
On Reverse Engineering the Lyndon Tree

Yuto Nakashima1, Takuya Takagi2,3, Shunsuke Inenaga1,
Hideo Bannai1, and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Japan
{yuto.nakashima, inenaga, bannai, takeda}@inf.kyushu-u.ac.jp

2 Graduate School of IST, Hokkaido University, Japan
tkg@ist.hokudai.ac.jp

3 Japan Society for the Promotion of Science (JSPS), Japan

Abstract. We consider the problem of reverse engineering the Lyndon tree, i.e., given
a full binary ordered tree T with n leaves as input, compute a string w of length n for
which it’s Lyndon tree is isomorphic to the input tree. Although the problem is easy and
solvable in linear time when assuming a binary alphabet or when there is no limit on
the alphabet size, how to efficiently find the smallest alphabet size for a solution string
is not known. We show several new observations concerning this problem. Namely, we
show that: 1) For any full binary ordered tree T , there exists a solution string w over
an alphabet of size at most h + 1, where h is the height of T . 2) For any positive n,
there exists a full binary ordered tree T with n leaves, s.t. the smallest alphabet size
of the solution string for T is ⌊n

2
⌋+ 1.

1 Introduction

The problem of efficiently inferring a string from a given data structure that is de-
fined based on the string has been considered in many contexts; for example, border
array [9], directed acyclic word graph [2], suffix array [2], suffix tree [11,5,17], the run
structure of a word [16], LCP array [12], etc. The motivation is to elucidate and bet-
ter understand the combinatorial properties of the data structures in question, which
could lead to better algorithms on constructing, representing, or using the structures.

In this paper, we consider the problem of inferring a string from its Lyndon tree [3].
A string is a Lyndon word [14] if it is lexicographically smaller than any of its proper
suffixes. Given a Lyndon word w of length n > 1, (u, v) is the standard factoriza-
tion [6,13] of w, if w = uv and v is the longest proper suffix of w that is a Lyndon word,
or equivalently, the lexicographically smallest proper suffix of w. It is well known that
for the standard factorization (u, v) of any Lyndon word w, the factors u and v are
also Lyndon words (e.g.[4,13]). The Lyndon tree of w is the full binary tree defined
by recursive standard factorization of w; w is the root of the Lyndon tree of w, its
left child is the root of the Lyndon tree of u, and its right child is the root of the
Lyndon tree of v. Figure 1 shows an example of a Lyndon tree for the Lyndon word
aababaababb. Lyndon trees have recently been shown to have connection with the
structure of maximal repeats, or runs, contained in the string [1].

Releated Work

Franek et al. [8] considered the problem of reconstructing the string from its Lyn-
don array. The Lyndon array is an array of integers which contains the length of
the longest Lyndon word that starts at each position. For example, for the string
aababaababb, the Lyndon array is (11, 2, 1, 2, 1, 6, 5, 1, 3, 1, 1). Since a node in the

Yuto Nakashima, Takuya Takagi, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda: On Reverse Engineering the Lyndon Tree, pp. 108–117.

Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic

Y.Nakashima et al.: On Reverse Engineering the Lyndon Tree 109

a!a! a!b!a!a! b!a!b! b! b!

Figure 1. The Lyndon tree for the Lyndon word aababaababb with respect to order a ≺ b.

Lyndon tree is a right child of its parent if and only if the node corresponds to the
longest Lyndon word that starts at that position ([1] (Lemma 22)), the Lyndon ar-
ray of a Lyndon word is simply a different representation of the Lyndon tree. It is
straightforward to check whether such an array corresponds to a tree topology, and
if so retrieve the tree. The remaining problem is to find a string whose Lyndon tree
matches this tree structure.

2 Preliminaries

2.1 Strings

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The set of characters
contained in a string w is denoted by Σ(w). The length of a string w is denoted by
|w|. The empty string ε is a string of length 0, namely, |ε| = 0. Let Σ+ be the set of
non-empty strings, i.e., Σ+ = Σ∗ − {ε}. For a string w = xyz, x, y and z are called
a prefix, substring, and suffix of w, respectively. A prefix x is and a suffix z of w are
respectively called a proper prefix, and proper suffix of w, if x 6= w and z 6= w. The
i-th character of a string w is denoted by w[i], where 1 ≤ i ≤ |w|. For a string w

and two integers 1 ≤ i ≤ j ≤ |w|, let w[i..j] denote the substring of w that begins at
position i and ends at position j. For convenience, let w[i..j] = ε when i > j.

2.2 Binary trees

A tree is said to be a binary tree if each internal node has at most two children. In
this paper, we use full binary trees and complete binary trees as the representation of
Lyndon trees. A binary tree is said to be a full binary tree if each internal node has
exactly two children. We denote the set of full binary trees with n leaves by FBT n.
A binary tree is said to be a complete binary tree if the tree is a full binary tree and
all the leaves have the same depth. We denote the set of complete binary tree with n

leaves by CBT n.

Parenthesis representation for full binary trees We will use a parenthesis repre-
sentation for full binary trees, where a node is represented as a sequence of parenthesis
representations of the subtrees rooted at each children, enclosed in parentheses. For
example, the full binary tree (without each character at the leaves) shown in Figure 1
can be represented as follows.

(((()(()()))(()()))(()((()())((()())()))))

110 Proceedings of the Prague Stringology Conference 2017

For brevity, we use the symbol ♦ instead of () which represents a leaf. We will also
sometimes use variables to represent a full binary tree; if T is a tree represented by
((()())((()())())), then the above example can also be represented as follows.

(((♦(♦♦)(♦♦)(♦T))

2.3 Properties on Lyndon words and Lyndon Trees

Lemma 1 (Proposition 1.3 of [7], [13]). For any Lyndon words λ1 and λ2, λ1λ2

is a Lyndon word iff λ1 ≺ λ2.

It is easy to see that λ1 ≺ λ1λ2 ≺ λ2 also holds. By the definition of Lyndon trees,
each node in a Lyndon tree represents a Lyndon word. For any node w in a Lyndon
tree, let str(w) be the Lyndon word which is represented by w. From Lemma 1 and the
definition of Lyndon trees, for any internal node w in a Lyndon tree (let u(v) be the
left(right) child of w, respectively), str(u) ≺ str(w) ≺ str(v) holds. Assume that λ is
a Lyndon word which corresponds to a Lyndon tree. We can extend this lexicographic
relation between str(u) (or str(w)) and str(v) to the lexicographic relation between
suffixes of λ at each beginning position. In other word, the suffix of λ which begins
at beginning position of str(u) is lexicographically smaller than the suffix of λ which
begins at beginning position of str(v). For any nodes u, v s.t. v is not a sibling of u
and str(u) is followed by str(v) in λ, str(u) � str(v) holds. This relation also can be
extended to the relation between two suffixes. In this paper, we denote the Lyndon
tree of a Lyndon word λ by LTree(λ).

3 Reverse Engineering of the Lyndon Trees

Our reverse engineering problem on Lyndon trees is formalized as follows.

Problem 2. Given a full binary tree T with n leaves, compute a Lyndon word of length
n s.t. its Lyndon tree is isomorphic to T .

For any ordered tree T1 and T2, we will write T1 ≡I T2 if T1 and T2 are isomorphic.
Firstly, we summarize known results for our problem in Section 3.1. Secondly, we
give an upper bound on the alphabet size of an output string in Section 3.2. Thirdly,
we also give a lower bound in Section 3.3. Finally, we consider our problem restricted
to complete binary trees in Section 3.4.

3.1 Algorithms on restricted alphabet

The following two Lemmas have been shown by Franek et al. [8] in a slightly different
context.

Lemma 3 (algorithm on binary alphabet). For any T ∈ FBT n, we can compute
a Lyndon word λ s.t. |Σ(λ)| ≤ 2 and LTree(λ) ≡I T in O(n) time. (If no Lyndon
word exists, return false.)

Lemma 4 (algorithm on any alphabet). For any T ∈ FBT n, we can compute a
Lyndon word λ s.t. |Σ(λ)| = n and LTree(λ) ≡I T in O(n) time. (Lyndon word w

always exists.)

Y.Nakashima et al.: On Reverse Engineering the Lyndon Tree 111

3.2 Upper bounds

We consider Suffix Ordered Tree of a full binary tree T , denoted by SOT (T). We
call the tree obtained by removing all leaves (as well as their incoming edges) from
a full binary tree T the internal tree of T . SOT (T) is a full binary tree which is
isomorphic to the internal tree of T . For any node u in SOT (T), let u′ be the node in
T which corresponds to u, and pos(u) be the number i s.t. the leftmost leaf in subtree
rooted at the right child of u′ is the i-th leaf from left. For any node u in SOT (T), u
is labeled by pos(u). Figure 2 shows an example of SOT (T).

7!1! 9!5!4!2! 8!6!3! 10! 11!

7!
9!

5!

4!
2!

8!

6!

3! 10!
11!

T!

SOT(T)!

Figure 2. The suffix ordered tree for the full binary tree T .

This tree is known to be related to the (inverse) suffix array [15], as shown in the
following Lemma. For any string w, we denote the suffix array (resp. inverse suffix
array) by SA(w) (resp. ISA(w)).

Lemma 5 ([10]). For any Lyndon word λ, the internal tree of LTree(λ) is isomorphic
to the Cartesian tree of ISA(λ)[2..|λ|].

From Lemma 5, SOT (T) represents necessary conditions w.r.t. lexicographic order
of proper suffixes of a Lyndon word λ s.t. LTree(λ) ≡I T . For example, the suffix
of λ at position 6 has to be the lexicographically smallest proper suffix of λ. Also,
the suffix of λ at position 9 has to be lexicographically smaller than suffixes of λ at
position 8, 11 and 10. By the definition of Lyndon words, the suffix at position 1 is
always the smallest suffix of λ. Thus, for any Lyndon word λ, the suffix array of λ
satisfies suffix orders represented by SOT (T) iff LTree(λ) ≡I T . Then we can obtain
the following upper bound of the alphabet size of λ.

Lemma 6 (upper bound). For any T ∈ FBT n of height h, there exists a Lyndon
word λ s.t. |Σ(λ)| ≤ h+ 1 and LTree(λ) ≡I T .

Proof. We consider the string λ obtained by the following operations. For any node u,
we assigned a character c which is lexicographically larger than the character assigned
to the parent. If u is labeled by i, λ[i] = c. Let λ[1] be the smallest character in λ s.t.
the character does not occur at any other positions.

Then the suffix array of λ does not contradict to SOT (T), and λ includes at most
h+ 1 distinct characters (since there exist h nodes on the longest path in SOT (T)).

⊓⊔

112 Proceedings of the Prague Stringology Conference 2017

3.3 Lower bounds

Lemma 7 (lower bound for even length). For any positive integer k ≥ 1, there
exists a full binary tree T ∈ FBT 2k s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = k + 1.

Proof. We prove the lemma by induction on k. Although it suffices to show one tree
for each k, we describe all the trees that we have discovered. For k = 1 consider the
tree (♦♦) ∈ FBT 2, and for k = 2, consider the tree ((♦♦)(♦♦)) or ((♦(♦♦))♦). It
can be checked by exhaustive enumeration of strings λ of length 2k and |Σ(λ)| ≤ k+1
that these trees satisfy the statement of the lemma. Next, assume that the lemma
holds for all k ≤ i for some i and let T ∈ FBT 2i be a full binary tree that satisfies the
statement for k = i. Let g(T) be the full binary tree ((♦T)♦) for any full binary
tree T . We claim that the full binary tree g(T) ∈ FBT 2i+2 satisfies the statement.

Suppose there exists a Lyndon word c1λc2 (c1, c2 ∈ Σ) of length 2i+2 s.t. g(T) ≡I

LTree(c1λc2). From the induction hypothesis, we have that |Σ(λ)| = i + 1 and thus
|Σ(c1λc2)| ≥ i+1. Due to the structure of g(T), it must also be that LTree(λ) ≡I T .
Since g(T) is the Lyndon tree of c1λc2, c1 ≺ c2 � λ[1] holds. To prove |Σ(c1λc2)| ≥
i+2, assume to the contrary that |Σ(c1λc2)| ≤ i+1. Then, it must be that c1 = λ[1].
However, this implies that c1 = c2 and contradicts that c1λc2 is a Lyndon word. Thus,
|Σ(c1λc2)| ≥ i + 2. On the other hand, if we let λ be a string implied by the lemma
for k = i, c1 ≺ λ[1] a new character not in Σ(λ), and c2 = λ[1], it is easy to see
that c1λc2 is a Lyndon word, Σ(c1λc2) = i+ 2 and g(T) ≡I LTree(c1λc2). Thus, the
statement holds for k = i+ 1, proving the lemma. ⊓⊔

We define the set G of full binary trees described in Lemma 7 as follows : G =
{gk(T) | T ∈ {((♦♦)(♦♦)), g((♦♦))}, k ≥ 1}.

Lemma 8 (lower bound for odd length). For any positive integer k ≥ 1, there
exists a full binary tree T ∈ FBT 2k+1 s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = k + 1.

Proof. We prove the lemma by induction on k. Although it suffices to show one tree
for each k, we describe all the trees that we have discovered. For k = 1 consider the
tree (♦(♦♦)) or ((♦♦)♦) in FBT 3, for k = 2, consider one of the 8 trees in FBT 5,
for k = 3, consider one of the 22 trees in FBT 7, and for k = 4, consider one of the
34 trees in FBT 9. It can be checked by exhaustive enumeration of strings λ of length
2k+ 1 and |Σ(λ)| ≤ k+ 1 that these trees satisfy the statement of the lemma. Next,
assume that the lemma holds for all k ≤ i for some i > 3. We claim that all full binary
trees in FBT 2i+3 obtained by the construction described below, satisfy the lemma.

1. Let T ∈ FBT 2i+1 be a full binary tree that satisfies the statement for k = i.
Consider the full binary tree g(T) ∈ FBT 2i+3 and suppose there exists a Lyndon
word c1λc2 s.t. g(T) ≡I LTree(c1λc2). Then, by similar arguments as in Lemma 7,
we can see that |Σ(c1λc2)| ≥ i+2, while c1, c2 can be chosen so that |Σ(c1λc2)| =
i+ 2 and g(T) ≡I LTree(c1λc2).

2. Let T ∈ FBT 2i+2 ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i+2. Consider the full binary tree (♦T) ∈ FBT 2i+3 or (T♦) ∈ FBT 2i+3.
Suppose there exists a Lyndon word c1λ (resp. λc2) s.t. (♦T) ≡I LTree(c1λ)
(resp. (T♦) ≡I LTree(λc2)). If we let c1 = λ[1] (resp. c2 = λ[|λ|]), it is easy
to see that c1λ (resp. λc2) is a Lyndon word and (♦T) ≡I LTree(c1λ) (resp.
(T♦) ≡I LTree(λc2)). Then, |Σ(c1λ)| = |Σ(λc2)| = i+ 2.

Y.Nakashima et al.: On Reverse Engineering the Lyndon Tree 113

3. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = ((♦♦)(♦T)) ∈ FBT 2i+3 and
suppose there exists a Lyndon word c1c2c3λ s.t. T ′ ≡I LTree(c1c2c3λ). From the
structure of the tree, it must be that c1 � c3 ≺ c2, c3 � λ[1], and c1c2 � c3λ[1].
If c3 = λ[1], then c1 ≺ λ[1] must hold. Thus, we have that either c1 ≺ λ[1] or
c3 ≺ λ[1], i.e., at least one of c1 or c3 has to be a new smaller character not
contained in Σ(λ), and thus |Σ(c1c2c3λ)| ≥ k+1. On the other hand, if we choose
c1 ≺ c3 = λ[1] ≺ c2 = λ[|λ|], c1c2c3λ is a Lyndon word s.t. |Σ(c1c2c3λ)| = k + 1
and T ′ ≡I LTree(c1c2c3λ).

4. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = (((♦♦)T)♦) ∈ FBT 2i+3, and
suppose there exists a Lyndon word c1c2λc3 s.t. T ′ ≡I LTree(c1c2λc3). From the
structure of the tree, it must be that c1 ≺ c3 � λ[1]. Thus c1 has to be a new
smaller character not contained in Σ(λ), and thus |Σ(c1c2λc3)| ≥ i + 2. On the
other hand, if we choose c1 ≺ c3 = λ[1] ≺ c2 = λ[|λ|], c1c2λc3 is a Lyndon word
s.t. |Σ(c1c2λc3)| = i+ 2 and T ′ ≡I LTree(c1c2λc3).

5. Let T ∈ FBT 2i ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i + 1. Consider the full binary tree T ′ = ((T(♦♦))♦) ∈ FBT 2i+3,
and suppose there exists a Lyndon word λc1c2c3 s.t. T ′ ≡I LTree(λc1c2c3). Since
T = g(T ′′) for some T ′′ ∈ G, it follows from the arguments in Lemma 7 that the
structure of T implies that λ[1] ≺ λ[|λ|] � λ[2]. Notice that since λ[2..|λ| − 1] is
a Lyndon word, λ[1] and λ[|λ|] are the two smallest characters in Σ(λ). From the
structure of T ′, it must be that λ[1] ≺ c3 � c1 ≺ λ[|λ|], implying that c1, c3 6∈ Σ(λ)
and |Σ(λc1c2c3)| ≥ i+2. One the other hand, if we choose λ[1] ≺ c1 = c3 ≺ λ[|λ|] =
c2c, λc1c2c3 is a Lyndon word s.t. |Σ(λc1c2c3)| = i+ 2 and T ′ ≡I LTree(λc1c2c3).

6. Let T ∈ FBT 2i−2 ∩ G , and λ a Lyndon word s.t. T ≡I LTree(λ). By Lemma 7,
|Σ(λ)| ≥ i. Consider the full binary tree T ′ = (((♦(♦T))(♦♦))♦) ∈ FBT 2i+3,
and suppose there exists a Lyndon word c1c2λc3c4c5 s.t. T ≡I LTree(c1c2λc3c4c5).
From the structure of T ′, it must be that c1 ≺ c5 � c3 � c2 � λ[1], c3 ≺ c4, and
c3c4 � c2λ[1]. If c3 = λ[1], this implies c2 = λ[1], but then c3c4 � c2λ[1] cannot
hold. Thus we have that c1 ≺ c3 ≺ λ[1], and thus |Σ(c1c2λc3c4c5)| ≥ i+2. On the
other hand, if we choose c1 ≺ c5 = c3 = c2 ≺ λ[1] = c4, c1c2λc3c4c5 is a Lyndon
word s.t. |Σ(c1c2λc3c4c5)| = i+ 2 and T ′ ≡I LTree(c1c2λc3c4c5).

⊓⊔

We can obtain the following theorem by Lemma 7 and Lemma 8.

Theorem 9. For any positive integer n ≥ 1, there exists a full binary tree T ∈ FBT n

s.t. min{|Σ(λ)| : T ≡I LTree(λ)} = ⌊n
2
⌋+ 1.

Conjectures on lower bound We conjecture that any full binary tree which sat-
isfies the above theorem is one of the trees described in Lemma 7 and Lemma 8. For
any k, we have two types of trees which satisfies Lemma 7. In Lemma 8, for any k,
there exist 12 new types of trees due to case 2-6. This implies that ⌊n

2
⌋+ 1 is also an

upper bound.

3.4 Problem on complete binary trees

Here, we restrict the input of our problem and consider a complete binary tree with
2k leaves. We obtain the following theorem.

114 Proceedings of the Prague Stringology Conference 2017

Theorem 10. For any integer k ≥ 0, there exists a Lyndon word λ s.t. |Σ(λ)| ≤ 4
and LTree(λ) ≡I CBT 2k .

To prove this theorem, we consider a homomorphism f defined as follows.

f (a) = ac, f (b) = ad, f (c) = bc, f (d) = bd

We show an example in Figure 3. By the definition of f , we have the following lemma.

a! c! b! c! a! d! b! c! a! c! b! d! a! d! b! c!

a! c! b! c! a! d! b! c!

= f 4(a)!

= f 3(a)!

a! c! b! c!= f 2(a)!

Figure 3. The Lyndon tree of f 4(a).

Lemma 11. For any k ≥ 3, the following properties hold.

1. f k+1(a) = f k(a) · f k(a)[1.. |f
k(a)|
2

− 1] · d · f k(a)[|f
k(a)|
2

+ 1..|f k(a)|].

2. the length of longest common prefix of f k(a) and any of its proper suffix is less

than |f k(a)|
4

.

Proof.

1. We prove this by induction on k. For k = 3, f 4(a) = acbcadbcacbdadbc satisfies
the statement by f 3(a) = acbcadbc. We assume that

f k+1(a) = f k(a) · f k(a)[1..
|f k(a)|

2
− 1] · d · f k(a)[

|f k(a)|

2
+ 1..|f k(a)|]

holds for all 3 ≤ k ≤ i for some i. Since f derives two characters from each
character,

f i+2(a)[1..
|f i+2(a)|

2
]

is derived from

f i+1(a)[1..
|f i+1(a)|

2
] = f i(a).

Thus

f i+2(a)[1..
|f i+2(a)|

2
] = f (f i(a)) = f i+1(a).

Similarly,

f i+2(a)[
3

4
|f i+2(a)|+ 1..|f i+2(a)|] = f (f i(a)[

|f i(a)|

2
+ 1..|f i(a)|])

= f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|].

Y.Nakashima et al.: On Reverse Engineering the Lyndon Tree 115

Let

X = f i+1(a)[1..
|f i+1(a)|

4
− 1]

= f i+1(a)[
|f i+1(a)|

2
+ 1..

3

4
|f i+1(a)| − 1].

Then

f i+2(a)[
|f i+2(a)|

2
+ 1..

3

4
|f i+2(a)|] = f (X)bd.

It is clear that the last character of f k(a) is c for any k ≥ 2. Thus

f (X)b = f i+1(a)[1..
|f i+1(a)|

2
− 1].

Therefore,

f i+2(a) = f i+1(a) · f i+1(a)[1..
|f i+1(a)|

2
− 1] · d · f i+1(a)[

|f i+1(a)|

2
+ 1..|f i+1(a)|],

and the statement holds for i+ 1.
2. From the above arguments, the longest substring of f k(a) which is also a prefix is

f k(a)[
|f k(a)|

2
+ 1..

3

4
|f k(a)| − 1].

Thus the statement holds.
⊓⊔

Lemma 12. Let Σ = {a, b, c, d} be an ordered alphabet of size 4 s.t. a ≺ b ≺ c ≺ d.
For any integer k ≥ 0, LTree(f k(a)) ≡I CBT 2k .

Proof. We prove the lemma by induction on k. For k = 1 consider the string f 1(a) =
ac, for k = 2, consider the string f 2(a) = acbc, and for k = 3, consider the string
f 3(a) = acbcadbc. We can see the strings satisfy the statement of the lemma. Next,
assume that the lemma holds for all k ≤ i for some i. We claim that LTree(f i+1(a)) ≡I

CBT 2i+1 holds.
From Lemma 11,

f i+1(a) = f i(a) · f i(a)[1..
|f i(a)|

2
− 1] · d · f i(a)[

|f i(a)|

2
+ 1..|f i(a)|],

and thus

SA(f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|]) = SA(f i(a)).

Thus

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|]

is a Lyndon word and LTree(f i+1(a)[|f
i+1(a)|
2

+1..|f i+1(a)|]) ≡I LTree(f
i(a)) ≡I CBT 2i

holds. For any proper suffix w of f i(a), w is lexicographically larger than

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|],

116 Proceedings of the Prague Stringology Conference 2017

and f i(a) is lexicographically smaller than

f i+1(a)[
|f i+1(a)|

2
+ 1..|f i+1(a)|].

From the induction hypothesis, LTree(f i(a)) ≡I LTree(f
i+1(a)[1.. |f

i+1(a)|
2

]) ≡I CBT 2i .
Therefore, LTree(f i+1(a)) ≡I CBT 2i+1 and the statement holds for k = i+ 1. ⊓⊔

4 Conclusions and open question

We considered reverse engineering problems on Lyndon trees. We showed that: 1) For
any full binary ordered tree T , there exists a solution string w over an alphabet of
size at most h + 1, where h is the height of T . 2) For any positive n, there exists a
full binary ordered tree T with n leaves, s.t. the smallest alphabet size of the solution
string for T is ⌊n

2
⌋ + 1. We also conjectured that the trees described in Lemmas 7

and 8 are the only trees that satisfy the statements. We discovered the property on
Lyndon trees which are isomorphic to complete binary trees.

Our remaining interest which is most important is an algorithm to reconstruct a
Lyndon word s.t. the Lyndon tree is isomorphic to an input full binary tree and the
alphabet size is smallest possible.

References

1. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “Runs”

Theorem. CoRR, abs/1406.0263 2014.
2. H. Bannai, S. Inenaga, A. Shinohara, and M. Takeda: Inferring strings from graphs and

arrays, in Mathematical Foundations of Computer Science 2003, 28th International Symposium,
MFCS 2003, Bratislava, Slovakia, August 25-29, 2003, Proceedings, 2003, pp. 208–217.

3. H. Barcelo: On the action of the symmetric group on the free Lie algebra and the partition

lattice. Journal of Combinatorial Theory, Series A, 55(1) 1990, pp. 93–129.
4. F. Bassino, J. Clément, and C. Nicaud: The standard factorization of Lyndon words: an

average point of view. Discrete Mathematics, 290(1) 2005, pp. 1–25.
5. B. Cazaux and E. Rivals: Reverse engineering of compact suffix trees and links: A novel

algorithm. Journal of Discrete Algorithms, 28 2014, pp. 9 – 22.
6. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. iv. the quotient groups

of the lower central series. Annals of Mathematics, 68(1) 1958, pp. 81–95.
7. J. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
8. F. Franek, J. W. Daykin, J. Holub, A. S. M. S. Islam, and W. F. Smyth: Reconstructing

a string from its Lyndon arrays. Theoretical Computer Science, 2017, p. in press.
9. F. Franek, S. Gao, W. Lu, P. Ryan, W. Smyth, Y. Sun, and L. Yang: Verifying a

border array in linear time. J. Comb. math. Comb. Comput., 42 2002, pp. 223–236.
10. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theor. Comput.

Sci., 307(1) 2003, pp. 173–178.
11. T. I, S. Inenaga, H. Bannai, and M. Takeda: Inferring strings from suffix trees and links

on a binary alphabet. Discrete Applied Mathematics, 163, Part 3 2014, pp. 316 – 325, Stringology
Algorithms.

12. J. Karkkainen, M. Piatkowski, and S. J. Puglisi: String inference from longest-common-

prefix array, in Proc. ICALP, 2017, to appear.
13. M. Lothaire: Combinatorics on Words, Addison-Wesley, 1983.
14. R. C. Lyndon: On Burnside’s problem. Transactions of the American Mathematical Society,

77 1954, pp. 202–215.
15. U. Manber and G. Myers: Suffix arrays: A new method for on-line string searches. SIAM

Journal on Computing, 22(5) 1993, pp. 935–948.

Y.Nakashima et al.: On Reverse Engineering the Lyndon Tree 117

16. W. Matsubara, A. Ishino, and A. Shinohara: Inferring strings from runs, in Proceedings
of the Prague Stringology Conference 2010, Prague, Czech Republic, August 30 - September 1,
2010, 2010, pp. 150–160.

17. T. A. Starikovskaya and H. W. Vildhøj: A suffix tree or not a suffix tree? J. Discrete
Algorithms, 32 2015, pp. 14–23.

