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Abstract. In 2015 Uwe Baier presented a linear-time algorithm that directly sorts the
suffixes of a string, the first such algorithm that is not recursive. In fact, his approach
implicitly gives quite a bit more: it includes a linear-time elementary algorithm for
computing what turns out to be a partially sorted version of the Lyndon array, and then
shows how this can be used to sort the suffixes. At the same time, it is known that the
Lyndon array can be computed in linear time from the suffix array. This paper extends
these aspects of Baier’s work to establish the linear equivalence of certain orderings of
maximal Lyndon substrings and of fully sorted suffixes. By this terminology we mean
that each data structure can be transformed into the other by a simple linear-time
computation.
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1 Introduction

In [1,2] Baier described a linear-time algorithm to sort the suffixes of a string, the first
such algorithm that is not recursive. In fact, his approach implicitly gives much more:
it includes a linear-time elementary algorithm for computing a partially sorted version
of the Lyndon array, and it shows how this partial sort can be used to yield a complete
sort of the suffixes. (Baier does not in his paper or his thesis make explicit reference
to Lyndon substrings or to the Lyndon array.) On the other hand, it is known that
the regular (unsorted) Lyndon array can be computed in linear time from the suffix
array [6,5]. Thus there is some sort of linear equivalence between certain orderings
of the Lyndon array and the suffix array, a relationship that we make precise in this
paper.

Baier’s algorithm works in two phases: in the first phase the suffixes of the input
string are distributed into “groups” (that actually correspond to a partial sort of
entries in the Lyndon array); then in the second phase the suffix array of the input
string is computed from the groups. This paper deals mainly with the second phase:
we show that the groups of suffixes output by Baier’s Phase 1 are in fact an arrange-
ment of the maximal Lyndon substrings of the input string, and further that this
arrangement leads naturally, in linear time, to the suffix array. We also show how to
go in the reverse direction; that is, how to compute the groups from the suffix array.

In the next section we introduce the ideas and notation that we use — most
importantly, precise definitions for various notions of “groups of suffixes”. In Section 3
two main theorems are presented, showing the linear equivalence of a partially sorted
Lyndon array and the suffix array of a string.
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2 Preliminaries

In the literature, string and word are used interchangeably. But word may be used to
refer to a substring, as in: let k be the length of the longest Lyndon word in

x starting at position i. The terms subword, substring, and factor are also often
used interchangeably. To prevent confusion, we will strictly use string and substring.

We use the array notation for strings indexing from 1; that is, x = x[1..n] indicates
that string x consists of n alphabet symbols and thus has length n. Strings are given
in bold to distinguish them from other entities such as numbers and alphabet symbols:
for example, x = x[1..n] and x[i] = a. The length of a string x is denoted by |x|.
An empty string of length 0 is denoted by ε. The notation x[i..j) is used as an
abbreviation for x[i..j−1].

The symbol xy denotes the concatenation of x, y; in particular, x[1..n] =
x[1]x[2] · · ·x[n]. If x = uvw, u is called a prefix of x, v a substring of x, w a
suffix of x. A prefix (substring, suffix) is trivial if it is empty, proper if not equal to
x.

The symbol A(x) denotes the alphabet of the string x; that is, the set of all
distinct symbols occurring in x. A string x is said to be over an alphabet B, denoted
by x ∈ B∗, if A(x) ⊆ B. If ≺ is a total order of B, it can be naturally extended
to a total lexicographic order of B∗ (lexorder for short) by a simple rule: x ≺ y if
either x is a proper prefix of y, or x[1..j) = y[1..j) and x[j] ≺ y[j] for some j,
1 < j ≤ min{|x|, |y|}.

If a string x = uv, then vu is called a rotation of x. The rotation is trivial if
either u or v is empty. A string x is Lyndon [3] if x ≺ y for any non-trivial rotation
of x, where as above we suppose a total order ≺ on A(x). Clearly any string of length
1 is Lyndon, thus called a trivial Lyndon string.

Observation 1 ([4,8]) For any x = x[1..n], n > 1, the following are equivalent:

1. x is a non-trivial Lyndon string;
2. x[1..n] ≺ x[k..n] for any 1 < k ≤ n;
3. x[1..k) ≺ x[k..n] for any 1 < k ≤ n;
4. there is 1 < k ≤ n so that x[1..k) ≺ x[k..n], both x[1..k) and x[k..n] are Lyndon.

Item 4 of this observation is the basis for the definition of the standard factorization
of a Lyndon string x, given by x[1..k)x[k..n] where k is the smallest integer such that
x[1..k) and x[k..n] are both Lyndon.

A string is primitive if it is not a concatenation of two or more copies of a smaller
string. A border of a string x is a prefix that is also a suffix; a border is trivial if it is
empty, proper if it is not x itself. If x has only trivial or improper borders, it is said
to be unbordered.

Observation 2 For any string x: x is Lyndon ⇒
6⇐ unbordered ⇒

6⇐ primitive.

Suppose that a substring u of x is Lyndon. Then u is said to be maximal Lyndon
in x if it is not a proper prefix of any Lyndon substring of x. Occasionally, we may
abbreviate maximal Lyndon as maxLyn.
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Theorem 1 ([6], Hohlweg and Reutenauer) Any substring x[i..k] of string x =
x[1..n] is maximal Lyndon if and only if x[i..n] ≺ x[j..n] for any j satisfying i < j ≤
k, and either k = n or x[k+1..n] ≺ x[i..n].

The Lyndon array was introduced in [5] — it is closely related to the Lyndon tree
of [6]:

Definition 1 For a given string x = x[1..n], the Lyndon array of x is an integer
array L[1..n] such that L[i] = j if and only if j is the length of the maximal Lyndon
substring at i.

We now introduce the Lyndon grouping array, the partially sorted Lyndon array,
and the sorted Lyndon array. All three are two-dimensional arrays L[1..2][1..n], but
for brevity we use L1[i] instead of L[1][i], L2[i] instead of L[2][i].

Definition 2 (See Figure 1.) Let x = x[1..n] be a string of length n. The Lyndon
grouping array of x is a two-dimensional integer array L[1..2][1..n] such that
1. L1[1..n] is a permutation of 1..n;
2. if L2[i] > 0, then the maximal Lyndon substring starting at L1[i] has length L2[i];
3. if L2[i] = 0, then the maximal Lyndon substring starting at L1[i] has length L2[j]

where j is the greatest integer less than i such that L2[j] > 0.
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Figure 1. A Lyndon grouping array for ababbabbabba

Thus, a Lyndon grouping array just partitions the positions of a string into groups
determined by identical maxLyn substrings: all indices in the same group are starting
positions of the same maxLyn substring. Baier calls this substring the context of
the group [1,2] — here we will use the term determinant ; we denote a group with a
determinant u as Gu. Note that the Lyndon grouping array is not unique; that is,
for given x there may exist several such arrays with different orderings.

Lemma 1 Let L[1..2][1..n] be a Lyndon grouping array of x = x[1..n]. Then the
Lyndon array L of x can be computed from  L[1..2] in Ø(n) steps.

Proof. Replacing zeros in L2 with the value at the start of each group yields
L[L1[i]] = L2[i] for all i ∈ 1..n:
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for i = 1 to n do

if L2[i] 6= 0 then m← L2[i]

L[L1[i]]← m

⊓⊔

Note that the Lyndon array may provide weaker information than a Lyndon group-
ing array, as the Lyndon array can be computed from a Lyndon grouping array in
linear time, but we do not know at this point how to compute in linear time a Lyndon
grouping array from the Lyndon array.

Definition 3 (See Figure 2.) A partially sorted Lyndon array of x is a Lyndon
grouping array whose groups are sorted in ascending lexorder; that is,

4. For i < j such that L2[i] > 0, L2[j] > 0, x
[

L1[i]..L1[i]+L2[i]−1
]

≺

x
[

L1[j]..L1[j]+L2[j]−1
]

.
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Figure 2. A partially sorted Lyndon array for ababbabbabba

In Figure 2 the determinants a, ababbabbabb, abb, and b of the groups are sorted
in ascending lexorder. However, the indices within the groups need not be in any
particular order, though in our example they happen to fall in ascending order of
position. Like the Lyndon grouping array, a partially sorted Lyndon array may not
be unique.

Definition 4 (See Figure 3.) A sorted Lyndon array of x is a partially sorted Lyndon
array whose indices are ordered within each group in the perfect order according to
the lexorder of the corresponding suffixes; that is,

5. If L1[i] and L1[j] belong to the same group, i < j ⇐⇒ x
[

L1[i]..n
]

≺ x
[

L1[j]..n
]

.



F. Franek et al.: The Linear Equivalence of the Suffix Array and the Partially Sorted. . . 81

� ✁ ✂ ✄ ☎ ✆ ✝ ✞ ✟ ✠✡ ☛☞ ✌✍

a b a b b a b b a b b a

✎✏ ✑ ✒ ✓ ✔ ✕ ✖ ✗

✘✙✚✛✜✢✣

✤✥✦✧★✩

✪✫✬✭✮✯ ✰✱✲✳✴

✵✶ ✷✸ ✹ ✺ ✻ ✼✽ ✾ ✿
❀❁❂❃❄❅ ❆❇❈❉❊❋ ●❍■❏❑

▲ ▼ ◆ ❖ P ◗ ❘ ❙

❚ ❯

❱ ❲

❳ ❨

❩ ❬ ❭

❪ ❫ ❴

❵ ❛ ❜

❝

❞

❡❢

Group Ga

with determinant

of length 1, a Group Gabb

with determinant

of length 3, abb

Group Gababbabbabb

with determinant

of length 11,

ababbabbabb

Group Gb 

with determinant

of length 1, b

Figure 3. The sorted Lyndon array of ababbabbabba

Definition 5 (See Figure 4.)

(a) Given x = x[1..n], the integer array SA[1..n] is the suffix array of x iff the
entries of SA form a permutation of 1..n and for every 1 ≤ i < n, x

[

SA[i]..n
]

≺

x
[

SA[i+1]..n
]

.
(b) The lcp array associated with SA is an integer array lcp[1..n] in which lcp[i] is

the size of the longest common prefix of x
[

SA[i]..n
]

and x
[

SA[i−1]..n
]

for any
1 < i ≤ n.

(c) The inverse suffix array ISA[1..n] is an integer array such that SA[i] = j iff
ISA[j] = i.

Note that if L[1..2][1..n] is a sorted Lyndon array of x, then in fact L1[1..n] is the
suffix array of x. Thus, a sorted Lyndon array is unique, unlike a Lyndon grouping
array and a partially sorted Lyndon array. Therefore we speak of the sorted Lyndon
array of x.
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Figure 4. suffix array, inverse suffix array, and lcp array of ababbabbabba

3 Main Results

In this section we present the two main results tying together partially sorted Lyndon
arrays and the suffix array of a string.

Theorem 2 Let SA[1..n] be the suffix array of a string x = x[1..n]. The sorted
Lyndon array of x can be computed from x and SA in O(n) steps.
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Proof. As just observed, the top array L1[1..n] is exactly the suffix array of x. Thus
we need only compute L2[1..n]. First we compute the inverse suffix array ISA from
SA in O(n) steps. Then, as noted in [6] and explained in [5], we compute the Lyndon
array L[1..n] of x from ISA, also in Ø(n) steps, using the next smaller value (NSV)
algorithm. Thus we set L2[i] = L

[

L1[i]
]

for every i.

To complete the calculation, we need only set the L2 values to zero except for the
first entry in each group. For that we can use the O(n)-time algorithm of Kasai et
al. [7] to compute the lcp array. Then, for every i, if lcp(L1[i],L1[i+1]) ≥ L2[i] and
L2[i−1] = L2[i], we change the value of L2[i] to 0. ⊓⊔

The reversed calculation is in essence Baier’s Phase 2 algorithm. However, we will
describe a different algorithm based on the same ideas. Though it is more complex to
implement and requires more working memory than Baier’s, it has the potential to
be faster. This statement has not been verified by empirical testing, it is just based
on the analysis of the implementation of the two algorithms. The actual testing will
require to excise the second step from Uwe Baier’s implementation.

The several following definitions are introduced only for use in the proof of Lemma 2.
Thus they are not presented formally. We give them here because they are too com-
plex to be included in the proof itself.

The delta operator is defined as follows: for i ∈ Gu,∆(i) = i+|u|. If∆(i) ≤ n, then
consider v, the maxLyn substring at the position ∆(i). If u were lexicographically
smaller than v, then uv would be Lyndon, contradicting the maximality of u. Thus,

v � u. It follows that for i ∈ Gu











∆(i) = n+1, or

∆(i) ∈ Gv for some maxLyn v ≺ u, or

∆(i) ∈ Gu.

The groups form a partition of the set of indices. Through the delta operator we
define the ∆-refinement of this partition: let u, v be maxLyn substrings of x so that
v � u, then we define the subgroup Gv

u = {i ∈ Gu : ∆(i) ∈ Gv}, while we define
the subgroup G$

u = {i ∈ Gu : ∆(i) = n+1}.

It follows that each group Gu is a disjoint union of non-empty subgroups Gv
u for

all maxLyn v � u and possibly G$
u. If i ∈ Gv1

u and j ∈ Gv2

u , and v1 ≺ v2 � u, then
x[i..n] ≺ x[j..n], as x[i..n] = uv1w1 for some w1, and x[j..n] = uv2w2 for some w2.
Since |G$

u| ≤ 1, if i ∈ G$
u and i 6= j ∈ Gu, then x[i..n] ≺ x[j..n], as x[i..n] = u and

x[j..n] = uw for some w. Thus, if we separately perfectly order the subgroup Gv
u for

each maxLyn v ≺ u, then the group Gu will be perfectly ordered, as an important
property of each subgroup Gv

u, v ≺ u, is the fact that a perfect order of the group
Gv induces a perfect order on Gv

u: we simply let i precede j only if ∆(i) precedes
∆(j). Similarly, a perfect order of G1

u, which is defined as the disjoint union of all
subgroups of Gu except Gu

u, induces a perfect order on Gu
u.

For example, consider x = abb abb aa abb abb abb with Gabb = {1, 4, 9, 12, 15}.
G$

abb = {15}, G
aaabbabbabb
abb = {4}, Gabb

abb = {1, 9, 12} and Gabb = G$
abb∪G

aaabbabbabb
abb ∪Gabb

abb.
A perfect order of G$

abb is 15, a perfect order of Gaaabbabbabb
abb is 4. The elements of G$

abb

will be listed first, the elements of Gaaabbabbabb
abb . The perfect order of G$

abb∪G
aaabbabbabb
abb =

{15, 4} determines the order of Gabb
abb = {1, 9, 12}. Now, ∆(1) = 1+3 = 4, ∆(9) =

9+3 = 12, and ∆(12) = 12+3 = 15. Thus, 12 goes before 1, and then goes 9, i.e. the
perfect order of Gabb is 15, 4, 12, 1, 9.
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Lemma 2 Let L[1..2][1..n] be a partially sorted Lyndon array of a string x = x[1..n].
Then in O(n) steps we can order the items in the groups to obtain the sorted Lyndon
array.

We only present here a sketch of the proof, as a complete proof would require
an analysis of the code of the algorithm and so would exceed the scope of this con-
tribution. However, for the interested reader, a C++ implementation is available at
http://www.cas.ca/~franek/research.html/ub.cpp for viewing, analysis, and
testing.

Proof. We can achieve the desired ordering of L[1..2][1..n] by computing the suffix
array SA of x and copying it into L1[1..n].

First we compute triples (I[i], G[i], SG[i]) for i ∈ 1..n, where I[i] = L1[i], G[i] repre-
sent group (we are using integers 1..n to represent groups, and using ∆(i) we compute
the subgroups (we are using integers 0..n to represents the subgroups). This can be
achieved in two traversals.

Then we use a radix sort to sort the triples to be ascending in G and within each
group to be ascending in SG. This can be achieved in six traversals.

In two traversals we can compute the inverse ∆ relation, i.e. i ∈ ∆−1(j) iff ∆(i) = j.

Then we traverse the inverse ∆ relation ∆−1 and record the indices as we encounter
them. As explained in the text before this lemma, the perfect order of the previous
groups induces a perfect order on the current group via the ∆ operator. ⊓⊔

Theorem 3 Let L[1..2][1..n] be a partially sorted Lyndon array of a string x =
x[1..n]. The suffix array SA[1..n] of x can be computed from x and L in O(n) steps.

Proof. Using Lemma 2, we can compute the sorted Lyndon array L[1..2][1..n] of x by
perfectly ordering L. As previously noted, L[1][1..n] is then the suffix array of x. ⊓⊔

4 Conclusion

Three arrays — Lyndon grouping array, partially sorted Lyndon array, sorted Lyndon
array — have been introduced to formalize the notion of what is meant by sorting
the maximal Lyndon substrings. The mutual relationship of these arrays has been ex-
amined and we have shown in what way the sorting of all maximal Lyndon substrings
and sorting of suffixes of a string relate to each other.

Uwe Baier observed in [1,2], that his algorithm was slower than the state-of-the-art
suffix sorting algorithms. He ascribed that to the early stages of the existence of his
non-recursive approach and conjectured that with time, the approach would become
more refined and thus faster. In essence, Phase 1 in Uwe Baier’s algorithm is a direct
construction of a partially sorted Lyndon array, which in Phase 2 is perfectly ordered
to give the suffix array. The proof of Theorem 2 actually shows how much extra work
is needed to get from the suffix array to a sorted Lyndon array. Thus, it seems to
us that computing a partially sorted Lyndon array is essentially a harder task than
“plain sorting” of the suffixes. So, maybe, no algorithm for computing a partially
sorted Lyndon array can be as fast as sorting of suffixes, which in no way detracts
from Uwe Baier’s discovery of the deep connection hitherto unnoticed between the
order of maximal Lyndon substrings and the order suffixes of a string.

http://www.cas.ca/~franek/research.html/ub.cpp
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In the diagram in Fig. 5, the arrow represent “simple linear computation”. The
diagram summarizes the relationships among the various arrays we were investigating.
The two arrows with ? represent open questions: Can a Lyndon array be used in a
simple linear computation to compute a Lyndon grouping array? and Can a Lyndon
grouping array be used in a simple linear computation to compute a sorted Lyndon
array? Note that Phase 1 of Uwe Baier’s algorithm basically says Yes to both these
questions. However it is not using any Lyndon array or Lyndon grouping array, it
just computes it directly from the string. Maybe, having a Lyndon array or Lyndon
grouping array can simplify the computation. From our point of view, having been
interested in computation of Lyndon arrays, answer to the first question is much more
interesting.
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