
Dismantling DivSufSort⋆

Johannes Fischer and Florian Kurpicz

Dept. of Computer Science, Technische Universität Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de, florian.kurpicz@tu-dortmund.de

Abstract. We give the first concise description of the fastest known suffix sorting
algorithm in main memory, the DivSufSort by Yuta Mori. We then present an extension
that also computes the LCP-array, which is competive with the fastest known LCP-
array construction algorithm.

Keywords: text indexing; suffix sorting; algorithm engineering

1 Introduction

The suffix array [12] is arguably one of the most interesting and versatile data struc-
ture in stringology. Despite the plethora of theoretical and practical papers on suffix
sorting (see the two overview articles [18,3] for an overview up to 2007/2012), the
text indexing community faces the curiosity that the fastest and most space-conscious
way to construct the suffix array is by an algorithm called DivSufSort (coded by Yuta
Mori), which has only appeared as (almost undocumented) source code, and has never
been described in an academic context. The speed and its space-consciousness make
DivSufSort still the method of choice in many software systems, e.g. in bioinformatics
libraries1, and in the succinct data structures library (sdsl) [5].

The starting point of this article was that we wanted to get a better understand-
ing of DivSufSort’s functionality and the reasons for its advantages in performance,
but we could not find any arguments for this neither in the literature nor in the doc-
umentation. We therefore dove into the source code (consisting of more than 1,000
LOCs) ourselves, and want to communicate our findings in this article. We point
out that just very recently Labeit et al. [10] parallelized DivSufSort, making it also
the fastest parallel suffix array construction algorithm (on all instances but one). We
think that this successful parallelization adds another reason for why a deeper study
of DivSufSort is worthwile.

Our Contributions and Outline. This article pursues two goals: First, it gives a
concise description of the DivSufSort-algorithm (Sect. 3), so that readers wishing to
understand or modify the source code have an easy-to-use reference at hand. Second
(Sect. 4), we provide and describe our own enhancement of DivSufSort that also
computes related and equally important information, the array of longest common
prefixes of lexicographically adjacent suffixes (LCP-array for short). We test our
implementation empirically on a well-accepted testbed and prove it competitive with
existing implementations, sometimes even little faster.

To help the reader link our description to the implementation, we show relevant
excerpts from the original code2, along with their original line numbers in the source

⋆ This work was supported by the German Research Foundation (DFG), priority programme “Al-
gorithms for Big Data” (SPP 1736).

1 https://github.com/NVlabs/nvbio, last seen 05.07.2017
2 https://github.com/y-256/libdivsufsort, last seen 05.07.2017

Johannes Fischer, Florian Kurpicz: Dismantling DivSufSort, pp. 62–76.

Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic

https://github.com/NVlabs/nvbio
https://github.com/y-256/libdivsufsort

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 63

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

type (i) B⋆ A B⋆ A B⋆ A B⋆ A B B⋆ A A A

Figure 1: Classification of T= cdcdcdcdccdd$ (our running example).

code (difsufsort.c, sssort.c, and trsort.c). In the following, we use a slanted font for
variables that also appear verbatim in the source code; e.g., T for the text.

2 Preliminaries

Let T= T[0]T[1] . . .T[n − 1] be a text of length n consisting of characters from an
ordered alphabet Σ of size σ = |Σ|. For integers 0 ≤ i ≤ j ≤ n, the notation [i, j)
represents the integers from i to j − 1, and T[i, j) the substring T[i] . . .T[j − 1]. We
call Si = T[i, n) the i-th suffix of T. The suffix array SA of a text T of length n is a
permutation of [0, n) such that SSA[i] < SSA[i+1] for all 0 ≤ i < n−1. In SA, all suffixes
starting with the same character c0 ∈ Σ form a contiguous interval called c0-bucket.
The same is true for all suffixes starting with the same two characters c0, c1 ∈ Σ.
We call the corresponding intervals (c0, c1)-buckets. The inverse suffix array ISA is
the inverse permutation of SA. The longest common prefix of two suffixes Si and Sj

is lcp (i, j) = max {s ≥ 0: T[i, i+ s) = T[j, j + s)}. The longest common prefix array
LCP of T contains the longest common prefixes of the lexicographically consecutive
suffixes, i.e., LCP[0] = 0 and LCP[i] = lcp (SA[i− 1], SA[i]) for all 1 ≤ i ≤ n− 1.

We classify all suffixes as follows (a technique first introduced by [7]; see Figure 1).
The suffix Si is an A-suffix (or “Si has type A”) if T[i] > T[i + 1] or i = n − 1. If
T[i] < T[i + 1], then Si is a B-suffix (or “has type B”). Last, if T[i] = T[i + 1]
then Si has the same type as Si+1.

3 We further distinguish B-suffixes: if Si has type
B and Si+1 has type A, then suffix Si is also a B⋆-suffix. Note that there are at
most n

2
B⋆-suffixes. The definition of types implies restrictions on how the suffixes are

distributed within one bucket: A (c0, c1)-bucket cannot contain A-suffixes if c0 < c1,
and it cannot contain B-suffixes if c0 > c1. If c0 = c1 it cannot contain B⋆-suffixes.
The classification also induces a partial order among the suffixes (see also Fig. 2):

Lemma 1. Let Si and Sj be two suffixes. Then

1. Si < Sj if Si has type A, Sj has type B and T[i] = T[j], and
2. Si < Sj if Si has type B

⋆, Sj has type B but not type B⋆ and T[i, i+1] = T[j, j+1].

Proof. A- and B-suffixes can only occur together in a (c0, c0)-bucket. Assume that Si

and Sj start with c0c0 followed by a (possibly empty) sequence of c0’s and Si, Sj have
type A, B, resp. Let u = T[i+ lcp (i, j)] and v = T[j+ lcp (i, j)] be the first characters
where the suffixes differ. Therefore, u ≤ c0 and v ≥ c0. Since the characters differ,
at least one of the inequalities is strict. The argument for the second case works
analogously. ⊓⊔

Given two consecutive B⋆-suffixes Si and Sj (i.e., there is no B
⋆-suffix Sk such that

i < k < j), we call the substring T[i, j + 2) B⋆-substring. Also, for the last B⋆-suffix
Si (i.e., there is no B⋆-suffix Sk with i < k < n), the substring T[i, n) is also called a
B⋆-substring.

3 This differs from [7], where Si is always a B-suffix if T[i] = T[i+ 1].

64 Proceedings of the Prague Stringology Conference 2017

(w, w) (w, x) (w, y) (w, z) (x, w) (x, x) (x, y) (x, z) (y, w) (y, x) (y, y) (y, z) (z, w) (z, x) (z, y) (z, z)

Figure 2: Position of the suffix types within the (c0, c1)-buckets for Σ = {w, x, y, z}.
Light gray () areas represent positions of A-suffixes, gray () areas represent posi-
tions of B-suffixes, and dark gray () areas represent positions of B⋆-suffixes.

3 DivSufSort

In this section we describe DivSufSort based on its current implementation (libdiv-
sufsort v2.0.2). The algorithm consists of three phases:

– First, we identify the types of all suffixes and compute the corresponding c0- and
(c0, c1)-bucket borders. This requires one scan of the text.

– Next, we sort all B⋆-suffixes and place them at their correct position in SA. This
is the most complicated part, as we first have to sort the B⋆-substrings in-place.
Then, we use the ranks of the sorted B⋆-substrings to sort the corresponding
B⋆-suffixes.

– In the last step, we scan SA twice to induce the correct position of all remaining
suffixes. (We first scan from right to left to induce all B-suffixes, followed by a
scan from left to right, inducing all A-suffixes.)

a b c d e · · · z
a

b

c

d
e
.

.

.

z

Figure 3: BUCKET B

(gray) and BUCKET -
BSTAR represented as
a 2-dimensional array.

Throughout the computation we utilize two additional
arrays to store information about the buckets: BUCKET A

(for A-suffixes) and BUCKET B (for B- and B⋆-suffixes)
of size σ and σ2, resp. The former is used to store val-
ues associated with A-suffixes and is accessed by only one
character. The latter is used to store values associated
with B- and B⋆-suffixes and is accessed by two characters.
BUCKET B[c0, c1] is short for BUCKET B[|c0| ·σ+ |c1|] and
BUCKET BSTAR[c0, c1] is short for BUCKET B[|c1| · σ +
|c0|], where |α| denotes the rank of α in the alphabet Σ. In-
formation about both suffixes can be stored in the same ar-
ray (Figure 3), as there are no B⋆-suffixes in (c0, c0)-buckets
and no B-suffixes in (c0, c1)-buckets for c0 > c1. We denote
the number of B⋆-suffixes by m.

3.1 Initializing DivSufSort

The initialization of DivSufSort is listed in divsufsort.c. First, we scan T from right to
left (line 60), determine the type of each suffix and store the sizes of the corresponding
buckets in BUCKET A, BUCKET B and BUCKET BSTAR (lines 62, 69 and 65). In
addition, we store the text position of each B⋆-suffix at the end of SA such that
SA[n−m..n) contains the text positions of all B⋆-suffixes (line 66). We call this part
of the suffix array PAb with PAb[i] = SA[n − m + i] for all 0 ≤ i < m (line 94), see
Figure 4 (a) and (b).

Next (lines 81 to 90), we compute the prefix sum of BUCKET A and
BUCKET BSTAR, such that BUCKET A[c0] contains the leftmost position of each
c0-bucket and BUCKET BSTAR[c0, c1] contains the rightmost position of the corre-
sponding B⋆-suffixes with respect only to other B⋆-suffixes, i.e., the positions are in

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 65

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(a)

$ c d (c,c) (c,d)

BUCKET A 1 0 6 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 5

(b)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 0 0 0 0 0 0 0 0 0 2 4 6 9

(c)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 5

(d)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 4 0 1 2 3 0 0 0 0 2 4 6 9

(e)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 -

BUCKET BSTAR - - - - 0

(f)

Figure 4: SA and the buckets after the first scan of T are shown in (a) and (b).
PAb (dark gray � in (a), (c) and (e)) contains the text positions of all B⋆-suffixes
in text order. The buckets (b) contain the number of suffixes beginning with the
corresponding characters. In (d), they are updated such the first position of each
c0-bucket is stored in BUCKET A[c0] (bold entires). The SA does not change during
this update, see (c). In (e) we stored references to the text positions in SA[0..m− 1]
(light gray �) and update the corresponding BUCKET BSTAR with the first position
in SA[0..m− 1] (bold entry in (f)).

the interval [0,m), see Figures 4 (c) and (d), where (c) remains unchanged. During
the sorting step, we do not sort the text positions. Instead we sort references to
these positions. These references are stored in SA[0..m) (line 97). During this step,
BUCKET BSTAR[c0, c1] is updated (line 97), such that it now contains the leftmost
reference corresponding to a B⋆-suffix in the (c0, c1)-bucket within the interval [0,m).
The reference to the last B⋆-suffix is put at the beginning of its corresponding bucket
(line 100). This reference is a special case as it has no successor in PAb that is required
for the comparison of two B⋆-substrings, see Figure 4 (e) and (f).

3.2 Sorting the B⋆-Suffixes

In this section, we describe how the B⋆-suffixes are sorted in three steps. First, all
B⋆-substrings are sorted independently for each (c0, c1)-bucket (lines 134 to 142) us-
ing functions defined in sssort.c. Then (second step starting at line 146), a partial ISA
(named ISAb) is computed, containing the ranks of the partially sorted B⋆-suffixes
(sorted by their initial B⋆-substrings). Using these ranks we compute the lexicograph-
ical order of all B⋆-suffixes adopting an approach similar to prefix doubling, in the
last step using functions defined in trsort.c (line 159). We augment the approach with
repetition detection as introduced by Maniscalco and Puglisi [13].

66 Proceedings of the Prague Stringology Conference 2017

Sorting the B⋆-Substrings. All B⋆-substrings in a BUCKET BSTAR are sorted
independently and in-place. The interval of SA that has not been used yet (SA[m..n−
m)) serves as a buffer during the sorting (line 133). We refer to this part of SA as
buf with buf[i] = SA[m + i] for all 0 ≤ i < n − 2m. This part of DivSufSort can be
executed in parallel by sorting the BUCKET BSTAR in parallel, i.e., all B⋆-substring
in one BUCKET BSTAR are sorted sequentially, but multiple BUCKET BSTAR are
processed in parallel (see divsufsort.c, lines 105 to 131). Here, each process gets a

buffer of size | buf|
p

, where p is the number of processes. All following line numbers in

this subsection refer to sssort.c.
In the default configuration we only sort 1024 elements at once (see SS BLOCK-

SIZE, e.g., line 763). If the size of buf is smaller than 1024 or the size of the current
bucket, the bucket is divided in smaller subbuckets which are then sorted and merged
(see line 767, splitting due to the buffer size and the loop at line 770 splitting with
respect to the number of elements). Lines 789 to 802 are used to merge the last
considered subbuckets. If the currently sorted bucket contains the last B⋆-substring
it is moved to the corresponding position (lines 811 and 813).

The heavy lifting is done by the function ss mintrosort that is an implementation of
Introspective Sort (ISS) [16]. It sorts all B⋆-substring within the interval [first, last]
(line 310). ISS uses Multikey Quicksort (MKQS) [1] and Heapsort (HS). MKQS is
used ⌊lg (last− first)⌋ times to sort an interval before HS is used (if there are still
elements in the interval that have been equal to the pivot each time, see line 333).
MKQS divides each interval into three subintervals with respect to a pivot element.
The first subinterval contains all substrings whose k-th character is smaller than the
pivot, the second subinterval contains all substrings whose k-th character is equal
to the pivot, and the last subinterval contains all substrings whose k-th character is
greater than the pivot. We call k the depth of the current iteration (line 332). ISS is
not implemented recursively; instead, a stack is used to keep track of the unsorted
subintervals and the smaller subintervals are always processed first. This guarantees
a maximum stack size of lg ℓ, where ℓ is the initial interval size [15, p. 67]. The
subintervals containing the substrings whose k-th character is not equal to the pivot
are sorted using MKQS ⌊lg (last− first)⌋ times before using HS, where now last

and first refer to the first and last positions of these intervals (lines 414 and 428).
Whenever an unsorted (sub)bucket is smaller than a threshold (8 in the de-

fault configuration), Insertionsort (IS) is used to sort the bucket and mark it sorted
(line 326). Whenever we compare two B⋆-Substrings during IS, we use the function
ss compare that compares two B⋆-substrings starting at the current depth and com-
pares the substrings character by character.

Throughout the sorting of the B⋆-substrings, substrings that cannot be fully
sorted, i.e. B⋆-substrings that are equal, are marked by storing their bitwise negated
reference (line 178). Only the first reference of such an interval is stored normally
to identify the beginning of an interval of unsorted substrings (line 178). There are
B⋆-suffixes that are not sorted completely by their initial B⋆-substrings e.g., in our
example T= cdcdcdcdccdd$ the B⋆-substring cdcd occurs three times – see Figure 5.
Therefore, we cannot determine the order of the corresponding B⋆-suffixes just using
their initial B⋆-substring. The idea of sorting the suffixes in a (c0, c1)-bucket up to a
certain depth is similar to the approach of Manzini and Ferragina [14], who sort the
suffixes up to a certain LCP-value.

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 67

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 3 0 1̃ 2̃ 4 0 0 0 0 2 4 6 9

(a)

Ref. Text Pos. B⋆-substring

3 6 cdcc

0 0 cdcd

1 2 cdcd

2 4 cdcd

4 9 cdd$

(b)

Figure 5: The lexicographically sorted references of the B⋆-substrings in SA[0..m− 1]
(light gray � in (a)). For readability we write ĩ if i is bitwise negated (̃i < 0 for all
0 ≤ i ≤ n). The content of the buckets is not changed in this step. The references,
their corresponding text positions and the B⋆-substrings are shown in (b).

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] -1 0 1 2 -1 3 3 3 0 4 4 6 9

Figure 6: ISAb contains the inverse suffix array of the sorted B⋆-substrings. ISAb[i] =
SA[m + i] for all 0 ≤ i < m (dark gray � in SA). If m > n

3
, ISAb overlaps with PAb.

This does not matter, as we do not require the text positions at this point any more.
While computing ISAb, we also mark completely sorted intervals in SA[0..m−1]. The
leftmost position of a sorted interval of length ℓ is changed to -ℓ (see SA[0] and SA[4]
where we store -1 as the sorted intervals contain one entry).

Computing the Partial Inverse Suffix Array. After the B⋆-substrings are sorted,
we compute the ISA for the partially sorted B⋆-substrings (lines 146 to 156). The
inverse suffix array for the B⋆-suffixes is stored in SA[m..2m) and referred to as ISAb
with ISAb[i] = SA[m + i]. ISAb[i] contains the rank of the i-th B⋆-suffix, i.e., the
number of lexicographically smaller B⋆-suffixes. All references to line numbers in this
subsection refer to divsufsort.c. We scan the SA[0..m) from right to left (line 146) and
distinguish between bitwise negated references (values < 0, starting at line 154) and
non-negated references (values ≥ 0, starting at line 147). In the first case, we have
reached an interval where we have references of suffixes which could not be sorted
comparing only the B⋆-substring. We assign each of those suffixes the greatest feasible
rank, i.e., m − i, where i is the number of lexicographically greater suffixes (similar
to Larsson and Sadakane [11]). In addition we also store the bitwise negation of the
references, i.e., the original reference. In the other case (a value ≥ 0) we simply assign
the correct rank to the B⋆-suffix. Whenever we scan an interval of completely sorted
B⋆-suffixes, we mark the first position of the interval in SA[0..m) with −k, where k

is the size of the interval (line 150). Now we can identify all sorted intervals as they
start with a negative value whose absolute value is the length of the interval.

In our example (see Figure 6) we have two fully sorted intervals of length 1 at
SA[0] and SA[4], and an only partially sorted interval in SA[1..3].

Sorting the B⋆-Suffixes. In the last part of the B⋆-suffix sorting in DivSufSort we
compute the correct ranks of all B⋆-suffixes and store them in ISAb. During this step,

68 Proceedings of the Prague Stringology Conference 2017

we only require information about the ranks of the suffixes and have no random access
to the text, i.e., PAb is not required any more. All line numbers in this section refer to
trsort.c. Using ISAb, we compute the ranks of all B⋆-suffixes using an approach similar
to prefix doubling [11]. Instead of doubling the length of the suffixes we double the
number of considered B⋆-substrings that can have an arbitrary length (line 563). Here,
ISAd[i] refers to the rank of the i + 2k-th B⋆-suffix, where k is the current iteration
of the doubling algorithm. Obviously, we need to update the ranks when we double
the number of considered substrings, i.e., compute the new ranks for the B⋆-suffixes.
Since the ranks in the ISA are given in text order, we can access the rank of the next
(in text order) B⋆-substring for any given substring.

Repetition Detection. The sorting that uses the new ranks as keys is done using
Quicksort (QS), which also allows us to use the repetition detection introduced by
Maniscalco and Puglisi [13] (see line 452 for the identification and the function tr copy

for the computation of the correct ranks). A repetition in T is a substring T[i, i+ rp]
with r ≥ 2, p ≥ 0 and i, i + rp ∈ [0, n) such that T[i, i + p) = T[i + p, i + 2p) =
· · · = T[i + (r − 1)p, i + rp). Those repetitions are a problem if Si is a B⋆-suffix,
since then Skp is a B⋆-suffix for all k ≤ r. We can simply sort all those suffixes by
looking at the first character not belonging to the repetition (T[i+rp+l] 6= T[i+l]). If
T[i+rp+l] < T[i+l] then T[i+(r−1)p+1, i+rp] < T[(i−1)+(r−1)p+1, (i−1)+rp]
for all 1 < i ≤ r. The analogous case is true for T[i + rp + l] > T[i + l], i.e.,
T[i+(r−1)p+1, i+rp] > T[(i−1)+(r−1)p+1, (i−1)+rp] for all 1 < i ≤ r. This is
done in lines 276 (and 282), where we increase (and decrease) the ranks of all suffixes
in the repetition. The identification of a repetition is supported by QS. QS divides
each interval into three subintervals (like MKQS). We chose the median rank of the
B⋆-suffixes that are considered during this doubling step as the pivot element for QS
(line 455). If the (current) rank of the first B⋆-suffix in the subinterval (considered in
this doubling step) is equal to the pivot element, i.e., ISAb[i] = ISAd[i] where i is the
first B⋆-suffix in the interval, then we have found a repetition (line 452, where tr ilg

denotes the logarithm, i.e., the number of iterations until HS is used instead of QS).
Now we have computed the ISA of all B⋆-suffixes (stored in ISAb), i.e., we have

all B⋆-suffixes in lexicographic order. From this point on, all line numbers refer to
divsufsort.c, again. Next (see loop starting at line 162), we scan T from right to left,
and when we read the i-th B⋆-suffix at position j, we store j at position SA[ISAb[i]].
Since we use the B⋆-suffixes to induce the B-suffixes (and we do not want to induce A-
suffixes during the first inducing phase) we store the bitwise negation of j if Sj−1 has
type A (line 167). Figures 7a and 7b show the transition in SA[0..m) for our example.
Now, SA[0..m) contains the text positions of all B⋆-suffixes in lexicographic order.
Next (see loop beginning at line 173), we need to put these text positions at their
correct position in SA[0..n) (line 182). While doing so, we update BUCKET B and
BUCKET BSTAR such that they contain the rightmost position of the corresponding
buckets (lines 177 and 185). Figures 7c and 7d show this step for our running example.

3.3 Inducing the A- and B-suffixes

Due to the types of the suffixes, we know that in any (c0, c1)-bucket the A-suffixes are
lexicographically smaller than the B-suffixes, and that B⋆-suffixes are lexicographi-
cally smaller than B-suffixes. We also know that in lexicographic order, all consecutive
intervals of B-suffixes are left of at least one B⋆-suffix and all A-suffixes are right of at

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 69

i 0 1 2 3 4 5 6 7 8 9
10 11 12

T[i] c d c d c d c d c c d d $

SA[i] -1 -4 1 0 -1 3 2 1 0 4 4 6 9

(a)

0 1 2 3 4 5 6 7 8 9
10 11 12

c d c d c d c d c c d d $

6̃ 4̃ 2̃ 0 9 3 2 1 0 4 4 6 9

(b)

$ c d

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9

(c)

$ c d (c,c) (c,d)

BUCKET A 0 1 7 - -

BUCKET B - - - 1 6

BUCKET BSTAR - - - - 1

(d)

Figure 7: ISAb (dark gray � in (a) and (b)) contains the ranks of all B⋆-suffixes. The
lexicographically sorted text positions of the B⋆-suffixes are shown light gray (�) in
(b). Each text position i is bitwise negated if Si−1 has type A. In (c) all text positions
of the B⋆-suffixes are at their correct position in SA[0..n − 1] (light gray �). The
buckets (d) contain the leftmost position of the corresponding suffixes.

least one B-suffix – see Figure 2. Now we scan SA twice: once from right to left where
all B-suffixes are induced (we can skip all parts of SA containing only A-suffixes), and
then from left to right to induce all A-suffixes (see Figure 8 for an example of the en-
tire inducing process). All following line numbers refer to difsufsort.c. A step-by-step
example is given in Figure 8.

During the inducing of the B-suffixes, i.e., the first scan of SA (see loop starting at
line 205), whenever we read an entry i in SA such that i > 0 (line 211), we store the
entry i− 1 at the rightmost free position (a position in which a correct text position
has not been stored yet) in the (T[i− 1],T[i])-bucket (line 220). If T[i− 2] > T[i− 1],
then Si−2 is an A-suffix, which is not induced during the first scan, but the bitwise
negated value of i− 1 is stored instead (line 217). Every position is overwritten with
its bitwise negated value. If the position was already bitwise negated, i.e., it has been
induced and the corresponding suffix has type A, it is considered during the next scan
(line 226) and it is ignored otherwise. After the first traversal, all suffixes that have
been used for inducing are represented by their bitwise negated position whereas all
other suffixes are represented by their position, i.e., a positive integer. It should be
noted that all induced suffixes are lexicographically smaller than the suffix they are
induced from: if we induce from a (c0, c1)-bucket, we know that c0 ≤ c1, since we
are considering B-suffixes. In addition, we can only induce in (c0, c1)-buckets with
c1 ≤ c0, as only B-suffixes are considered during this traversal.

Before SA is scanned a second time, n−1 is stored at the beginning of the T[n−1]-
bucket (line 234). If Sn−2 has type A, we store n− 1 (we want to induce Sn−2 during
the second scan). Otherwise, we store the bitwise negation of n− 1.

i 0 1 2 3 4 5 6 7 8 9 10 11 12

T[i] c d c d c d c d c c d d $

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 10

Figure 9: The final SA of T= cdcdcdcdccdd$.

During the second scan of SA
(see loop starting at line 236),
whenever an entry i of SA is
smaller than 0 it is overwritten by
its bitwise negated value, i.e., the

70 Proceedings of the Prague Stringology Conference 2017

B
U
C
K
E
T

A
[$
]

B
U
C
K
E
T

A
[c
]

B
U
C
K
E
T

A
[d
]

B
U
C
K
E
T

B
[c
,c
]

B
U
C
K
E
T

B
S
T
A
R
[c
,d
]

Scanned Interval

i 0 1 2 3 4 5 6 7 8 9 10 11 12

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1 F
ir
s
t
In

d
u
c
tio

n
P
h
a
s
e

SA[i] 6̃ 4̃ 6̃ 4̃ 2̃ 0 9 1 0 4 4 6 9 0 1 7 1 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2̃ 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4̃ 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6̃ 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8̃ 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 6̃ 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 0 1 7 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 1 0 4 4 6 9 1 1 7 0 1 S
e
c
o
n
d

In
d
u
c
tio

n
P
h
a
s
e

SA[i] 12 8 6 4 2 0̃ 9̃ 11 0 4 4 6 9 1 1 8 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 4 4 6 9 1 1 9 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 4 6 9 1 1 10 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 6 9 1 1 11 0 1

SA[i] 12 8 6 4 2 0̃ 9̃ 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9̃ 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 9 1 1 12 0 1

SA[i] 12 8 6 4 2 0 9 11 7 5 3 1 10 1 1 13 0 1

Figure 8: During the first phase, we induce B-suffixes and only scan intervals where
B- and B⋆-suffixes occur. Each of those intervals ends left of the succeeding c0-bucket.
Its borders are stored in the corresponding BUCKET BSTAR (boxed entries, the right
border is not part of the interval). After the first phase we put the last suffix at the
beginning of its corresponding bucket. During the second phase we scan the whole
array, as we also store the bitwise negation of all entries that have already been used
for inducing. The currently considered entry is marked light gray (�). The entries
highlighted dark gray (�) are the positions where a value is induced. The bucket that
contains the position is highlighted in the same color. Entries that have changed are
bold in the following row.

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 71

position of the suffix in the correct position in the suffix array (line 249). When-
ever i > 0 (line 237) the suffix Si−1 is induced at the leftmost free position in the
T[i − 1]-bucket (line 243). Since all remaining suffixes are induced during this scan
it is sufficient to identify the border using the c0-buckets, i.e., the value stored in
BUCKET A[c0]. If the induced suffix would induce a B-suffix, its bitwise negated value
is induced instead (line 240). At the end of the traversal SA contains the indices of
all suffixes in lexicographic order.

4 Inducing the LCP-Array

We now show how to modify DivSufSort such that it also computes the LCP-array in
addition to SA. To do so, we extend DivSufSort at three points of the computation
of SA. First, we need to compute the LCP-values of all B⋆-suffixes. Next, during the
inducing step, we also induce the LCP-values for A- and B-suffixes. For this we utilize
a technique also described in [4,2] that allows us to answer RMQs on LCP using only
a stack [6]. Last, we compute the LCP-values of suffixes at the border of buckets, as
those values cannot be induced.

Recall that the LCP-value of two arbitrary suffixes Si and Sj is denoted by lcp (i, j).
We need the following additional definition: Given an array A of length ℓ and 0 ≤ i ≤
j ≤ ℓ, a range minimum query RMQA[i, j] asks for the minimum in A in the interval
[i, j], in symbols: RMQA[i, j] = min {A[k] : i ≤ k ≤ j}.

4.1 Computing the LCP-Values of the B⋆-Suffixes

During the sorting of the B⋆-suffixes (right before the B⋆-suffixes are put at their
correct position in SA[0..n)), all lexicographically sorted B⋆-suffixes are in SA[0..m).
There are two cases regarding m (the number of B⋆-suffixes). If m > n

3
, we have

overwritten the text positions of the B⋆-suffixes in PAb with ISAb. In this case we
must compute the LCP-values naively.4 Otherwise (we still know the text positions
of all B⋆-suffixes), we compute their LCP-values using a sparse version of the Φ-
algorithm [8], based on Observation 2, which was also used implicitly in [4,2].

Observation 2 If Si, Si′ , Sj and Sj′ are B⋆-suffixes such that i < i′, j < j′ and there
is no other B⋆-suffix Sk such that i < k < i′ or j < k < j′, then lcp (i′, j′) ≥
lcp (i, j)− (i′ − i).

This is possible as we know the distance (in the text) of two B⋆-suffixes, i.e.,
PAb[i] − PAb[j] is the distance of the i-th and j-th B⋆-suffix with 1 ≤ i ≤ j ≤
m. See Figure 10 for an Example. Algorithm 1 shows the sparse version of the Φ-
algorithm. The difference to the original algorithm [8] is that the next considered
suffix is an arbitrary number of character shorter than the previous one, which results
in Observation 2. The computation of the LCP-values does not require any additional
memory except for the n words for LCP, where we temporarily store additional data.

First (lines 1 to 4 of Algorithm 1), we fill the PHI (stored in LCP[m..2m)) such that
PHI[i] contains the text position of the suffix that is lexicographically consecutive to
the i-th suffix (text position). In DELTA[i] (stored in LCP[n−m..n)) we store the text
distance of the i-th and (i+1)-th B⋆-suffix (text occurrence), i.e., PAb[i+1]−PAb[i].
Then (lines 5 to 8), we compute the sparse LCP-array using Observation 2. As we
store the LCP-values in PHI in text order, we need to rewrite them to LCP (line 9).

4 For all tested instances (see Section 5) m ≤ n
3
.

72 Proceedings of the Prague Stringology Conference 2017

T=

i i′ j j′

T[i, i′) T[j, j′)T[i′, ℓ+ 1) T[j′, ℓ+ 1)

Figure 10: Let Si, Sj, Si′ and Sj′ be B
⋆-suffixes such that there is no B⋆-suffix Sk with

i < k < i′ or j < k < j′, and let the LCP-value of Si and Sj be ℓ = lcp (i, j) + i. Then
the LCP-value of Si′ and Sj′ is lcp (i

′, j′) = ℓ− i′ = lcp (i, j)− (i′ − i).

4.2 Inducing the LCP-Values in Addition to the SA

During the inducing of the B-suffixes, whenever a suffix is induced at position u in
SA and there is already a suffix at position u + 1 in the same (c0, c1)-bucket, there
are two cases:

1. The suffixes SSA[u] and SSA[u+1] have been induced from suffixes SSA[v], SSA[w] in
the same (c0, c1)-bucket; in this case LCP[u+ 1] = RMQLCP[v + 1, w] + 1.

2. Otherwise, the LCP-value is either 1 or 2, depending on the c0-buckets SSA[v], SSA[w]

are. If they are in the same bucket the LCP-value is 2 and 1 if not.

The computation of the LCP-values during the inducing of the A-suffixes works anal-
ogously. This leads to the following observation for the general case:

Observation 3 Let SA[u] = i, SA[u + 1] = j, SA[v] = i + 1 and SA[w] = j + 1
such that Si and Sj are in the same c0-bucket and u + 1 < v,w or w, v < u. Then
LCP[u+ 1] = RMQLCP[min {v, w}+ 1,max {v, w}] + 1.

Not all LCP-values can be induced this way. The missing cases are covered in the
next section. Instead of using a dynamic RMQ data structure, we can answer the
RMQs using a min-stack [2,4,6]. We only need to consider RMQs for suffixes from the
same (c0, c1)-bucket. To this end, we build the min-stack while scanning an interval
[first, last] (from right to left) of the LCP-array. An entry on the min-stack consist
of tuple 〈k, LCP[k]〉. Initially, the tuple 〈n,−1〉 is on the min-stack. To update the
min-stack at position i ∈ [first, last] we look at the top of the min-stack and remove
the tuple 〈k, LCP[k]〉 if LCP[k] ≥ LCP[i]. We repeat this process until no tuple is
removed. Then we add 〈i, LCP[i]〉 to the min-stack.

Now we want to answer RMQLCP[i, j] with first ≤ i < j ≤ last. (It should be noted
that at this point we have not added 〈i, LCP[i]〉 to the min-stack or have removed

Algorithm 1: Sparse Φ-Algorithm
Input : T, m, SA, ISAb= SA[m..2m− 1], PAb= SA[n−m..n− 1] and LCP,

PHI= LCP[m..2m− 1] PHI= DELTA[n−m..n− 1].
Output : LCP[0..m− 1] contains the LCP-values of the B⋆-suffixes.

1 PHI[SA[0]] = −1
2 for i = 1; i ≤ m− 1; i = i+ 1 do

3 PHI[SA[i]] = SA[i− 1]
4 DELTA[i− 1] = PAb[i]− PAb[i+ 1]

5 for i = 0, p = 0; i < m; i = i+ 1 do

6 while T[PAb[i] + p+ 1] = T[PAb[PHI[i]] + p+ 1] do
7 p = p+ 1
8 PHI[i] = p and p = max {0, p− DELTA[i]}

9 for i = 0; i < m; i = j + 1 do LCP[ISAb[i]] = PHI[i];

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 73

any tuple from the min-stack in the process of adding it to the min-stack.) To this
end, we scan the min-stack from top to bottom, until we find two consecutive tuples
〈k, LCP[k]〉, 〈k′, LCP[k′]〉 such that k′ > j. Then, RMQLCP[i, j] = LCP[k]. If we scan
from left to right, the min-stack works analogously. The only difference is that the
initial tuple is 〈−1,−1〉 and we search for the two consecutive tuples until k′ < j

The min-stack is reseted whenever we arrive at a new (c0, c1)-bucket, i.e., we only
keep the 〈n,−1〉-tuple. In the implementation, the min-stack is realized using a single
array and a reference to its current top.

i 0 1 2 3 4 5 6

A[i] 4 2 0 1 4 3 2

(a)

〈4, 4〉
〈5, 3〉 〈5, 3〉 〈1, 2〉 〈1, 2〉

〈6, 2〉 〈6, 2〉 〈6, 2〉 〈3, 1〉 〈2, 0〉 〈2, 0〉 〈2, 0〉
〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉 〈n,−1〉

i 6 5 4 3 2 1 0

(b)

Figure 11: The min-stack for each current position i (b) while scanning A (a) from
right to left. A tuple (p, v) contains the position p of the value v. For the current
position i the stack can be used to answer RMQs of the type RMQA[i, j] with j ≥ i

by looking at elements from the top until a position k with k ≥ j is found.

In addition to the min-stack, we require for each c0-bucket the position of where
the last suffix has been induced from. This is the position we look for when querying
the min-stack.

4.3 Special Cases during LCP Induction

There are three special cases where the LCP-value cannot be induced using the min-
stack (or RMQs in general). The first case occurs if a suffix is induced next to a
B⋆-suffix. The inducing can happen to the left or right of the already placed B⋆-
suffix. The former case is easy as there cannot be an A- or B-suffix to the left of a
B⋆-suffix in the same (c0, c1)-bucket. Therefore, we only need to check whether the
suffixes are in the same c0-bucket to compute the LCP-value for the B⋆-suffix, which
is either 0 or 1. The other case (a suffix is induced to the right of a B⋆-suffix) is more
demanding, as the LCP-value must be computed. Fortunately, this can be done more
sophisticated than by naive comparison of the suffixes. First, we check whether both
the B⋆-suffix Si and the B-suffix Sj are in the same (c0, c1)-bucket. If not, the LCP-
value is 1 if they occur in the same c0-bucket, and 0 otherwise. However, if they occur
in the same (c0, c1)-bucket, we know that Si has a prefix c0c1d, d ∈ Σ, such that
c0 < c1 ≥ d, and that Sj has a prefix c0c1e, e ∈ Σ, such that c0 < c1 ≤ e. Hence, the
LCP-value is max {k ≥ 0: T[i+ 1, i+ k + 2) = T[j + 1, j + k + 2)}+ 1, i.e., the first
appearance of a character not equal to c1 in either suffix. In the last case (an A-suffix
is induced next to a B-suffix) the LCP-value can be determined in an analogous way.

5 Experiments with LCP-Construction

We implemented the modified DivSufSort in C and compiled it using gcc version 6.2
with the compiler options -DNDEBUG, -03 and -march=native. Our implementation

74 Proceedings of the Prague Stringology Conference 2017

is available from https://github.com/kurpicz/libdivsufsort. We ran all exper-
iments on a computer equipped with an Intel Core i5-4670 processor and 16 GiB
RAM, using only a single core.

We evaluated our algorithm on the Pizza & Chili Corpus5 and compared our
implementation to the following LCP-construction algorithms (using the same com-
piler options): KLAAP [9] is the first linear-time LCP-construction algorithm. The Φ-
algorithm [8] is an alternative to KLAAP that reduces cache-misses. Inducing+SAIS [4]
is an LCP-construction algorithm (using similar ideas as in this paper) based on
SAIS [17], and naive scans the suffix array and checks two consecutive suffixes char-
acter by character.

We also looked at LCP-construction algorithms requiring the Burrows-Wheeler
transform, i.e., GO and GO2 by Gog and Ohlebusch [6]. Since these algorithms are
only available in the succinct data structure library (SDSL) [5], which has an emphasis
on a low memory footprint, the running times are affected by that.

The results of our experiments can be found in Table 1. As a brief summary, our
practical tests show that Φ (see column 1) is the fastest LCP-construction algorithm
if SA is already given, while our new implementation (column 6) is faster than the
only other inducing-based approach (last 2 columns).

6 Conclusions

We presented a detailed description of DivSufSort that has not been available albeit
its wide use in different applications. We linked interesting approaches, e.g., the rep-
etition detection, to the corresponding lines in the source code and to the original
literature.

Compared with SAIS, the other popular suffix array construction algorithm based
on inducing, DivSufSort is faster. We ascribe this to the two main differences between
DivSufSort and SAIS: First, the sorting of the initial suffixes in SAIS (the ones that
cannot be induced) is done by recursively applying the algorithm (and renaming
the initial suffixes), which is slower in practice than the string-sorting and prefix
doubling-like approach used by DivSufSort (which also employs techniques like repe-
tition detection to further decrease runtime). Second, the classification of the initial
suffixes differs: while the suffixes that have to be sorted initially in SAIS can be dis-
placed during the inducing of the SA, they are not moved again in DivSufSort. This
also allows DivSufSort to skip parts (containing only A-suffixes) of the SA during the
first induction phase.

In addition, we showed that the LCP-array can be computed during the inducing
of the suffix array in DivSufSort. This approach is faster than the previous known
inducing LCP-construction algorithm based on SAIS [4], and competitive with the
Φ-algorithm, i.e, the fastest pure LCP-construction algorithms.

5 http://pizzachili.dcc.uchile.cl/, last seen 05.07.2017

https://github.com/kurpicz/libdivsufsort
http://pizzachili.dcc.uchile.cl/

Johannes Fischer and Florian Kurpicz: Dismantling DivSufSort 75

LCP given SA (and BWT if necessary) SA SA+ LCP

Text Φ
[8
]

K
L
A
A
P

[9
]

n
ai
ve

G
O

[6
]

G
O
2
[6
]

in
d
u
ci
n
g

[t
h
is

p
ap

er
]

in
d
u
ci
n
g
[4
]

D
iv
S
u
fS
or
t

S
A
IS

[1
7
]

in
d
u
ci
n
g
+

D
iv
S
u
fS
or
t

[t
h
is

p
ap

er
]

in
d
u
ci
n
g
+

S
A
IS

[4
]

20
M
B

dna 0.77 0.91 1.180 6.46 2.65 0.78 1.12 1.45 1.71 2.23 2.83
english 0.61 0.77 44.72 7.90 4.03 0.64 0.91 1.45 1.65 2.09 2.56
dblp.xml 0.54 0.55 1.640 2.56 3.92 0.53 0.82 1.06 1.29 1.59 2.11
sources 0.54 0.57 1.530 2.87 4.26 0.57 0.85 1.07 1.41 1.64 2.26
proteins 0.60 0.67 4.190 5.46 3.24 0.66 0.96 1.51 1.79 2.17 2.75

50
M
B

dna 2.02 2.360 3.240 16.25 14.43 2.06 2.96 3.88 4.57 5.94 7.53
english 1.70 2.080 65.85 15.41 12.76 1.88 2.65 3.83 4.56 5.71 7.21
dblp.xml 1.41 1.45 4.370 9.490 9.370 1.39 2.17 2.93 3.53 4.32 5.70
sources 1.45 1.49 6.950 10.06 10.15 1.51 2.26 2.87 3.77 4.38 6.03
proteins 1.77 2.01 6.560 14.38 15.74 1.87 2.83 4.55 5.27 6.42 8.10

10
0
M
B

dna 4.11 4.75 6.590 26.03 26.62 4.24 5.95 8.23 9.44 12.47 15.39
english 3.56 4.28 185.9 32.57 28.09 4.02 5.62 7.96 9.49 11.98 15.11
dblp.xml 2.85 2.89 9.040 19.91 21.49 2.82 4.41 6.19 7.22 9.010 11.63
sources 2.93 3.02 39.85 24.92 24.46 3.07 4.62 5.98 7.72 9.050 12.34
proteins 3.56 4.09 16.99 30.89 28.12 3.96 5.86 9.91 10.96 13.87 16.82

20
0
M
B

dna 8.25 10.0 17.36 76.11 79.02 8.64 12.02 17.41 19.18 26.05 31.20
english 7.23 8.70 1070 72.58 73.75 8.25 11.49 16.80 19.39 25.05 30.88
dblp.xml 5.75 6.28 18.23 49.97 52.91 5.77 9.120 12.99 14.72 18.76 23.84
sources 5.98 6.23 52.60 61.61 59.01 6.37 9.700 12.63 16.01 19.00 25.71
proteins 6.86 7.94 42.60 78.78 77.40 8.33 11.82 19.73 21.65 28.06 33.47

Table 1: The first seven columns contain the times solely for the computation of LCP.
Since the inducing algorithms are interleaved with the computation of SA, we sub-
tracted the time to compute SA with the corresponding inducing approach (“inducing
[this paper]” and “inducing [4]”). GO and GO2 require the BWT in addition to SA;
the time to compute BWT is also not included. The last two columns show the time
to compute SA and LCP using the inducing approach. All times are in seconds, and
are the average over 21 runs on the same input.

76 Proceedings of the Prague Stringology Conference 2017

References

1. J. L. Bentley and R. Sedgewick: Fast algorithms for sorting and searching strings, in
SODA, ACM/SIAM, 1997, pp. 360–369.

2. T. Bingmann, J. Fischer, and V. Osipov: Inducing suffix and lcp arrays in external mem-

ory., in ALENEX, SIAM, 2013, pp. 88–102.
3. J. Dhaliwal, S. J. Puglisi, and A. Turpin: Trends in suffix sorting: A survey of low memory

algorithms, in Proc. ACSC, Australian Computer Society, 2012, pp. 91–98.
4. J. Fischer: Inducing the LCP-array, in Proc. WADS, vol. 6844 of LNCS, Springer, 2011,

pp. 374–385.
5. S. Gog, T. Beller, A. Moffat, and M. Petri: From theory to practice: Plug and play with

succinct data structures, in Proc. SEA, vol. 8504 of LNCS, Springer, 2014, pp. 326–337.
6. S. Gog and E. Ohlebusch: Fast and lightweight LCP-array construction algorithms, in Proc.

ALENEX, SIAM, 2011, pp. 25–34.
7. H. Itoh and H. Tanaka: An efficient method for in memory construction of suffix arrays, in

Proc. SPIRE/CRIWG, IEEE Press, 1999, pp. 81–88.
8. J. Kärkkäinen, G. Manzini, and S. J. Puglisi: Permuted longest-common-prefix array, in

Proc. CPM, vol. 5577 of LNCS, Springer, 2009, pp. 181–192.
9. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time longest-common-

prefix computation in suffix arrays and its applications, in Proc. CPM, vol. 2089 of LNCS,
Springer, 2001, pp. 181–192.

10. J. Labeit, J. Shun, and G. E. Blelloch: Parallel lightweight wavelet tree, suffix array and

fm-index construction, in Data Compression Conference (DCC), IEEE, 2016, pp. 33–42.
11. N. J. Larsson and K. Sadakane: Faster suffix sorting. Theor. Comput. Sci., 387(3) 2007,

pp. 258–272.
12. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches. siam

Journal on Computing, 22(5) 1993, pp. 935–948.
13. M. A. Maniscalco and S. J. Puglisi: An efficient, versatile approach to suffix sorting. ACM

J. Experimental Algorithmics, 12 2008, p. Article no. 1.2.
14. G. Manzini and P. Ferragina: Engineering a lightweight suffix array construction algorithm.

Algorithmica, 40(1) 2004, pp. 33–50.
15. K. Mehlhorn: Data Structures and Algorithms 1: Sorting and Searching, vol. 1 of EATCS

Monographs on Theoretical Computer Science, Springer, 1984.
16. D. R. Musser: Introspective sorting and selection algorithms. Softw., Pract. Exper., 27(8)

1997, pp. 983–993.
17. G. Nong, S. Zhang, and W. H. Chan: Linear suffix array construction by almost pure

induced-sorting, in Proc. DCC, IEEE Press, 2009, pp. 193–202.
18. S. J. Puglisi, W. F. Smyth, and A. H. Turpin: A taxonomy of suffix array construction

algorithms. ACM Comput. Surv., 39(2) 2007.

