
Faster Batched Range Minimum Queries

Szymon Grabowski, Tomasz Kowalski

† Lodz University of Technology, Institute of Applied Computer Science,
Al. Politechniki 11, 90–924  Lódź, Poland,
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Abstract. Range Minimum Query (RMQ) is an important building brick of many
compressed data structures and string matching algorithms. Although this problem is
essentially solved in theory, with sophisticated data structures allowing for constant
time queries, there are scenarios in which the number of queries, q, is rather small
and given beforehand, which encourages to use a simpler approach. A recent work by
Alzamel et al. starts with contracting the input array to a much shorter one, with its
size proportional to q. In this work, we build upon their solution, speeding up handling
small batches of queries by a factor of 3.8–7.8 (the gap grows with q). The key idea that
helped us achieve this advantage is adapting the well-known Sparse Table technique to
work on blocks, with speculative block minima comparisons. We also propose an even
much faster (but possibly using more space) variant without the array contraction.
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1 Introduction

The Range Minimum Query (RMQ) problem is to preprocess an array so that the
position of the minimum element for an arbitrary input interval (specified by a pair
of indices) can be acquired efficiently. More formally, for an array A[1 . . . n] of objects
from a totally ordered universe and two indices i and j such that 1 ≤ i ≤ j ≤ n, the
range minimum query RMQA(i, j) returns argmini≤k≤j A[k], which is the position of
a minimum element in A[i . . . j]. One may alternatively require the position of the
leftmost minimum element, i.e., resolve ties in favour of the leftmost such element,
but this version of the problem is not widely accepted. In the following considerations
we will assume that A contains integers.

This innocent-looking little problem has quite a rich and vivid history and perhaps
even more important applications, in compressed data structures in general, and in
text processing in particular. Solutions for RMQ which are efficient in both query time
and preprocessing space and time are building blocks in such succinct data structures
as, e.g., suffix trees, two-dimensional grids or ordinal trees. They have applications
in string mining, document retrieval, bioinformatics, Lempel-Ziv parsing, etc. For
references to these applications, see [5,4].

The RMQ problem history is related to the LCA (lowest common ancestor) prob-
lem defined for ordinal trees: given nodes u and v, return LCA(u, v), which is the
lowest node being an ancestor of both u and v. Actually, the RMQ problem is linearly
equivalent to the LCA problem [7,3], by which we mean that both problems can be
transformed into each other in time linearly proportional to the size of the input. It
is relatively easy to notice that if the depths of all nodes of tree T visited during an
Euler tour over the tree are written to array A, then finding the LCA of nodes u and
v is equivalent to finding the minimum in the range of A spanned between the first
visits to u and v during the Euler tour (cf. [3, Observation 4]). Harel and Tarjan [10]
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were the first to give O(n)-time tree preprocessing allowing to answer LCA queries in
constant time. The preprocessing required O(n) words of space. A significantly sim-
pler algorithm was proposed by Bender and Farach [3], with the same time and space
complexities. Further efforts were focused on reducing the space of the LCA/RMQ
solution, e.g. Sadakane [11] showed that LCAs on a tree of n nodes can be handled in
constant time using only 2n+ o(n) bits. A crowning achievement in this area was the
algorithm of Fischer and Heun [5], who showed that RMQs on A can be transformed
into LCA queries on the succinct tree, and this leads to an RMQ solution that also
uses 2n+ o(n) bits and (interestingly) does not access A at query time.

The Fischer and Heun solution, although allowing for constant time RMQ queries,
is not so efficient in practice: handling one query takes several microseconds (see [4]).
Some ingenious algorithmic engineering techniques, by Grossi and Ottaviano [9] and
by Ferrada and Navarro [4], were proposed to reduce this time, but even the faster of
these two [4] achieves about 2µs per query1.

Very recently, Alzamel et al. [2] (implicitly) posed an interesting question: why
should we use any of these sophisticated data structures for RMQ when the number
of queries is relatively small and building the index (even in linear time, but with
a large constant) and answering then the queries (even in constant time each, but
again with a large constant) may not amortize? A separate, but also important point
is that if we can replace a heavy tool with a simpler substitute (even if of limited
applicability), new ideas may percolate from academia to software industry. Of course,
if the queries [ℓi, ri] are given one by one, we cannot answer them faster than in the
trivial O(ri − ℓi + 1) = O(n) time for each, but the problem becomes interesting if
they are known beforehand. The scenario is thus offline (we can also speak about
batched queries or bulk queries). Batched range minima (and batched LCA queries)
have applications in string mining [6], text indexing and various non-standard pattern
matching problems, for details see [2, Section 5].

As the ideas from Alzamel et al. [2] are a starting point for our solution and we
directly compete with them, we dedicate the next section to presenting them.

We use a standard notation in the paper. All logarithms are of base 2. If not
stated otherwise, the space usage is expressed in words.

2 The Alzamel et al. algorithm

Following [1] (see the proof of Lemma 2), the Alzamel et al. approach starts from
contracting the array A into O(q) entries. The key observation is that if no query
starts or ends with an index i and i + 1, then, if A[i] 6= A[i + 1], max(A[i], A[i + 1])
will not be the answer to any of the queries from the batch. This can be generalized
into continuous regions of A. Alzamel et al. mark the elements of A which are either
a left or a right endpoint of any query and create a new array AQ: for each marked
position in A its original value is copied into AQ, while each maximal block in A that
does not contain a marked position is replaced by a single entry, its minimum. The
relative order of the elements copied from A is preserved in AQ, that is, in AQ the
marked elements are interweaved with representatives of non-marked regions between
them. As each of q queries is a pair of endpoints, AQ contains up to 4q + 1 elements
(repeating endpoint positions imply a smaller size of AQ, but for relative small batches

1 On an Intel Xeon 2.4 GHz, running on one core (H. Ferrada, personal comm.).
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of random queries this effect is rather negligible). In an auxiliary array the function
mapping from the indices of AQ into the original positions in A is also kept.

For the contracted data, three procedures are proposed. Two of them, one offline
and one online, are based on existing RMQ/LCA algorithms with linear preprocess-
ing costs and constant time queries. Their practical performance is not competitive
though. The more interesting variant, ST-RMQCON, achieves O(n+q log q) time2. The
required space (for all variants), on top of the input array A and the list of queries Q,
is claimed to be O(q), but a more careful look into the algorithm (and the published
code) reveals that in the implementation of the contracting step the top bits of the
entries of A are used for marking. There is nothing wrong in such a bit-stealing tech-
nique, from a practical point3, but those top bits may not always be available and
thus in theory the space should be expressed as O(q) words plus O(n) bits.

We come back to the ST-RMQCON algorithm. Bender and Farach [3] made a sim-
ple observation: as the minimum in a range R is the minimum over the minima of
arbitrary ranges (or subsets) in R with the only requirement that the whole R is
covered, for an array A of size n it is enough to precompute the minima for (only)
O(n log n) ranges to handle any RMQ. More precisely, for each left endpoint A[i] we
compute the minima for all valid A[i . . . i+2k − 1] (k = 0, 1, . . .) ranges, and then for
any A[i . . . j] it is enough to compute the minimum of two already computed minima:
for A[i . . . i + 2k

′ − 1] and A[j − 2k
′

+ 1 . . . j], where k′ = ⌊log(j − i)⌋. Applying this
technique for the contracted array would yield O(q log q) time and space for this step.
Finally, all the queries can be answered with the described technique, in O(q) time.
In the cited work, however, the last two steps are performed together, with re-use of
the array storing the minima. Due to this clever trick, the size of the helper array is
only O(q).

3 Our algorithms

3.1 Block-based Sparse Table with the input array contraction

On a high level, our first algorithm consists of the following four steps:

1. Sort the queries and remap them with respect to the contracted array’s indices
(to be obtained in step 2).

2. Contract A to obtain AQ of size O(q) (integers).
3. Divide AQ into equal blocks of size k and for each block Bj (where j = 1, 2, . . .)

find and store the positions of O(log q) minima, where ith value (i = 1, 2, . . . ) is
the minimum of AQ[1+ (j− 1)k . . . (j− 1)k+(2i−1 − k)k], i.e., the minimum over
a span of 2i−1 blocks, where the leftmost block is Bj.

4. For each query [ℓi, ri], find the minimum m′
i over the largest span of blocks fully

included in the query and not containing the query endpoints. Then, read the
minimum of the block to which ℓi belongs and the minimum of the block to which
ri belongs; only if any of them is less than m′

i, then scan (at most) O(k) cells of
AQ to find the true minimum and return its position.

2 Written consistently as n + O(q log q) in the cited work, to stress that the constant associated
with scanning the original array A is low.

3 One of the authors of the current work also practiced it in a variant of the SamSAMi full-text
index [8, Section 2.3].
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In the following paragraphs we are going to describe those steps in more detail,
also pointing out the differences between our solution and Alzamel et al.’s one.

(1) Sorting/remapping queries. Each of the 2q query endpoints is represented as a
pair of 32-bit integers: its value (position in A) and its index in the query list Q. The
former 4-byte part is the key for the sort while the latter 4 bytes are satellite data.
In the serial implementation, we use kxsort4, an efficient MSD radix sort variant.
In the parallel implementation, our choice was Multiway-Mergesort Exact variant
implemented in GNU libstdc++ parallel mode library5. As a result, we obtain a
sorted endpoint list E[1 . . . 2q], where Ei = (Ex

i , E
y
i ) and Ex

i+1 ≥ Ex
i . Alzamel et al.

do not sort the queries, which is however possible due to marking bits in A.
(2) Creating AQ. Our contracted array AQ contains the minima of all areas

A[Ex
i . . . E

x
i+1], in order of growing i. AQ in our implementation contains thus (up

to) 2q − 1 entries, twice less than in Alzamel et al.’s solution. Like in the preceding
solution, we also keep a helper array mapping from the indices of AQ into the original
positions in A.

(3) Sparse Table on blocks. Here we basically follow Alzamel et al. in their ST-

RMQCON variant, with the only difference that we work on blocks rather than in-
dividual elements of AQ. For this reason, this step takes O(q + (q/k) log(q/k)) =
O(q(1 + log(q/k)/k)) time and O((q/k) log(q/k)) space. The default value of k, used
in the experiments, is 512.

(4) Answering queries. Clearly, the smaller of two accessed minima in the Sparse
Table technique is the minimum over the largest span of blocks fully included in the
query and not containing the query endpoints. To find the minimum over the whole
query we perform speculative reads of the two minima of the extreme blocks of our
query. Only if at least one of those values is smaller than the current minimum, we
need to scan a block (or both blocks) in O(k) time. This case is however rare for an
appropriate value of k. This simple idea is crucial for the overall performance of our
scheme. In the worst case, we spend O(k) per query here, yet on average, assuming
uniformly random queries over A, the time is O((k/q)×k+(1−k/q)×1) = O(1+k2/q),
which is O(1) for k = O(

√
q).

Let us sum up the time (for a serial implementation) and space costs. A scan
over array A is performed once, in O(n) time. The radix sort applied to our data of
2q integers from {1, . . . , n} takes (in theory) O(qmax(log n/ log q, 1)) time. Alterna-
tively, introsort from C++ standard library (i.e., the std::sort function) would yield
O(q log q) time. To simplify notation, the Sort(q) term will further be used to denote
the time to sort the queries and we also introduce q′ = q/k. AQ is created in O(q)
time. Building the Sparse Table on blocks adds O(q+ q′ log q′) time. Finally, answer-
ing queries requires O(qk) time in the worst case and O(q + k2) time on average. In
total, we have O(n+ Sort(q) + q′ log q′ + qk) time in the worst case. The extra space
is O(q′ log q′).

Let us now consider a generalization of the doubling technique in Sparse Table (a
variant that we have not implemented). Instead of using powers of 2 in the formula
AQ[1+(j−1)k . . . (j−1)k+(2i−1−k)k], we use powers of an arbitrary integer ℓ ≥ 2 (in
a real implementation it is convenient to assume that ℓ is a power of 2, e.g., ℓ = 16).
Then, the minimum over a range will be calculated as a minimum over ℓ precomputed
values. Overall we obtain O(n + Sort(q) + q′ log q′/ log ℓ + qℓ + qk) worst-case time,

4 https://github.com/voutcn/kxsort
5 https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

https://github.com/voutcn/kxsort
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
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which is minimized for ℓ = max(log q′/(k log log q′), 2). With k small enough to have
ℓ = log q′/(k log log q′), we obtain O(n+Sort(q)+q′ log q′/ log log q′+qk) overall time
and the required extra space is O(q′ log q′/ log log q′).

If we focus on the average case, where the last additive term of the worst-case
time turns into k2/q, it is best to take k =

√
q, which implies ℓ = 2. In other words,

this idea has its niche only considering the worst-case time, where for a small enough
k both the time and the space of the standard block-based Sparse Table solution are
improved.

3.2 Block-based Sparse Table with no input array contraction

This algorithm greatly simplifies the one from the previous subsection: we do not
contract the array A and thus also have no need to sort the queries. Basically, we
reduce the previous variant to the last two stages. Naturally, this comes at a price:
the extra space usage becomes O((n/k) log(n/k)) (yet the optimal choice of k may
be different, closer to

√
n). Experiments will show that such a simple idea offers very

competitive RMQ times.
Let us focus on the space and time complexities for this variant, for both the worst

and the average case. The analysis resembles the one from the previous subsection.
We have two parameters, n and k, and two stages of the algorithm. The former
stage takes O(n + (n/k) log(n/k)) time, the latter takes O(qk) time in the worst
case and O(q(1 + k2/n)) on average (which is O(q) if k = O(

√
n)). In total we have

O(n+(n/k) log(n/k)+qk) time in the worst case and O(n+(n/k) log(n/k)+q) time on
average, provided in the latter case that k = O(

√
n). The space is O((n/k) log(n/k)).

To minimize both the time and the space for the average case we set k = Θ(
√
n).

Then the average time becomes O(n +
√
n log

√
n + q) = O(n + q) and the space is

O(
√
n log n).

3.3 Multi-level block-based Sparse Table

The variant from Subsection 3.2 can be generalized to multiple block levels. We start
from the simplest case, replacing one level of blocks with two levels.

The idea is to compute minima for n/k1 non-overlapping blocks of size k1 and
then apply the doubling technique from Sparse Table on larger blocks, of size k2. We
assume that k1 divides k2.

The first stage, finding the minima for blocks of size k1, takes O(n) time. The
second stage, working on blocks of size k2, takes O(n/k1 + (n/k2) log(n/k2)) time.
The third stage answers the queries; if we are unlucky and one or two blocks of size
k2 have to be scanned, the procedure is sped up with aid of the precomputed minima
for the blocks of size k1. The query answering takes thus O(q(k2/k1+k1)) time in the
worst case and O(q) time on average if (k2/n)× (k2/k1 + k1) = O(1). The condition
on the average case becomes clear when we notice that the probability of the unlucky
case is Θ(k2/n) and checking (up to) two blocks takes O(k2/k1 + k1) time. Fulfilling
the given condition implies that k1k2 = O(n) and k2/k1 = O(n/k2).

Our goal is to find such k1 and k2 that the extra space is minimized but the average
time of O(n + q) preserved. To this end, we set k1 =

√
n/ log1/3 n, k2 =

√
n log2/3 n,

and for these values the average time becomes O(n+ n/k1 + (n/k2) log(n/k2) + q) =

O(n+ q). The space is O(n/k1 + (n/k2) log(n/k2)) = O(
√
n log1/3 n).
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Figure 1. Running times for ST-RMQCON and BbSTCON with varying number of queries q, from
√
n

to 32
√
n (left figures) and from 64

√
n to 1024

√
n (right figures), where n is 100 million (top figures)

or 1 billion (bottom figures)

Note that we preserved the average time of the variant from Subsection 3.2 and
reduced the extra space by a factor of log2/3 n. Note also that the space complexity
cannot be reduced for any other pair of k1 and k2 such that k1k2 = O(n).

We can generalize the presented scheme to have h ≥ 2 levels. To this end, we
choose h parameters, k1 < . . . < kh, such that each ki divides ki+1. The minima for
non-overlapping blocks of size ki, 1 ≤ i < h, are first computed, and then also the
minima for blocks of size kh, their doubles, quadruples, and so on. The O(q) average
time for query answering now requires that (kh/n)×(kh/kh−1+kh−1/kh−2+. . .+k2/k1+

k1) = O(1). We set k1 =
√
n/ log1/(h+1) n and ki =

√
n log(i−1)/(h−1)−1/(h+1) n for all

2 ≤ i ≤ h, which gives kh =
√
n logh/(h+1) n. Let us suppose that h = O(log log n).

The aforementioned condition is fulfilled, the average time is O(n+ q), and the space
is O(n/k1+n/k2+ . . .+n/kh−1+(n/kh) log(n/kh)) = O(n/k1+(n/kh) log(n/kh)n) =

O(
√
n log1/(h+1) n). By setting h = log log n− 1 we obtain O(

√
n) words of space.

4 Experimental results

In the experiments, we followed the methodology from [2]. The array A stores a
permutation of {1, . . . , n}, obtained from the initially increasing sequence by swapping
n/2 randomly selected pairs of elements. The queries are pairs of the form (ℓi, ri),
where ℓi and ri are uniformly randomly drawn from {1, . . . , n} and if it happens that
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q (in 1000s) stage 1 stages 1–2 stages 1–3 stages 1–4
n = 100, 000, 000

10 1.4 95.9 95.9 100.0
320 23.5 92.5 93.0 100.0

10240 65.8 88.3 89.1 100.0
n = 1, 000, 000, 000

32 0.4 99.6 99.6 100.0
1024 13.8 96.5 96.8 100.0

32768 59.0 87.9 88.6 100.0

Table 1. Cumulative percentages of the execution times for the successive stages of BbSTCON with
the fastest serial sort (kxsort). The default value of k (512) was used. Each row stands for a different
number of queries (given in thousands).

the former index is greater than the latter, they are swapped. The number of queries
q varies from

√
n to 1024

√
n, doubling each time (in [2] they stop at q = 128

√
n).

Our first algorithm, BbSTCON (Block based Sparse Table with Contrac-
tion), was implemented in C++ and compiled with 32-bit gcc 6.3.0 with
-O3 -mavx -fopenmp switches. Its source codes can be downloaded from
https://github.com/kowallus/BbST. The experiments were conducted on a
desktop PC equipped with a 4-core Intel i7 4790 3.6GHz CPU and 32GB of
1600MHz DDR3 RAM (9-9-9-24), running Windows 10 Professional. All presented
timings in all tests are medians of 7 runs, with cache flushes in between.

In the first experiment we compare BbSTCON with default settings (k = 512, kxsort
in the first stage) against ST-RMQCON (Fig. 1). Two sizes of the input array A are
used, 100 million and 1 billion. The left figures present the execution times for small
values of q while the right ones correspond to bigger values of q. We can see that the
relative advantage of BbSTCON over ST-RMQCON grows with the number of queries,
which in part can be attributed to using a fixed value of k (the selection was leaned
somewhat toward larger values of q). In any case, our algorithm is several times faster
than its predecessor.

Table 1 contains some profiling data. Namely, cumulative percentages of the exe-
cution times for the four successive stages (cf. 3.1) of BbSTCON with default settings,
are shown. Unsurprisingly, for a growing number of queries the relative impact of the
sorting stage (labeled as stage 1) grows, otherwise the array contraction (stage 2) is
dominating. The last two stages are always of minor importance in these tests.

In Fig. 2 we varied the block size k (the default sort, kxsort, was used). With a
small number of queries the overall timings are less sensitive to the choice of k. It is
interesting to note that optimal k can be found significantly below

√
n.

Different sorts, in a serial regime, were applied in the experiment shown in Fig. 3.
Namely, we tried out C++’s qsort and std::sort, kxsort, gnu parallel::sort and Intel
parallel stable sort (pss). The function qsort, as it is easy to guess, is based on quick
sort. The other sort from the C++ standard library, std::sort, implements introsort,
which is a hybrid of quick sort and heap sort. Its idea is to run quick sort and only if
it gets into trouble on some pathological data (which is detected when the recursion
stack exceeds some threshold), switch to heap sort. In this way, std::sort works in
O(n log n) time in the worst case. The next contender, kxsort, is an efficient MSD
radix sort. The last two sorters are parallel algorithms, but for this test they are run
with a single thread. The gnu sort is a multiway mergesort (exact variant) from the

https://github.com/kowallus/BbST
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Figure 3. Impact of the sort algorithm on the running times of BbSTCON. The number of queries
q varies from

√
n to 32

√
n (left figures) and from 64

√
n to 1024
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n (right figures), where n is 100

million (top figures) or 1 billion (bottom figures)

GNU libstdc++ parallel mode library. Finally, Intel’s pss is a parallel merge sort6.
We use it in the OpenMP 3.0 version.

6 https://software.intel.com/en-us/articles/

a-parallel-stable-sort-using-c11-for-tbb-cilk-plus-and-openmp
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Figure 4. Impact of the number of threads in gnu parallel::sort and in creating AQ (by independent
scanning for minima in contiguous areas of A) on the overall performance of BbSTCON, for different
number of queries q, where n is 100 million (left figure) or 1 billion (right figure). Note the logarithmic
scale on the Y-axis.

For the last experiment with BbSTCON, we ran our algorithm in a parallel mode,
varying the number of threads in {1, 2, . . . , 8, 12, 16} (Fig 4). For sorting the queries
we took the faster parallel sort, gnu parallel::sort. The remaining stages also benefit
from parallelism. The second stage computes in parallel the minima in contiguous ar-
eas of A and the third stage correspondingly handles blocks of AQ. Finally, answering
queries is handled in an embarassingly parallel manner. As expected, the performance
improves up to 8 threads (as the test machine has 4 cores and 8 hardware threads),
but the overall speedups compared to the serial variant are rather disappointing,
around factor 2 or slightly more.

Finally, we ran a preliminary test of the algorithm from Subsection 3.2, BbST,
using the parameters of k = {4096, 16384, 65536} (Fig. 5). As expected, a smaller
value of k fits better the smaller value of n and vice versa (but for small q and the
larger n our timings were slightly unpredictable). Although we have not tried to fine
tune the parameter k, we can easily see the potential of this algorithm. For example,
with k = 16384 and the largest tested number of queries, BbST is 2.5 times faster
than BbSTCON for the smaller n and almost 6 times faster for the larger n. Changing
k to 4096 in the former case increases the time ratio to well over 8-fold!

Table 2 presents the memory use (apart from input array A and the set of
queries Q) for the two variants. BbST is insensitive here to q. The parameter k was
set to 512 in the case of BbSTCON. As expected, the space for BbSTCON grows linearly
with q. BbST is more succinct for the tested number of queries (q ≥ √

n), even if for
a very small q BbSTCON would easily win in this respect.

5 Final remarks

We have proposed simple yet efficient algorithms for bulk range minimum queries.
Experiments on random permutations of {1, . . . , n} and with ranges chosen uniformly
random over the input sequence show that one of our solutions, BbSTCON, is from 3.8
to 7.8 times faster than its predecessor, ST-RMQCON (the gap grows with increasing
the number of queries). The key idea that helped us achieve this advantage is adapting
the well-known Sparse Table technique to work on blocks, with speculative block
minima comparisons.



94 Proceedings of the Prague Stringology Conference 2017

0 50000 100000 150000 200000 250000 300000

number q of queries

0.00

0.05

0.10

0.15

0.20

0.25

0.30
ti

m
e
 [

s]
n = 100M

k = 4096

k = 16384

k = 65536

0.0 0.2 0.4 0.6 0.8 1.0 1.2

number q of queries (×107)
1e7

0

1

2

3

4

5

6

7

8

ti
m

e
 [

s]

n = 100M

0 200000 400000 600000 800000 1000000

number q of queries

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

ti
m

e
 [

s]

n = 1G
k = 4096

k = 16384

k = 65536

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

number q of queries (×107)
1e7

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

ti
m

e
 [

s]

n = 1G

Figure 5. Running times for BbST for several values of the block size k and varying the number of
queries q, from

√
n to 32

√
n (left figures) and from 64

√
n to 1024

√
n (right figures), where n is 100

million (top figures) or 1 billion (bottom figures)

variant extra space as % of the input
with parameter n = 100, 000, 000 n = 1, 000, 000, 000
BbSTCON, q ≈ √

n 0.10 0.03
BbSTCON, q ≈ 32

√
n 3.23 1.03

BbSTCON, q ≈ 1024
√
n 103.68 33.20

BbST, k = 2048 1.56 1.86
BbST, k = 4096 0.73 0.88
BbST, k = 8192 0.34 0.42
BbST, k = 16, 384 0.16 0.20
BbST, k = 32, 768 0.07 0.09

Table 2. Memory use for the two variants, as the percentage of the space occupied by the input
array A (which is 4n bytes). The parameter k was set to 512 for BbSTCON.

Not surprisingly, extra speedups can be obtained with parallelization, as shown
by our preliminary experiments. This line of research, however, should be pursued
further.

The variant BbST, although possibly not as compact as BbSTCON (when the num-
ber of queries is very small), proves even much faster. We leave running more thorough
experiments with this variant, including automated selection of parameter k, as a fu-
ture work.
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