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Abstract. We compare two recent similar and complementary indexing methods for
fast seed discovery [10,12]. Both methods are based on the principle of counting matches
on a diagonal with a goal to find the value and/or position of the best match between
two sequences under Hamming distance on alphabet of k-mers, where k can equal 1.
The matching k-mers in two sequences are found by scanning one sequence and using
the index of the other. Indexing the shorter of the two sequences is easier to perform
on-line; however, if the index is constructed off-line on the longer sequence, the number
of comparison operation is potentially much smaller. We present the analysis of this
effect for different real data sequence lengths in the context of protein search.
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1 Introduction

Finding the extent of the homology between two protein sequences is possibly the
most important computational task in bioinformatics and biological sciences. The
baseline results are obtained with the alignment algorithms such as Smith-Waterman
(SW)[11] or Needleman-Wunsch [7]. Unfortunatelly, quadratic time complexity of the
alignment algorithms renders them almost unusable when a large amount of sequences
is compared. Therefore, different heuristic methods have been proposed throughout
the years, from the early FASTA [8], BLAST [1] and BLAT [6] to the more recent
ones such as Rapsearch2 [14] and DIAMOND [3]. They all share a common principle,
i.e. decomposition of the alignment problem into seed and alignment phases. The
former searches for seeds, i.e. subsequences of length k (k-mers) which are shared
between a given pair of sequences, while the latter phase couples found seeds into
local alignments based on different criteria. The seed phase is often implemented by
creating an index containing all k-mers of the larger set of sequences, either stored on
the hard drive or created on the fly. Only exception is the DIAMOND algorithm which
uses double indexing, i.e. indexes are created for both query and target sequences and
seeds are obtained by linearly traversing both indexes at the same time [3].
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Proceedings of PSC 2017, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06193-0 c© Czech Technical University in Prague, Czech Republic



Strahil Ristov, Robert Vaser, and Mile Šikić: Trade-offs in Query and Target Indexing 119

A recently developed method SWORD [12] applies a different approach, i.e. in the
search stage equal k-mers are found in order to obtain a measure of similarity for a
pair of sequences which further enables running the optimal alignment algorithms on
only a small subset containing the most similar sequences. The measure of similarity
between two sequences involves counting the number of matches at the best overlap of
the sequences. To facilitate this, SWORD employs an index that is built on the fly on
the smaller sequence, or the set of sequences (the query set). In another recent paper,
a similar and complementary method has been proposed for the efficient Hamming
vector calculation [10]. The two methods are similar, as they are both based on finding
the best diagonal, i.e. the position at which two sequences should overlap in order
to have the highest number of matching symbols aligned, and complementary in the
choice of which sequence is indexed. The index is constructed on query in [12], and
on target in [10]. In this paper we investigate the potential of combining the SWORD
method with the indexing of the target.

2 Counting hits on a diagonal in sequence pattern matching

The principle of counting matches on a diagonal (or diagonal counting for short)
was used in computational biology applications as early as in 1983 [13]. The goal
is to find the greatest number of matches, without insertion or deletions, between
two sequences and the corresponding position(s), i.e. the relative position, one or
more of them, between the two sequences where the number of matches is the largest.
This information can further be used for the location of possible good alignments as in
[13,8] or to score the whole sequences as in [12]. Besides in bioinformatics applications,
the underlying principle of counting matches at a given offset from the beginning of
the sequence has been used in general string matching problems such as k-mismatch
problem in [2] and Hamming distace vector calculation in [10]. Incidentally, finding
the number of matches on all diagonals amounts to finding the inverse of the Hamming
distance vector for two sequences.

Diagonal counting consist of sliding one sequence over the other and at each
position counting the number of aligned symbols that are equal. The alphabet of
symbols can consist of single characters, or of k-grams, i.e. k consecutive characters.
In the context of protein sequences k-grams are usually called k-mers.

The brute force procedure would be to slide one sequence over the other and
iteratively test for matches. If m and n denote the lengths of the two sequences that
are matched, the complexity of brute force approach is strictly quadratic Θ(mn).
However, instead of comparing the symbols at all positions in two sequences, it is
possible to use indexing of one sequence to reduce the number of comparisons, as
there is no need to check the positions where no match exists. Indeed, the indexing has
been combined with the diagonal counting from the earliest works in bioinformatics
[13,4].

In the two recent articles by the authors the diagonal counting with indexes has
been used to optimize search for protein homology [12], and for efficient calculation
of Hamming distance vector for protein sequences [10]. A salient difference between
methods described in [12] and [10] lies in the choice of the object of indexing. The
method described in the first article uses index on shorter (query) sequence and
constructs it on-line, while the method described in the second article employs the
index on the longer (target) sequence which is constructed off-line. We shall describe
both algorithms in some detail in the following section.
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3 Query vs. target indexing

3.1 SWORD algorithm and query indexing

The SWORD [12] is an efficient algorithm for protein database search that aims to
offer better speed vs. sensitivity ratio than BLAST, a gold standard in sequence
homology search [1]. Same as BLAST, and as well as most other algorithms for
finding the homology in biological sequences, SWORD uses the two stage approach:
the first stage is reducing the whole database to a subset of probable candidates
based on some heuristics, and the second stage is performing the full scale alignment
using the standard SW [11] or, in some cases, the Needleman-Wunsch [7] method.
However, while BLAST in the first phase searches for hits - short matching segments
in sequences, and then expands these hits into local alignments, the SWORD method
finds the best whole candidate sequences from the database of sequences, and performs
the SW alignment on the whole sequences. The effect is that less work is invested
in processing of all potential positions for a good local alignment at the expense of
performing SW on longer inputs. The increased work on SW alignment is compensated
by using fast parallel processing.

The first phase of determining the best candidate sequences is performed using
the diagonal counting. For a query sequence and each protein sequence in the target
database the algorithm calculates the highest value of any diagonal when matching the
two sequences at every position. The fixed number of sequences with the highest score
are then forwarded to the alignment phase, which is a fast parallel SW implementation
based on SIMD (Single Instruction Multiple Data) instructions [12].

For the purpose of this work we shall consider only the first, heuristic, stage of
SWORD method. The diagonal counting in SWORD is performed on the alphabet
of k-mers, with the different values of k producing different speed vs. sensitivity
ratio. Larger values lead to greater speed and lower sensitivity. To increase sensi-
tivity, matches can include not only the identical k-mers but also those that are
similar enough according to a given amino acid similarity matrix. In [12] k is pro-
posed to be 3 with included similar k-mers for the best sensitivity, or 5, with exact
matches only, for the greatest speed. The published version of the code can be found
at https://github.com/rvaser/sword. A threshold for similarity T , when k = 3, is set
to T = 13 using BLOSUM62 substitution matrix [5].

To perform fast counting of matches, SWORD uses index on the query sequence.
The index is constructed as a perfect hash table that for each different k-mer returns
the list of the corresponding positions in the sequence. In case of sensitive search, for
each k-mer in the query, similar k-mers are generated and stored in the index.

The SWORD uses diagonal counting to optimize the choice of candidates in search
for protein homology, and the value of the highest score has proven to be an adequate
criterion for the choice of candidates. According to the results presented in [12],
SWORD can be regarded as a viable alternative to BLAST, it is overall considerably
faster while remaining comparatively sensitive to distant homologies. However, the
actual times needed for the processing of complex inputs can be considerable. For
instance, matching the complete E. Coli proteome to NCBI NR protein data base
requires approximately 4 hours with SWORD (an order of magnitude less than with
BLAST) which is a motive for further research on a possible speed up of the algorithm.
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3.2 The potential advantage of target indexing

The indexing of target strings in the context of diagonal counting has been proposed
in [10] with the application in the Hamming vector calculation where query is, as a
rule, much shorter than the target. The complexity of the matching in the average
case is then given with:

O(mn
∑

a∈A

p2a) (1)

where A is the alphabet, and pa is the probability of a symbol a ∈ A in the target
sequence. In the case when all symbol probabilities are equal (1) reduces to:

O(mn/|A|) (2)

The effectiveness of this approach is based on the sparse distribution of symbols
in shorter sequences when the alphabet is large. Solely the symbols that are present
in query are accessed in the index. As long as the length of query remains small
compared to |A|, indexing the target can considerably reduce the total number of
operations. Only when all symbols from the alphabet are present in the query, the
number of index access operations is the same as when the index is constructed on
the query. The downside of target indexing is that it has to be done off-line since
target is, as a rule, much larger than query.

Let us consider an alphabet of k-mers formed from 20 different amino acids. At
the first sight it would appear that with the sizes of the alphabet that equal 20k

there is a great probability that a significant number of symbols will not be present
in the shorter query sequence. However, with protein sequences, and when using the
SWORD method that generates similar k-grams at each position, the number of
different symbols in the query quite rapidly reaches |A|.

3.3 Generalized procedure for counting matches on a diagonal

Generalized statement of the best diagonal problem is: Finding the position(s) of the
highest scoring match between two sequences under Hamming distance metrics on
the alphabets of k−mers. If k = 1, the problem reduces to a simple inverse Hamming
distance vector calculation. In order to avoid quadratic matching of every position in
both sequences, the simple solution is to index one sequence and scan the other. Since
the mechanism is the same regardless of which sequence is indexed, we give a general
pseudo code in Algorithm 1 where query and target can be freely interchanged. The
notation used in Algorithm 1 is as follows: Sidx and Sscan denote the indexed and the
scanned sequence, respectively; the respective lengths of the sequences are denoted
with |Sidx| and |Sscan|; |A| is the size of alphabet A, where the symbols in the alphabet
can be single characters or k-mers; PositionList[a] stores positions of all instances of
a in Sidx, for all symbols a ∈ A; MatchV ector stores the scores for |Sidx|+ |Sscan| − 1
diagonals in an alignment array between the two sequences.

After the construction of MatchV ector it is easy to find, in one pass, the value and
the position(s) of the best match(es). Index is an inverted file of indexed sequence and
its construction is linear with |Sidx|. If the scanned sequence includes symbols that are
not present in the indexed sequence, there will be unnecessary index accesses. In the
next section we give experimental results on how long can a query protein sequence
be to justify the target indexing approach.
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Algorithm 1: PositionList and MatchV ector are initialized to zeros; Sidx[i]
and Sscan[i] denote character at position i in Sidx and Sscan, respectively
1 int* PositionList[|A|];
2 int MatchVector[|Sidx|+ |Sscan| − 1];
/* pre-processing phase */

3 for i = 0 to |Sidx|-1 do

4 add i to PositionList[Sidx[i]];

/* Match vector computation */

5 for i = 0 to |Sscan|-1 do

6 for j in PositionList[Sscan[i]] do

7 MatchVector[j - i + |Sscan| − 1] ++;

4 Experimental results

Off-line indexing of a longer target sequence is justified when alphabet symbols are
sparse in the query sequence. In such cases the reduced number of index access op-
erations compensates for longer processing time needed for the index construction.
The size of the fraction of the target alphabet that is present in the query depends
on the size of the alphabet and the query length. Obviously, as the length of the
query increases, more and more symbols are present. Let pAt/q denote the percentage
of target alphabet symbols present in query sequence. In order to asses the possi-
ble speedup of SWORD algorithm that could be achieved with target indexing we
have performed experimental analysis to obtain insight on what are the real values of
pAt/q, with different query lengths, on the alphabet of amino acids and real protein
sequence data. We have employed the heuristic part of SWORD algorithm that scans
the target and looks up the found k-mers in the index of query sequence. We counted
the number of target k-mers that were found in the index and calculated the pAt/q

percentage. The fraction of unsuccessful index accesses is the direct measure of the
gain (i.e. reduction of the number of index accesses) that can be achieved using target
indexing. In all our experiments all k-mers present in query were also present in the
target, therefore with target indexing every index access would be successful.

The targets were different size subsets of the UniProt database [9], and the queries
were random protein sequences of three different sizes, taken from the target. In
Tables 1-6 we report the results for query lengths of 100, 500 and 1500 amino acids,
and target data sets that are comprised of 104, 105 and 5×105 lines, where each target
line is a different protein from UniProt database. The sizes of the targets are 3.7×106,
37.5×106, and 181×106 amino acids, respectively. Tables are organized according to
the value of k, and present results for the exact k-mer matching as well as the matching
with the expanded number of k-mers that include all similar k-mers within the given
similarity threshold. The values in column tested represent the number of k-grams
present in the target that are tested against the index of a query. These values are
roughly equal to the sizes of the target sets. The values in column matches are the
numbers of k-mers found in the query index. The values of pAt/q, i.e. the percentage
of tested k-mers that are actually matched are given under % sign.

Following the findings in the SWORD paper we have experimented with k = 3
and k = 5. The results for k = 3 are presented in Table 1 for the exact matching
and in Table 2 for the expanded matching with similarity threshold used in SWORD
algorithm. The results for exact matching with k = 5 are presented in Table 3. The
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Table 1. k = 3, exact matching

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3751688 95199 2.5 37557230 1008318 2.7 181015261 5013396 2.8
500 "" 508787 13.6 "" 5313058 14.1 "" 26098594 14.4
1500 "" 1272292 33.9 "" 13257314 35.3 "" 64529580 35.6

Table 2. k = 3, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 13)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3751688 194925 5.2 37557230 1980520 5.3 181015261 9724152 5.4
500 "" 895241 23.9 "" 9044466 24.1 "" 44277325 24.5
1500 "" 3293569 87.8 "" 37331149 99.4 "" 159200790 87.9

Table 3. k = 5, exact matching

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 550 0.0 37357230 5259 0.0 180015261 27047 0.0
500 "" 3113 0.1 "" 24729 0.0 "" 128832 0.1
1500 "" 6883 0.2 "" 59175 0.2 "" 269872 0.1

Table 4. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 20)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 7759 0.2 37357230 80798 0.2 180015261 394591 0.2
500 "" 35800 1.0 "" 357282 1.0 "" 1789459 1.0
1500 "" 181056 4.9 "" 1788243 4.8 "" 8616060 4.8

Table 5. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 22)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 2516 0.1 37357230 24954 0.1 180015261 123087 0.1
500 "" 9644 0.3 "" 93423 0.25 "" 469165 0.3
1500 "" 54624 1.5 "" 544963 1.5 "" 2584125 1.4

Table 6. k = 5, expanded matching with similar k-mers (BLOSUM62 similarity ≥ 24)

104 lines 105 lines 5× 105 lines
query length tested matches % tested matches % tested matches %

100 3731688 951 0.0 37357230 9830 0.0 180015261 49270 0.0
500 "" 4154 0.1 "" 36207 0.1 "" 189052 0.1
1500 "" 20002 0.5 "" 178632 0.5 "" 854227 0.5

results in Tables 1-3 cover all indexing variants used in SWORD. Expanded matching
with k = 5 would incur considerable processing overhead for on-line construction of
query index. Especially so if the similarity threshold is set for higher sensitivity. How-
ever, if we accept the necessity of building the index off-line, we are not constrained
to expanding only 3-mers. Off-line index can be constructed for any k and threshold
that may result in good speed vs. sensitivity ratio. As an example, in Tables 4-6 we
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have included results for the expanded matching with k = 5 and similarity thresholds
of 20, 22, and 24, respectively.

The results show that with 3-mers the query alphabet comes close to saturation
with the expanded matching when the length of the query is 1500 amino acids (Table
2). In such cases indexing of the target would not be economical. On the other hand,
with the exact matching on 3-mers (Table 1), and both the exact and expanded
matchings on 5-mers (Tables 3-6) the results are much more promising. Using target
index in those cases can considerably reduce the number of index accesses. We find of
particular interest the results presented in Table 4. Even with the expanded 5-mers,
and a low threshold of similarity, indexing the target can reduce the number of index
accesses by the factor of 20 with 1500 amino acids long query.

4.1 Discussion of the results

The heuristic phase of SWORD consumes approximately half of the total processing
time. In this paper we present the preliminary findings on which we will base further
investigation of possible speedup. To exploit the benefits of target indexing the query
must be short. In the current version of SWORD algorithm multiple queries are
combined in one query index. This could possibly be modified in a way to reduce the
query alphabet saturation. Therefore, the potential for the improvement exists but it
has to be investigated further.

The results obtained on 5-mers open the possibility of further investigation to
establish the level of sensitivity with expanded k-mers with larger k and different
thresholds. The speed of SWORD algorithm is equally the result of a careful im-
plementation regarding the cache efficiency. Indexing expanded k-mers increases the
index size by an order of magnitude i.e., 7 to 13 times in our experiments. This rises
requirements on the design of the data structures for index storage and access. Ob-
viously, cache friendly, succinct and localized data structures should be employed for
storing the index.

5 Conclusions

We have compared two complementary methods of indexing for finding the best match
between two sequences under Hamming distance: one where the index is constructed
on a query sequence and scan is performed on a target, and one where the index is
constructed on a target sequence and scan is performed on a query. Both approaches
reduce the number of comparisons with respect to the brute force approach and
produce the same final result. A query is, as a rule, much shorter than the target,
and the advantages of query indexing are the possibility to perform it on-line and the
low space requirements for the index. On the other hand, if the target is indexed off-
line, the number of index accesses is restricted to the length of the query, which can
significantly reduce the total number of matching operations. This effect is dependent
on the length of the query and the percentage pAt/q of alphabet symbols represented
in the query. We have performed the experiments to obtain the insight into actual
values of the query length and pAt/q within the framework of the heuristic part of
SWORD algorithm for protein search. Somewhat surprisingly, we have found out that
in the core SWORD variant, when amino acid triplets are expanded with similar 3-
mers, almost all of the alphabet is present in a query of length 1500. As a result,
target indexing cannot be straightforwardly implemented. On the other hand, the
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results on the longer k-mers show much more promise. It is apparent that using
longer k-mers with larger similarity neighborhood can lead to strong reduction in the
number of total matching operations. However, to explore this fact, further work is
required in finding the appropriate cache efficient data structures for storage of the
larger index, as well as the modification of SWORD algorithm in order to work with
shorter queries.

The actual possible speedup of SWORD method will probably have more to do
with cache efficiency related data handling than with string algorithms. Nevertheless,
the underlying mechanism could very well be based on the findings presented in this
investigation. To our knowledge, this is the first analysis of that kind and we hope it
may be useful to designers of algorithms based on protein sequence indexing.
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