN:fi:aalto-201608263081

17. M. Hassaballah, S. Omran, and Y. B. Mahdy: A review of SIMD multimedia extensions
and their usage in scientific and engineering applications. The Computer Journal, 51(6) 2008,
pp. 630–649.

18. R. N. Horspool: Practical fast searching in strings. Software: Practice and Experience, 10(6)
1980, pp. 501–506.

19. A. Hume and D. Sunday: Fast string searching. Software: Practice and Experience, 21(11)
1991, pp. 1221–1248.

20. Intel: Intel (R) 64 and IA-32 architectures software developer’s manual.
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-
manuals.html (Retrieved in May 2017).

Fernando J. Fiori, Waltteri Pakalén, and Jorma Tarhio: Counting Mismatches with SIMD 61

21. M. O. Külekci: Filter based fast matching of long patterns by using SIMD instructions, in
Proceedings of the Prague Stringology Conference, Prague, Czech Republic, 2009, pp. 118–128.

22. S. Ladra, O. Pedreira, J. Duato, and N. R. Brisaboa: Exploiting SIMD instructions in
current processors to improve classical string algorithms, in Proc. 16th East European Confer-
ence on Advances in Databases and Information Systems, LNCS, vol. 7503, Springer, 2012, pp.
254–267.

23. G. Landau and U. Vishkin: Efficient string matching with k mismatches. Theoretical Com-
puter Science, 43 1986, pp. 239–249.

24. Z. Liu, X. Chen, J. Borneman, and T. Jiang: A fast algorithm for approximate string
matching on gene sequences, in Proc. 16th Symposium on Combinatorial Pattern Matching,
LNCS, vol. 3537, Springer, Berlin, 2005, pp. 79–90.

25. R. Muth and U. Manber: Approximate multiple string search, in Proc. 7th Symposium on
Combinatorial Pattern Matching, LNCS, vol. 1075, Springer, Berlin, 1996, pp. 75–86.

26. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1)
2001, pp. 31–88.

27. G. Navarro and M. Raffinot: Fast and flexible string matching by combining bit-parallelism
and suffix automata. Journal of Experimental Algorithmics, 5 2000, pp. 4.

28. L. Salmela, J. Tarhio, and P. Kalsi: Approximate Boyer-Moore string matching for small
alphabets. Algorithmica, 58(3) 2010, pp. 591–609.

29. J. Tarhio, J. Holub, and E. Giaquinta: Technology beats algorithms (in exact string match-
ing). To appear in: Software: Practice and Experience.

30. J. Tarhio and E. Ukkonen: Approximate Boyer-Moore string matching. SIAM Journal on
Computing, 22(2) 1993, pp. 243–260.

31. E. Ukkonen: Finding approximate patterns in strings. Journal of Algorithms, 6(1) 1985, pp.
132–137.

