
A Lempel-Ziv-style Compression Method for

Repetitive Texts

Markus Mauer, Timo Beller, and Enno Ohlebusch

Institute of Theoretical Computer Science
Ulm University

89069 Ulm, Germany
{Markus.Mauer,Timo.Beller,Enno.Ohlebusch}@uni-ulm.de

Abstract. In this paper, we present a compression algorithm that is based on finding
repetitions in the file to be compressed. Our approach is a variant of longest-first-
substitution compression that uses the suffix array and the LCP-array to find and
encode long recurring substrings. We will show that our algorithm achieves very good
compression ratios for repetitive texts.

Keywords: lossless data compression, longest-first-substitution compression, repeti-
tive texts, suffix array

1 Introduction

The dictionary-based LZ-algorithms devised by Lempel and Ziv [14,21,22] are an
important class of lossless compression algorithms. One can distinguish between on-

line algorithms (in which the dictionary is dynamically built from the prefix of the text
seen so far) and off-line algorithms (in which the dictionary is constructed from the
whole text). The original LZ77-algorithm uses a window of size w and the dictionary
consists of all substrings that start within the last w scanned positions of the text.
In classical implementations, the LZ77-algorithm parses greedily, i.e., if S[1..i − 1]
has already been scanned, then the next factor is the longest prefix of S[i..n] that
is in the dictionary and starts within S[1..i − 1]. If the next factor has length ℓ and
starts at position j ≤ i− 1 in S, then the LZ77-algorithm encodes the triple (d, ℓ, c),
where d = i − j < w is the offset and c = S[i + ℓ] is the character following the
factor; it then continues parsing S[i+ ℓ+1..n]. If the window consists of all positions
scanned so far (we will call this algorithm LZ77-compression without window), the
offset d can be very large, so one should select the rightmost copy of a factor to keep d
small (see [9] for an algorithm that does this with the help of the suffix tree of S). As
pointed out in [16], the LZ77 compression algorithm without window that encodes the
absolute position j at which the next factors starts (instead of the offset d), should be
called LZ76 compression [14]. The greedy algorithm without window is optimal with
respect to the number of factors, and it can be implemented in such a way that it uses
only linear time and space [5] (the result of Crochemore and Ilie has been improved
by many authors; see [10] and the references therein). If one encodes the factors by
variable-length codes, then the greedy algorithm is in general not bit-optimal, i.e., it
is not optimal in terms of the number of bits output by the compression algorithm;
see [9]. Ferragina et al. [9, Theorem 5.4] use a linear-time algorithm for the single-
source shortest path problem on a weighted DAG to obtain a bit-optimal algorithm
for the LZ77-compression-scheme.

In this paper, we present an off-line compression algorithm that is different from
the LZ-algorithms described above in that it does not try to parse the text in a

Markus Mauer, Timo Beller, Enno Ohlebusch: A Lempel-Ziv-style Compression Method for Repetitive Texts, pp. 96–107.

Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 97

missmississippimissedin
✿✿✿✿✿✿✿✿✿✿✿✿

mississippi$

missmiss
✿✿✿✿

issippimissedin////////////////mississippi$

miss
✿✿✿✿✿

miss//////issippi
✿✿✿✿

missedin////////////////mississippi$

missmiss//////issippimissedin////////////////mississippi$

Figure 1. Consider the string S = missmississippimissedinmississippi$. Our compression
algorithm first detects the repeat mississippi and encodes the wavy underlined occurrence (repeat
of type 2). Then, it detects the periodicity ississi with period-length 3 and encodes the wavy
underlined occurrence of issi (repeat of type 1). Finally, it detects the three repetitions of miss
and encodes the wavy underlined occurrences (this repeat gets the identifier 3). In the resulting
string S′ = miss##ppi#edin#$, every occurrence of # stands for a factor and the vector F = 3132
contains the types (from left to right) of these factors. The factor of type 3 is (1, 4), the factor of
type 1 is (3, 4), and the factor of type 2 is (5, 11). That is, the list of factors (from left to right) is
[(1, 4), (3, 4), (5, 11)]; see Section 4 for details.

left-to-right scan into phrases. By contrast, it identifies long repetitions in advance
(prior to the compression) and then tries to greedily compress these repetitions
(first the longest, then the second longest, etc.). This strategy is called longest-first-
substitution. If the repetition is a periodicity (called repeat of type 1) or if it occurs
only twice (called repeat of type 2), then it is stored in a list of factors and the
type is stored in a vector F . However, if it occurs more than twice, then a factor
is stored only for the second occurrence whereas the other occurrences are encoded
by a unique identifier, which is stored in F . All occurrences of these repeats (except
for the first occurrence) are replaced with a special symbol # in S, yielding a string
S ′. The three components (S ′, F , and the list of factors) are then compressed sepa-
rately; see Fig. 1 for an example and Section 4 for details. Our software is available
at https://www.uni-ulm.de/in/theo/research/seqana/

2 Related Work for DNA-sequences

When writing this paper, we were unaware of the work of Rivals et al. [20]. It turned
out that they used the same basic idea as our algorithm, but they restrict their
algorithm to DNA-sequences. Moreover, the details differ substantially. For example,
they do not take periodicities (overlapping repeats) into account. Furthermore, they
encode one sequence consisting of substrings, factors, and indices to the dictionary.
By contrast, we separate the three types. This separation makes the three parts
amenable to different compression techniques, i.e., one can apply every lossless data
compression algorithm to S ′ and F (while the factors, which are pairs of position and
length, are encoded separately; see Section 4 for details). More related work can be
found in [2,15,19,7].

The problem of compressing a collection of genomes from individuals of the same
species with respect to a reference genome has been extensively studied. The rel-
ative Lempel-Ziv (RLZ) algorithm devised by Kuruppu et al. [12,13] is a popular
algorithm for this special case, especially when fast random access is required. The
RLZ-algorithm was subsequently improved by Deorowicz and Grabowski [6], by Fer-
rada et al. [8], and by Cox et al. [4]. In contrast to these algorithms, our algorithm
does not rely on a reference sequence: it can be applied to every (repetitive) text. On

https://www.uni-ulm.de/in/theo/research/seqana/

98 Proceedings of the Prague Stringology Conference 2017

the one hand, our algorithm provides better compression than these algorithms; on
the other hand, our approach does not support random access.

3 Preliminaries

Let Σ be an ordered alphabet of size σ whose smallest element is the sentinel character
$. In the following, S is a string of length n on Σ having the sentinel character at
the end (and nowhere else). For 1 ≤ i ≤ n, S[i] denotes the character at position

i in S. For i ≤ j, S[i..j] denotes the substring of S starting with the character at
position i and ending with the character at position j. Furthermore, Si denotes the
i-th suffix S[i..n] of S. The suffix array SA of the string S is an array of integers
in the range 1 to n specifying the lexicographic ordering of the n suffixes of S, that
is, it satisfies SSA[1] < SSA[2] < · · · < SSA[n]; see Fig. 2 for an example. We refer to
the overview article [18] for suffix array construction algorithms (some of which have
linear run-time).

The suffix array is closely related to the Burrows and Wheeler transform [3]
BWT[1..n], which is defined by BWT[i] = S[SA[i] − 1] for all i with SA[i] 6= 1 and
BWT[i] = $ otherwise; see Fig. 2.

The suffix array SA is often enhanced with the LCP-array containing the lengths
of longest common prefixes between consecutive suffixes in SA; see Fig. 2. For-
mally, the LCP-array is an array so that LCP[1] = −1 = LCP[n + 1] and LCP[i] =
|lcp(SSA[i−1], SSA[i])| for 2 ≤ i ≤ n, where lcp(u, v) denotes the longest common pre-
fix between two strings u and v. Kasai et al. [11] showed that the LCP-array can
be computed in linear time from the suffix array and its inverse. Abouelhoda et
al. [1] introduced the concept of lcp-intervals; see Fig. 2. An interval [i..j], where
1 ≤ i < j ≤ n, in the LCP-array is called an lcp-interval of lcp-value ℓ (denoted by
ℓ-[i..j]) if

1. LCP[i] < ℓ,
2. LCP[k] ≥ ℓ for all k with i+ 1 ≤ k ≤ j,
3. LCP[k] = ℓ for at least one k with i+ 1 ≤ k ≤ j,
4. LCP[j + 1] < ℓ.

In Fig. 2, for example, the interval [9..14] is an lcp-interval of lcp-value 3.
Abouelhoda et al. [1] presented an algorithm that enumerates all lcp-intervals in a

bottom-up fashion. Moreover, they showed that there is a one-to-one correspondence
between the set of all lcp-intervals and the set of all internal nodes of the suffix tree
of S (we assume a basic knowledge of suffix trees). Consequently, there are at most
n− 1 lcp-intervals for a string of length n.

If ℓ-[i..j] is an lcp-interval, then the ℓ-length prefix ω of SSA[k], where i ≤ k ≤ j,
is a repeat because the number of occurrences of ω in S is j − i+1 ≥ 2. If {BWT[k] |
i ≤ k ≤ j} is not a singleton set, then ω is a maximal repeat. In this case, the lcp-
interval [i..j] is also called maximal. For example, the lcp-interval 3-[9..14] in Fig. 2
is maximal.

If a non-empty string ω can be written as ω = ukv, where k ≥ 2 and v is a proper
prefix of u, then it is called a periodicity with period-length |u|.

4 The Compression Algorithm

In this section, we first describe the basic approach of our compression algorithm
(implementation details will be discussed later). The key idea is to classify repeats

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 99

i SA LCP BWT SSA[i] lcp-intervals
1 35 -1 i $

0*

2 21 0 e dinmississippi$

3 20 0 s edinmississippi$

4 34 0 p i$

1*

5 15 1 p imissedinmississippi$

6 22 1 d inmississippi$

7 31 1 s ippi$
4

8 12 4 s ippimissedinmississippi$

9 17 1 m issedinmississippi$

3*

10 28 3 s issippi$

4*
7

11 9 7 s issippimissedinmississippi$

12 25 4 m ississippi$
10

13 6 10 m ississippimissedinmississippi$

14 2 3 m issmississippimissedinmississippi$

15 16 0 i missedinmississippi$

4*
16 24 4 n mississippi$ ∗

1117 5 11 s mississippimissedinmississippi$

18 1 4 $ missmississippimissedinmississippi$

19 23 0 i nmississippi$

20 33 0 p pi$

1*
2

21 14 2 p pimissedinmississippi$

22 32 1 i ppi$
3

23 13 3 i ppimissedinmississippi$

24 19 0 s sedinmississippi$

1*

25 30 1 s sippi$

2
5

26 11 5 s sippimissedinmississippi$

27 27 2 s sissippi$
8

28 8 8 s sissippimissedinmississippi$

29 4 1 s smississippimissedinmississippi$

30 18 1 i ssedinmississippi$

2

31 29 2 i ssippi$

3
6

32 10 6 i ssippimissedinmississippi$

33 26 3 i ssissippi$
9

34 7 9 i ssissippimissedinmississippi$

35 3 2 i ssmississippimissedinmississippi$

Figure 2. Suffix array, LCP-array, and the Burrows-Wheeler transform BWT of the string S =
missmississippimissedinmississippi$. If an lcp-interval is maximal, then its lcp-value is marked
with an asterisk.

into different types, which are treated differently. These types are represent by the
variable id. An overlapping repeat (a periodicity) is said to be of type 1 (id = 1). In
this case, the part without the first period is encoded by a reference to the beginning
of the repeat (and the period-length). If there are two non-overlapping occurrences of
a repeat, then it is of type 2 (id = 2). In this case, the second occurrence is encoded as
in LZ76 compression by a reference to the first occurrence. Finally, if there are more
than two non-overlapping occurrences of a repeat, then each of the occurrences—
except for the first one—is encoded by a unique identifier id > 2. It is important to
note that for each such identifier, only one reference is stored.

100 Proceedings of the Prague Stringology Conference 2017

4.1 The basic approach

Our basic compression algorithm works as follows:

1. Compute all maximal lcp-intervals of the LCP-array.1 This can e.g. be done in
linear time by a bottom-up traversal of the LCP-interval tree; see [17, Algorithm
5.15].

2. Store all maximal lcp-intervals with an lcp-value ℓ ≥ ℓmin in a priority queue Q
(the priority of an lcp-interval is its lcp-value ℓ; the higher the better), where ℓmin

is a threshold.2

3. Initialize a bit-vector B of size n = |S| with zeros, initialize an empty list list and
set id← 3. In the following, a substring S[k..m] of S is said to be marked if and
only if B[k..m] contains at least a one. An unmarked substring can be subject to
compression, but a marked substring can not.

4. While Q is not empty, remove the lcp-interval ℓ-[lb..rb] with the currently highest
priority from Q and do:
(a) Compute a subset candidates of {SA[i] | lb ≤ i ≤ rb} so that for each k ∈

candidates the substring S[k..k + ℓ − 1] is unmarked. This is the case if and
only if B[k] = 0 and B[k + ℓ − 1] = 0.3 During the computation, determine
occ1 = min{SA[i] | lb ≤ i ≤ rb} and occ2 = min(candidates \ {occ1}); note
that occ1 may or may not be a member of the set candidates.

(b) Sort candidates and store the result in an array sorted candidates of size
|candidates|. Set cur ← occ1 and i ← 1 and determine the subset accepted ⊆
candidates as follows:
while i ≤ |candidates| do
– if cur + ℓ − 1 < sorted candidates[i], then add sorted candidates[i] to
accepted and set cur ← sorted candidates[i]; set i← i+ 1

Note that occ1 is not a member of the set accepted. As a result, for each pair
j, k ∈ accepted with j < k we have j + ℓ − 1 < k (i.e., the corresponding
substrings are non-overlapping). If the set accepted is non-empty, then occ1 +
ℓ − 1 < occ3 where occ3 = min(accepted). Note that occ3 may or may not be
equal to occ2.

(c) If occ1 ∈ candidates and t = occ2 − occ1 < ℓ, then S[occ1..occ1 + ℓ − 1] and
S[occ2..occ2+ℓ−1] overlap and occ2 /∈ accepted. In this case, add (occ1+t, 1, t, ℓ)
to list and set B[occ1 + t..occ1 + t+ ℓ− 1]← [1..1] unless S[occ2..occ2 + ℓ− 1]
overlaps with S[occ3..occ3 + ℓ− 1] (i.e., occ3 6= ⊥ and occ3 − occ2 < ℓ).4

(d) Let size = |accepted| be the size of the set accepted. If size > 0 and ℓ ≥
a/size + b, where a and b are constants that will be explained in Section 4.2,
then proceed with (4e); otherwise take the next interval from Q. In essence,
the restriction on ℓ ensures that the compression of the factors (whose starting
positions are in the set accepted) is worthwhile.

(e) If size = 1, where size = |accepted|, then add (occ3, 2, occ1, ℓ) to list and set
B[occ3..occ3 + ℓ− 1]← [1..1].

1 In a previous implementation we used all lcp-intervals, but this resulted in unacceptable run-times.
2 In our implementation, ℓmin equals the constant a, which will be explained in Section 4.2.
3 If B[k + 1..k + ℓ− 2] would contain a one while B[k] = 0 and B[k + ℓ− 1] = 0, then a substring
of S[k + 1..k + ℓ − 2] would have been subject to compression. Consequently, an lcp-interval of
lcp-value < ℓ must have been chosen before the current lcp-interval of lcp-value ℓ. This, however,
is impossible because lcp-intervals are chosen greedily (first the longest, then the second longest,
etc.).

4 ⊥ denotes an undefined value.

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 101

(f) If size > 1, then add (occ3, id, occ1, ℓ) to list and set B[occ3..occ3 + ℓ − 1] ←
[1..1]. Furthermore, for each k ∈ accepted \ {occ3}, add (k, id,⊥, ℓ) to list and
set B[k..k + ℓ− 1]← [1..1]. Finally, increment id by one.

We note that (a part of) the first occurrence of a repeat is subject to compression
only if it overlaps with the second occurrence; see Case (4c). Cases (4e) – (4f)
deal with non-overlapping occurrences of the repeat under consideration. If there
is just one unmarked occurrence apart from the first occurrence, then Case (4e)
applies, whereas Cases (4f) applies if there is more than one unmarked occurrence
apart from the first occurrence.

5. Let sorted be the list obtained by sorting the elements in list according to their
first components (in increasing order).

6. Initialize an empty vector F , an empty list factors , an empty string S ′, and set
p← 1.

7. While sorted is not empty, remove its first element (k, id, occ, ℓ) and do:
(a) If id = 1 or id = 2, then insert id at the back of vector F and insert (occ, ℓ) at

the back of list factors .
(b) If id > 2, then insert id at the back of vector F . Furthermore, if occ 6= ⊥,

insert (occ, ℓ) at the back of list factors .
(c) Concatenate S ′ with S[p..k − 1]# and set p ← k. (In essence, S ′ is obtained

from S by replacing each factor S[k..k + ℓ− 1] with #.)
8. Compress the list factors , the vector F , and the string S ′ separately.

As an example, consider S = missmississippimissedinmississippi$. The cor-
responding suffix- and LCP-arrays are shown in Fig. 2. For ℓmin = 4, the priority
queue looks as follows: Q = [(11, [16..17]), (4, [11..13]), (4, [15..18])]. In the first iter-
ation of the while-loop (4), case (4e) applies for the lcp-interval (11, [16..17]), where
occ1 = 5 and occ3 = occ2 = 24. Thus, the quadruple (24, 2, 5, 11) is added to list
and all the bits in B[24..34] are set to 1. In the second iteration of the while-loop
(4), the sets candidates = {6, 9} and accepted = ∅ are computed in steps (4a)
and (4b), respectively. Furthermore, we have occ1 = 6, occ2 = 9, and occ3 = ⊥.
It is not difficult to see that case (4c) applies with t = 3, so that the quadruple
(6 + 3, 1, 3, 4) is added to list and all the bits in B[9..12] are set to 1. In the final it-
eration of the while-loop (4), we have candidates = {1, 5, 16} and accepted = {5, 16}
as well as occ1 = 1 and occ2 = occ3 = 5. Now case (4f) applies, so first (5, 3, 1, 4)
is added to list and all the bits in B[5..8] are set to 1 and then (16, 3,⊥, 4) is
added to list and the bits in B[16..19] are set to 1. It follows as a consequence
that sorted = [(5, 3, 1, 4), (9, 1, 3, 4), (16, 3,⊥, 4), (24, 2, 5, 11)]. Furthermore, we have
factors = [(1, 4), (3, 4), (5, 11)], F = 3132, and S ′ = miss##ppi#edin#$.

Let us analyse the worst-case time complexity of the compression algorithm. The
first and the third step can be done in O(n) time, while the second step requires
O(n log n) time. As explained in Section 3, there are at most n − 1 lcp-intervals
(note that there are strings, e.g. the string S = an−1$, for which each of its lcp-
intervals is maximal). It follows as a consequence that the while-loop in Case (4) has
at most n − 1 iterations. Clearly, each iteration deals with an lcp-interval [lb..rb] of
size rb − lb + 1 < n. For each i with lb ≤ i ≤ rb, it can be tested in constant time
whether SA[i] belongs to the set candidates or not; see Case (4a). Moreover, the set
candidates can be sorted in linear time in Case (4b) provided we use counting sort
(in practice, however, a comparison based sorting algorithm will outperform counting
sort). It is quite obvious that each of the Cases (4c) – (4f) takes at most O(n) time.
Consequently, the while-loop in Case (4) runs in O(n2) time. It is not difficult to see

102 Proceedings of the Prague Stringology Conference 2017

that O(n2) is also an upper bound for each of the remaining steps. In summary, the
compression algorithm has a worst-case time complexity of O(n2).

4.2 Implementations details

First of all, we will explain how a factor (a pair consisting of a position and a length)
is encoded in our approach.

– Consider two consecutive factors (occ1, ℓ1) and (occ2, ℓ2) in the list factors . If
diff = (occ2 − occ1) satisfies |diff | < 2x, where x is a fixed natural number, then
we use a Rice code plus a sign bit to encode diff . Otherwise, the position occ2 is
encoded with ⌈log2 n⌉ bits.

– If the length ℓ of a factor satisfies ℓ < 2y, where y is a fixed natural number, then
we use a Rice code to encode it. Otherwise it is encoded with ⌈log2 ℓmax⌉ bits,
where ℓmax is the maximum entry in the LCP-array.

Our software contains subroutines that compute the best values of x and y for the
input file (prior to the compression of the factors).

Next, we will explain the constants a and b in step (4d) of the basic compression
algorithm. To this end, let Sbits (S

′

bits) be the average number of bits needed to encode
one symbol in S (S ′) with a fixed compression algorithm X. In the following, we
assume that Sbits and S ′

bits are approximately the same and from now on we denote
the average number of bits needed to encode one symbol by k. Similarly, let Fbits be
the average number of bits needed to encode one symbol in F and let Factorbits denote
the average number of bits needed to encode one factor. Recall that size = |accepted|
denotes the size of the set accepted. On the one hand, if ℓ is the length of the repeat to
be compressed, then we would need approximately (size+1) ∗ ℓ ∗ k bits to encode all
the occurrences with the compression algorithm X (size+1 many occurrences of the
length ℓ repeat have to be taken into account). On the other hand, in our approach
we would need

– ℓ ∗ k bits to encode the first occurrence of the repeat plus size ∗ k bits to encode
the extra # symbols with the compression algorithm X,

– size ∗ Fbits bits to encode the occurrences of the identifier (type) of the repeat in
F , and

– Factorbits bits to encode the factor.

Our compression scheme is worthwhile whenever the following inequality holds:

(size+ 1) ∗ ℓ ∗ k ≥ ℓ ∗ k + size ∗ k + size ∗ Fbits + Factorbits

⇔ size ∗ ℓ ∗ k ≥ size ∗ k + size ∗ Fbits + Factorbits

⇔ ℓ ≥ 1 +
Fbits

k
+

Factorbits
k ∗ size

⇔ ℓ ≥
a

size
+ b

where a = Factorbits
k

and b = 1 + Fbits

k
. In our implementation, we use the parameters

a = 30 and b = 80 as default values because these values gave the best compression
ratios in our experiments.

We would like to point out two more facts to the reader, which are important in
practice:

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 103

– To limit the number of lcp-intervals, our algorithm uses only maximal lcp-intervals.
However, if the string S = an−1$ is input, then every lcp-interval is maximal and
the run-time slows down significantly. Our algorithm deals with such cases at the
very beginning (i.e., when all lcp-intervals are enumerated): it detects a periodicity
and its period length (in case of S = an−1$, it detects that an−1 is a periodicity of
period length 1) and does not add lcp-intervals that belong to the same periodicity
to the queue Q.

– We use the special symbol # to denote the places of factors in S ′. However, if S
already contains #, then the decompression algorithm will not work properly. To
avoid this, whenever # appears in S, a 0 is added to the type vector F at the
appropriate place.

5 The Decompression Algorithm

The basic decompression algorithm decompresses the list factors , the vector F , and
the string S ′ separately. It then restores the original string S from S ′ with the help
of a variable cur (points to the current factor in factors), a variable pos (current
position in S), and an array table[1..max] (entries initialized with ⊥), where max is
the maximum number (identifier) in F , as follows. If the current symbol c in S ′ is not
#, then it is simply copied, i.e., S[pos]← c and pos← pos+ 1. If c = #, say c is the
k-th occurrence of #, then the algorithm uses a case distinction on the type F [k].

– If F [k] = 0, then S[pos]← #. Set pos← pos+ 1.
– If F [k] = 1, then S[pos..pos+ ℓ− 1]← S[pos− t..pos− t+ ℓ− 1], where (t, ℓ)←
factors [cur]. Set cur ← cur + 1 and pos← pos− t+ ℓ.

– If F [k] = 2, then S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
factors [cur]. Set cur ← cur + 1 and pos← occ+ ℓ.

– If F [k] > 2, then
• if table[k] = ⊥, then table[k]← factors [cur] and cur ← cur + 1
set S[pos..pos+ ℓ− 1]← S[occ..occ+ ℓ− 1], where (occ, ℓ)← table[k], and pos←
occ+ ℓ.

6 An Advanced Algorithm

In addition to the basic version of our algorithm (as described in the previous two
sections), we implemented a second advanced version. The advanced version takes
substrings of strings from the set candidate \ accepted into account; see e.g. [19] for
a similar approach. More importantly, the advanced version uses a different labeling
scheme for the F vector that is obtained by replacing step (7) in the basic compres-
sion algorithm as follows:

Initialize the variable newId with the value 3.
Let max be the maximum value of all identifiers in sorted.
Initialize an array table of size max.
While sorted is not empty, remove its first element (k, id, occ, ℓ) and do:

1. If id = 1 or id = 2, then insert id at the back of vector F and insert (occ, ℓ) at
the back of list factors . If id = 2, then increment newId by 1.

104 Proceedings of the Prague Stringology Conference 2017

2. If id > 2 and occ 6= ⊥, i.e., id occurs for the first time, then insert 2 at the back
of vector F , insert (occ, ℓ) at the back of list factors , set table[id] ← newId, and
increment newId by one.

3. If id > 2 and occ = ⊥, then insert table[id] at the back of vector F .
4. Concatenate S ′ with S[p..k − 1]# and set p← k. (In essence, S ′ is obtained from

S by replacing each factor S[k..k + ℓ− 1] with #.)

Thus, even if a repeat has several occurrences, each second occurrence is encoded
by a 2 in F . Since this results in many occurrences of 2 in F , the compression ratio
for F is better than before. Of course, the decompression algorithm must be able
to cope with the new F vector. To this end, the following modification of the basic
decompression algorithm is necessary:

Initialize the variable newId with the value 3.
Initialize an array table of size count + 2, where count is the number occurrences of
the value 2 in the new F vector.

– If F [k] = 0, then . . . (the same as before).
– If F [k] = 1, then . . . (the same as before).
– If F [k] = 2, then S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
factors [cur]. Set cur ← cur+ 1 and pos← occ+ ℓ. Moreover, set table[newId]←
factors [cur] and increment newId by one.

– If F [k] > 2, then set S[pos..pos + ℓ − 1] ← S[occ..occ + ℓ − 1], where (occ, ℓ) ←
table[k], and pos← occ+ ℓ.

7 Experimental Results

To test our compression method, we conducted several experiments using different
state of the art compression methods. We compared the sizes of the compressed files as
well as the compression and decompression times. As dataset we used four repetitive
files from the Pizza & Chili corpus5 and two from the RLZAP dataset.6

In our experiments, we used the lossless data compression methods bzip2 Version
1.0.6, gzip Version 1.6, xz7 Version 5.1.0alpha with the compression preset level -9
(the primary compression algorithm of xz is currently LZMA2), zpaq8 Version 7.15
with the compression level -m5 (i.e. using a high order context mixing model), and
RLZAP.9 We compared these methods with both the basic and the advanced version
of our compression method. Since xz and zpaq provide the best compression ratios,
we used them to compress the three components S ′, F , and factors .

Table 1 shows the file sizes after compression. Both the basic and the advanced
version of our method outperform the other methods in five of six cases. The poor
compression ratios of gzip can be attributed to the fact that the files contain occur-
rences of repeats that are far apart (i.e., their distance is greater than the window
size). A similar statement holds for bzip2 because it compresses blocks rather than
the whole text (the default block size is 900k). In Table 2, we show exemplarily the
sizes of the three components S ′, F , and factors for the file para before and after the

5 http://pizzachili.dcc.uchile.cl/index.html
6 http://acube.di.unipi.it/rlzap-dataset/
7 http://tukaani.org/xz/
8 https://github.com/zpaq/zpaq
9 https://github.com/farruggia/rlzap

http://pizzachili.dcc.uchile.cl/index.html
http://acube.di.unipi.it/rlzap-dataset/
http://tukaani.org/xz/
https://github.com/zpaq/zpaq
https://github.com/farruggia/rlzap

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 105

world leaders einstein.de influenza

Filesize 46.968 92.758 154.809
bzip2 3.261 4.010 10.197
gzip 8.288 28.797 10.637
xz 0.607 0.099 2.068

zpaq 0.519 0.130 2.639
basic+xz 0.552 0.096 2.203
basic+zpaq 0.476 0.540 10.051
advanced+xz 0.518 0.092 2.132
advanced+zpaq 0.453 0.084 2.491

RLZAP - - -
kernel e coli para

Filesize 257.962 164.899 429.266
bzip2 56.074 44.465 112.236
gzip 69.396 46.136 116.073
xz 2.087 6.289 6.256
zpaq 3.652 30.386 87.787

basic+xz 2.037 6.158 5.709
basic+zpaq 4.088 14.458 17.821
advanced+xz 2.019 6.073 5.567

advanced+zpaq 1.573 8.600 8.925
RLZAP - 22.556 11.634

Table 1. Sizes after compression in MB (106 bytes).

S’ F factors

basic+xz 35.769 4.612 0.515 0.123 1.065 0.974
basic+zpaq 35.769 16.090 0.515 0.106 1.065 1.625
advanced+xz 34.126 4.507 0.592 0.011 1.137 1.049
advanced+zpaq 34.126 7.878 0.592 0.009 1.137 1.039

Table 2. Sizes of the different components in MB (106 bytes) for the file para, before and after the
final compression step (8) of our algorithm. Note that in this case zpaq compresses S′ much worse
than xz. However, this varies from file to file.

final compression step (8). As already mentioned, our advanced method achieves a
smaller size for S ′ by finding additional factors. While this gives a larger F vector as
well as a larger factors list, the different naming scheme for the F vector results in
better final compression ratios. Moreover, we would like to point out that S ′ is a lot
smaller than the original string S.

The compression and decompression times are listed in Table 3. While bzip2 and
gzip have the fastest compression times, their compression ratios are rather poor.
Apart from these two, xz tends to give the best compression times, but our method
is not far behind. Note that xz gives the best decompression times for all files, but
our method is also very fast if xz is used in the final compression step. However, if we
use zpaq as a final compression method, both compression and decompression times
are significantly higher (but the combination of our algorithm with zpaq is always
faster than zpaq itself).

All in all, the results show that our method can keep up with the state of the art
compression algorithms both in terms of compression ratios and in terms of compres-
sion/decompression time. Furthermore, several improvements of our method seem
possible. For example, the greedy strategy could be based on a sophisticated rating
of factors (instead of the simple rating based on the lengths of factors) or there may

106 Proceedings of the Prague Stringology Conference 2017

world leaders einstein.de influenza

bzip2 0m02s 0.604s 0m09s 1.531s 0m17s 2.725s
gzip 0m2s 0.211s 0m05s 0.516s 0m22s 0.504s
xz 0m08s 0.101s 0m10s 0.141s 0m36s 0.339s

zpaq 1m34s 93.692s 2m34s 154.737s 6m23s 381.018s
basic+xz 0m30s 0.154s 0m35s 0.165s 2m22s 0.609s
basic+zpaq 0m37s 7.254s 0m36s 1.067s 2m52s 40.123s
advanced+xz 0m33s 0.206s 0m36s 0.288s 2m43s 0.764s
advanced+zpaq 0m38s 6.211s 0m36s 1.070s 3m15s 39.745s

kernel e coli para

bzip2 0m18s 6.415s 0m13s 4.956s 0m32s 12.788s
gzip 0m13s 1.479s 1m36s 0.858s 4m01s 2.218s
xz 1m18s 0.484s 2m08s 0.558s 5m46s 0.980s

zpaq 6m03s 365.241s 6m53s 425.736s 18m33s 1140.174s
basic+xz 1m45s 0.625s 1m55s 0.996s 13m13s 1.681s
basic+zpaq 2m06s 25.458s 2m55s 95.598s 14m17s 102.614s
advanced+xz 1m43s 0.942s 1m54s 1.127s 14m56s 1.870s
advanced+zpaq 2m04s 24.564s 2m54s 93.652s 16m02s 98.342s

Table 3. Compression/decompression times for the files from our dataset. The compression times
are given in minutes and seconds. For the decompression times, we use seconds.

be other ways of building the F vector. Finally, our method is quite flexible because
it can be combined with other compression methods in the final compression step.

Acknowledgements: We thank the anonymous reviewers for their helpful com-
ments.

References

1. M. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced suffix

arrays. Journal of Discrete Algorithms, 2(1) 2004, pp. 53–86.
2. A. Apostolico and S. Lonardi: Compression of biological sequences by greedy off-line tex-

tual substitution, in Proc. 10th Data Compression Conference, IEEE Computer Society, 2000,
pp. 143–152.

3. M. Burrows and D. Wheeler: A block-sorting lossless data compression algorithm, Research
Report 124, Digital Systems Research Center, 1994.

4. A. Cox, A. Farruggia, T. Gagie, S. Puglisi, and J. Sirén: RLZAP: relative Lempel-

Ziv with adaptive pointers, in Proc. 23rd International Symposium on String Processing and
Information Retrieval, vol. 9954 of Lecture Notes in Computer Science, Springer, 2016, pp. 1–
14.

5. M. Crochemore and L. Ilie: Computing longest previous factor in linear time and applica-

tions. Information Processing Letters, 106(2) 2008, pp. 75–80.
6. S. Deorowicz and S. Grabowski: Robust relative compression of genomes with random

access. Bioinformatics, 27(21) 2011, pp. 2979–2986.
7. P. Dinklage, J. Fischer, D. Köppl, M. Löbel, and K. Sadakane: Compression with the

tudocomp framework. CoRR, abs/1702.07577 2017.
8. H. Ferrada, T. Gagie, S. Gog, and S. Puglisi: Relative Lempel-Ziv with constant-time

random access, in Proc. 21st International Symposium on String Processing and Information
Retrieval, vol. 8799 of Lecture Notes in Computer Science, Springer, 2014, pp. 13–17.

9. P. Ferragina, I. Nitto, and R. Venturini: On the bit-complexity of Lempel-Ziv compres-

sion. SIAM Journal on Computing, 42(4) 2013, pp. 1521–1541.
10. J. Kärkkäinen, D. Kempa, and S. Puglisi: Linear time Lempel-Ziv factorization: Simple,

fast, small, in Proc. 24th Annual Symposium on Combinatorial Pattern Matching, vol. 7922 of
Lecture Notes in Computer Science, Springer, 2013, pp. 189–200.

M.Mauer et al.: A Lempel-Ziv-style Compression Method for Repetitive Texts 107

11. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time longest-common-

prefix computation in suffix arrays and its applications, in Proc. 12th Annual Symposium on
Combinatorial Pattern Matching, vol. 2089 of Lecture Notes in Computer Science, Springer,
2001, pp. 181–192.

12. S. Kuruppu, S. Puglisi, and J. Zobel: Relative Lempel-Ziv compression of genomes for

large-scale storage and retrieval, in Proc. 17th International Symposium on String Processing
and Information Retrieval, vol. 6393 of Lecture Notes in Computer Science, Springer, 2010,
pp. 201–206.

13. S. Kuruppu, S. Puglisi, and J. Zobel: Optimized relative Lempel-Ziv compression of

genomes, in Proc 34th Australasian Computer Science Conference, Australian Computer So-
ciety, 2011, pp. 91–98.

14. A. Lempel and J. Ziv: On the complexity of finite sequences. IEEE Transactions on Informa-
tion Theory, 21(1) 1976, pp. 75–81.

15. R. Nakamura, S. Inenaga, H. Bannai, T. Funamoto, M. Takeda, and A. Shinohara:
Linear-time text compression by longest-first substitution. Algorithms, 2(4) 2009, pp. 1429–1448.

16. G. Navarro: Compact Data Structures, Cambridge University Press, Cambridge, 2016.
17. E. Ohlebusch: Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and

Phylogenetic Reconstruction, Oldenbusch Verlag, Bremen, 2013.
18. S. Puglisi, W. Smyth, and A. Turpin: A taxonomy of suffix array construction algorithms.

ACM Computing Surveys, 39(2) 2007, p. Article 4.
19. S. Ristov and D. Korencic: Using static suffix array in dynamic application: Case of text

compression by longest first substitution. Information Processing Letters, 115(2) 2015, pp. 175–
181.

20. E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange: A guaranteed compres-

sion scheme for repetitive DNA sequences, in Proc. 6th Data Compression Conference, IEEE
Computer Society, 1996, p. 453.

21. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23(3) 1977, pp. 337–343.

22. J. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE
Transactions on Information Theory, 24(5) 1978, pp. 530–536.

