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Abstract. The motivation for having an efficient algorithm for identifying all maximal
Lyndon substrings of a string comes from the work of Bannai et al. on the Runs Con-
jecture. In 2015, they resolved the conjecture by considering Lyndon roots of runs and
they also presented a unique linear algorithm for computing all runs. The uniqueness
of the algorithm lies in the fact that it relies on the knowledge of all maximal Lyndon
substrings, while all other linear algorithms for runs rely on Lempel-Ziv factorization
of the input string. A Lyndon array is a data structure that encodes the information
of all maximal Lyndon substrings of a string. In a 2016 Prague Stringology Conference
paper, Franek et al. discussed various known algorithms for computing the Lyndon ar-
ray. In 2015, in his Masters’ thesis, Baier designed a linear algorithm for suffix sorting.
Inspired by Phase II of Baier’s algorithm, in a 2017 Prague Stringology Conference
paper, Franek et al. discussed the linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings. As noticed by C. Diegelmann, the first phase of Baier’s
algorithm identifies and sorts all maximal Lyndon substrings of the input string. Based
on Phase I of Baier’s algorithm, in a 2018 Prague Stringology Conference paper, Franek
et. al presented an elementary (in the sense of not relying on a pre-processed global data
structure) linear algorithm for identifying and sorting all maximal Lyndon substrings.
This paper revisits the subject of algorithms for the Lyndon array and closes off the
series of our Prague Stringology Conference contributions on the topic — it provides
a simple overview of all currently known algorithms including the new development
since 2016. In particular, it presents a detailed analysis of a new algorithm TRLA, and
comparative measurements of three of the algorithms.
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1 Introduction

There are at least two reasons for having an efficient algorithm for identifying all maxi-
mal Lyndon substrings in a string: firstly, Bannai et al. introduced in 2015 (arXiv, [H]),
and published in 2017, [§], a linear algorithm to compute all runs in a string that
relies on knowing all maximal Lyndon substrings of the string, and secondly, in 2017,
Franek et al. in [M¥] showed a linear co-equivalence of sorting suffixes and sorting
maximal Lyndon substrings, based on a novel suffix sorting algorithm introduced by
Baier in 2015 (Master’s thesis, [M]), and published in 2016, [¥.

The most significant feature of the runs algorithm presented in [M] is that it relies
on knowing all maximal Lyndon substrings of the input string for some order of the
alphabet and for the inverse of that order, while all other linear algorithms for runs
rely on Lempel-Ziv factorization of the input string. Thus, computing runs became
yet another application of Lyndon words. It also raised the issue which approach
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may be more efficient: to compute the Lempel-Ziv factorization or to compute all
maximal Lyndon substrings. Interestingly, Kosolobov argues that computing Lempel-
Ziv factorization may be harder than computing all runs, however his archive paper
[ was not followed up with. There are several efficient linear algorithms for Lempel-
Ziv factorization; for example see [l and the references therein.

Baier introduced in [§], and published in [§], a new algorithm for suffix sorting.
Though Lyndon strings are never mentioned there, it was noticed by Cristoph Diegel-
mann in a personal communication, [i], that Phase I of Baier’s suffix sort identifies
and sorts all maximal Lyndon substrings.

The maximal Lyndon substrings of a string @ = x[1..n] can be best encoded in
the so-called Lyndon array introduced in [M]: an integer array L£[1..n] so that for
any ¢ € 1..n, L[i]| = the length of the mazimal Lyndon substring starting at position i.

Our research group has presented in the Prague Stringology Conference a series

of three papers on the topic of maximal Lyndon substrings:

(1) In 2016, [W9] presented an overview of then-current algorithms for computing the
Lyndon array.

(2) In 2017, W] presented the linear co-equivalency of sorting suffixes and sorting
maximal Lyndon substrings.

(3) In 2018, W] presented an elementaryll linear algorithm to identify and sort all
maximal Lyndon substrings, inspired by Phase I of Baier’s algorithm.

This paper completes the series and briefly recapitulates the algorithms presented in
M) and then presents the development since 2016 not described in [#], in particular
a novel algorithm TRLA for computing the Lyndon array based on 7-reduction, and
empirical comparisons of three of the algorithms: IDLA, BSLA, and TRLA.

The structure of the paper is as follows. In Section M, the basic notations and
notions are presented. Section Ml contains a brief recapitulation of IDLA, the Iterated
Duwal algorithm for Lyndon array. Section Ml contains a brief recapitulation of RDLA,
the Recursive Duval algorithm for Lyndon array. Section Ml contains a brief recapitula-
tion of SSLA, the algorithmic scheme of suffix sorting followed by Next Smaller Value.
Section M introduces BWLA, the 2018 algorithmic scheme for computing the Lyndon
array via inversion of Burrows- Wheeler transform. Section ll contains a brief recapit-
ulation of RGLA, the ranges based algorithm for Lyndon array. Section Ml contains a
brief recapitulation of BSLA, the Baier’s sort Phase I inspired algorithm. Section l
contains a detailed description and analysis of TRLA, the recursive algorithm based
on 7-reduction. In Section MM, the empirical measurements of the performance of
IDLA, BSLA, and TRLA are presented on various datasets with random strings of
various lengths and over various alphabets. The results are presented in a graphical
form. In Section M, the conclusion of the research is presented, and the necessary
future work described.

2 Basic notation and terminology

For two integers ¢ < j, the range i..j = {k integer : i < k < j}. An alpha-
bet is a finite or infinite set of symbols (equivalently called letters). We assume

! not needing a pre-processed global structure such as suffix array
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that a sentinel symbol $ is not in the alphabet and is always assumed to be lex-
icographically the smallest. A string over an alphabet A is a finite sequence of
symbols from A. A $-terminated string over A is a string over A terminated
by $. We use the array notation indexing from 1 for strings, thus @[1..n] indicates a
string of length n, the first symbol is the symbol with index 1, i.e. 2[1], the second
symbol is the symbol with index 2, i.e. x[2], etc. Thus, x[l..n] = x[1]x[2]---x[n].
For a $-terminated string x of length n, x[n+1] = $. The alphabet of string
x, denoted as Ag, is the set of all distinct alphabet symbols occurring in @. By a
constant alphabet we mean a fixed finite alphabet. A string « is over an integer
alphabet if Ay C {0,1,...,|z|}. Thus, the class of strings over integer alpha-
bets = {x | © is a string over {0,1,...,|x|}}. A string « over an integer alphabet
is tight if Ax = {0,1,...,k} for some k < |x|. Thus, for instance & = 010 is tight
as Ag = {0, 1}, while y = 020 is not as Ay = {0,2} —i.e. 1 is missing from Ay.

We use a bold font to denote strings, thus & denotes a string, while x denotes
some other mathematical entity such as an integer. The empty string is denoted
by € and has length 0. The length or size of string @ = x[1..n] is n. The length
of a string x is denoted by |x|. For two strings @ = «[l..n] and y = y[l..m], the
: : : : z[i] fori<n,
concatenation xy is a string u where u[i| = , ,
yli —n] forn <i<n+m.

If £ = wvw, then u is a prefix, v a substring, and w a suffix of . If u (respectively
v, w) is empty, then it is called a trivial prefixz (respectivly trivial substring,
trivial suffiz), if |u| < |x| (respectively |v| < |x|, |w| < |x|) then it is called a
proper prefix (respectively proper substring, proper suffix). If x = uv, then
vu is called a rotation or a conjugate of x; if either u = € or v = €, then the
rotation is called trivial. A non-empty string « is primative if there is no string y
and no integer k > 2so that ¢ = y* = yy---y.

——

k times

A non-empty string @ has a non-trivial border w if w is both a non-trivial proper
prefix and a non-trivial proper suffix of . Thus, both € and « are trivial borders of
x. A string without a non-trivial border is called unbordered.

Let < be a total order of an alphabet A. The order is extended to all finite strings
over the alphabet A: for & = x[1..n] and y = y[l..n], x < y if either x is a proper
prefix of y, or there is a 7 < min{n, m} so that x[1] = y[1], ..., z[j—1] = y[j—1]
and x[j| < y[j]. This total order induced by the order of the alphabet is called the
lexicographic order of all non-empty strings over A. We write * < y if either x < y
or x = y. A string x over A is Lyndon for a given order < of A if x is strictly
lexicographically smaller than any non-trivial rotation of x. A substring @[i..j| of
z[l.n], 1 <i < j < nisa mazximal Lyndon substring of x if it is Lyndon
and either j = n or for any k > j, @[i..k] is not Lyndon. The Lyndon array of a
string @ = x[l..n] is an integer array L[1..n] so that L[i] = j where j < n—iis a
maximal integer such that x[i..i4+j—1] is Lyndon. Alternatively, we can define it as
an integer array L£'[1..n] so that £'[i] = j when x[i..j] is a maximal Lyndon substring.
The relationship between those two definitions is straightforward: £'[i] = L[i]+i—1,
or L[i| = L'[i]—i+1.



Frantisek Franek and Michael Liut: Algorithms to Compute the Lyndon Array Revisited 19

3 Iterated Duval algorithm - IDLA

This algorithm was presented in [Ml]. The algorithm is based on Duval’s work on
Lyndon factorization, [M]. The procedure maxLyn(x) returns the length of the max-
imal Lyndon prefix of the string x. In Duval’s factorization algorithm, maxLyn is
then applied to the position immediately after the maximal Lyndon prefix. Here, we
apply maxLyn iteratively to every suffix of . Why and how maxLyn works, and its
complexity can be found in [l¥], including the pseudo-code. The C++ implementation
can be found in the file lynarr.hpp, []. Note that IDLA is referred to as Iterated
MazLyn in []. The worst-case complexity of IDLA(x) is O(|z|?). The algorithm
works in-place, so the storage requirements are just the storage for the string and the
storage for the Lyndon array. The alphabet of the input string need not be sorted, but
must be ordered. The alphabet is sorted if the alphabet is in the form of an ordered
list, so that for each letter you can access in constant time the immediately preceding
letter and the immediately succeeding letter. The alphabet is ordered if there is a
partial order on the alphabet so that comparison of any two letters can be computed
in constant time.

4 Recursive Duval algorithm - RDLA

This algorithm was presented in [ll]. The algorithm is also based on Duval’s algorithm
for Lyndon factorization which is applied recursively: if @[1..i;]@[i;+1..ig] - - - @[ij+]1..0]
is a Lyndon factorization of «, the algorithm is recursively applied to x[2..i1], to
xli1 +2..49], ..., to x[ix+2..n], and so on. The correctness of the algorithm follows
from the correctness of Duval’s algorithm. The alphabet of the input string need not
be sorted, but must be ordered. The algorithm works in the worst-case complexity of
O(]z|?), and in the special case of the binary alphabet of , it is O(|z| log(|z|)), see
[W]. Storage requirements are the same as for IDLA, plus the additional storage for
the stack controlling the recursion.

5 Algorithmic scheme based on suffix sorting - SSLA

This scheme was presented in [ll]. It is based on Lemma M which follows from Hohlweg
and Reutenauer’s work M. The lemma characterizes maximal Lyndon substrings
in terms of the relationships of the suffixes.

Lemma 1. Consider a string x[1..n] over an alphabet ordered by <. The substring
x[i..j| is Lyndon if x[i.n] < x[k.n] for any i < k < j, and is mazimal Lyndon if it
is Lyndon and either j =n or x[j+1..n] < x[i..n].

Therefore, the Lyndon array of x is the NSV (Next Smaller Value) array of the
inverse suffix array. The scheme is as follows: sort the suffixes, from the resulting
suffix array compute the inverse suffix array, and then apply NSV to the inverse
suffix array. Computing the inverse suffix array and applying NSV are “naturally”
linear and computing the suffix array can be implemented to be linear, see [l and
the references therein. The time and space characteristics of the whole scheme are
dominated by the time and space characteristics of the first step — the computation
of the suffix array. For linear suffix sorting, the input strings must be over constant
or integer alphabets.
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6 Algorithmic scheme based on Burrows-Wheeler transform
— BWLA

This scheme was not presented in [l] as it was introduced in 2018, see [MM]. The
algorithm is linear and computes the Lyndon array from a given Burrows-Wheeler
transform of the input string. Since the Burrows-Wheeler transform is computed in
linear time from the suffix array, it is yet another scheme of how to obtain the Lyn-
don array via suffix sorting: compute the suffix array, from the suffix array compute
the Burrows-Wheeler transform, and then compute the Lyndon array during the in-
version of the Burrows-Wheeler transform. As for SSLA, the execution and space
characteristics of the scheme are dominated by the computation of the suffix array.

7 An algorithm based on ranges — RGLA

This algorithm was discussed in [ll] where it was referred to as NSV*.

In case of a constant alphabet, ranges can be compared in constant time if the Parikh
vector for each range is pre-computed, which can be done in linear time. An increasing
range is a maximal substring x[i..j] so that x[#] < x[(] for every i < £ < { < j,
while a decreasing range is a maximal substring x[i..j] so that x[£] = x[(] for every
i < £ < ¢ < j. The algorithm emulates the classic stack implementation of NSV.
The time and space complexity of the algorithm was not given in [ll], but the time
complexity is at worst O(n?), though it was indicated in the paper it could possibly
be O(n log(n)), where n is the length of the input string. An informal analysis of the
correctness of the algorithm was provided.

8 Baier’s suffix sort Phase I inspired algorithm — BSLA

Introduced in 2018, this algorithm was not discussed in [ll], however, it was presented
in [M]. There it was referred to as Baier’s sort and the code was available as bls, see
M. For the interested reader, a simpler and more elegant description and analysis of
the correctness of the algorithm can be found in [#¥]. Our C++ implementation can
be found at [M] as BSLA, though based on the ideas of Phase I of Baier’s suffix sort,
our implementation necessarily differs from Baier’s.

The input strings for BSLA are tight strings over integer alphabets. Note that
this requirement does not significantly detract from the applicability of the algorithm
as any string over an integer alphabet can easily be transformed in O(|z|) time to
a tight string so that the original string and the transformed string have the same
Lyndon array. Thus, computing the Lyndon array for the transformed tight string
also gives the Lyndon array for the original string.

The algorithm is based on a refinement of a list of groups of indices of the input
string . The refinement is driven by a group that is already complete and the re-
finement process makes the immediately preceding group complete, too. In turn, this
newly completed group is used as the driver of the next round of the refinement. In
this fashion, the refinement proceeds from right to left until all the groups in the list
are complete. The initial list of groups consists of the groups of indices with the same
alphabet symbol; it will be shown that the group for the largest alphabet symbol is
complete, so it is a proper start for the refinement process.
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Each group is assigned a specific substring of the input string referred to as the
context of the group; it has the property that for every ¢ in the group, the group’s
context occurs at the position i. Throughout the process, the list of the groups is
maintained in an increasing lexicographic order by their contexts. Moreover, at every
stage, the contexts of all the groups are Lyndon substrings of & with the additional
property that the contexts of complete groups are maximal occurrences in . Hence,
when the refinement is complete, the contexts of all the groups in the list represent
all maximal Lyndon substrings of «.

The process of refinement is rather technical and we refer the interested reader
to the original presentation in [Ml], or a better presentation in [Ml]. The complexity
of the algorithm is linear in the length of the input string. The space requirements
are relatively high; our C++ implementation, see [M|, uses 12n integers of working
memory. We refer to the algorithm as elementary, as no global data structure needs
to be pre-processed, as is the case for SSLA and BWLA.

9 T-reduction algorithm — TRLA

Introduced in 2017, this algorithm was not presented in [Bl]. The first idea of the
algorithm was proposed in Paracha’s 2017 Ph.D. thesis [Ml]. It follows Farach’s ap-
proach used in his remarkable linear algorithm for suffix tree construction [#¥], and
reproduced very successfully in all linear algorithms for suffix sorting, see for in-
stance [ and the references therein. The scheme for computing the Lyndon
array works as follows:

(1) reduce the input string « to y,

(2) by recursion compute the Lyndon array of y,

(3) from the Lyndon array of y compute the Lyndon array of x.

The input strings are $-terminated strings over integer alphabets. The reduction
computed in (1) is important. All linear algorithms for suffix array computations
use the proximity property of suffixes: comparing @[i..n] and x[j..n] can be done
by comparing @[i] and x[j], and if they are the same, comparing x[i+ 1..n] with
x[j+1..n]. For instance, in the first linear algorithm for suffix array by Karkkainen
and Sanders, [, obtaining the sorted suffixes for positions ¢ = 0 (mod 3) and
i =1 (mod 3) via the recursive call is sufficient to determine the order of suffixes for
i = 2 (mod 3) positions, and then to merge both lists together. However, there is no
such proximity property for maximal Lyndon substrings, so the reduction itself must
have a property that helps determine some of the values of the Lyndon array of x
from the Lyndon array of y and compute the rest. We present such a reduction that
we call 7-reduction, and it may be of some general interest as it preserves order of
some suffixes and hence, by Lemma M, some maximal Lyndon substrings.

The algorithm computes y as a 7-reduction of x in step (1) in linear time and
in step (3) it expands the Lyndon array of the reduced string computed by step (2)
to an incomplete Lyndon array of the original string also in linear time. However,
it computes the missing values of the incomplete Lyndon array in ©(n log(n)) time
resulting in the overall worst-case complexity of @(n log(n)). If the missing values of
the incomplete Lyndon array of & were computed in linear time, the overall algorithm
would be linear as well. Since for 7-reduction, the size of 7(x) is at most 2|z|, we
eventually obtain, through the recursion of step (2) applied to 7(x), a partially filled
Lyndon array of the input string; the array is about % to % full and for every position
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¢ with an unknown value, the values at positions ¢—1 and ¢+ 1 are known and
x[i — 1] < «[i]. In particular, the value at position 1 and position n are both known.
So, a lot of information is provided by the recursive step. For instance, given the string
00011001, via the recursive call we would identify the maximal Lyndon substrings that
are underlined in 00011 001 and would need to compute the missing maximal Lyndon

substrings that are underlined in 00011001 . It is possible that in the future we may
come up with a linear procedure to compute the missing values making the whole
algorithm linear. We describe the 7-reduction in several steps: first the 7-pairing, then
choosing the 7-alphabet, and finally the computation of the 7-reduction of «.

9.1 T-pairing

Consider a $-terminated string @ = x[1..n] whose alphabet Ag is ordered by < with
xzn+1] = $and $ < a for any a € Ag. A T-pair consists of a pair of adjacent
positions from the range 1..n+1. The 7-pairs are computed by induction:
« the initial 7-pair is (1, 2);
o if (i—1,4) is the last 7-pair computed, then:
if 1 =n—1 then
the next 7-pair is set to (n,n+1)
stop
elseif 7 > n then
stop
elseif x[i—1]| = x[i] and x[i] < x[i+1] then
the next 7-pair is set to (¢,i+1)
else
the next 7-pair is set to (i+1,i+2)

Every position of the input string that occurs in some 7-pair as the first element
is labeled black, all others are labeled white. Note that most of the 7-pairs do not
overlap; if two 7-pairs overlap, they overlap in a position ¢ such that 1 < i < n and
x[i—1] = x[i] and x[i] < x[i+1]. Moreover, a T-pair can be involved in at most one
overlap; for illustration see Fig. l, for formal proof see Lemma [l

011023122

53 4

Figure 1. Hllustration of 7-reduction of a string 011023122
The rounded rectangles indicate symbol T-pairs, the ovals indicate the T-pairs
below are the colour labels of positions, at the bottom is the T-reduction
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Lemma 2. Let (iy,i1+1) - (ig, 9 +1) be the T-pairs of a strings = x[1l..n]. Then
forany 5,0 € 1.k
(1) if |(5,340)N (i, ieHl)| = 1, then for any m # j, 0, |(i;, i7+1) O (im, intl)| = 0,
(2) |(45,9;+1) N (i, i0+1)| < 1.

Proof. For the proof, please see the online report [Bl], Observation 3 and Lemma 3.
(]

9.2 T-reduction

For each 7-pair (7, #+1), we consider the pair of alphabet symbols (x[i], z[i+1]). We call
them symbol T-pairs. They are in a total order < induced by <
(x[ij], z[i;+1]) < (z[ig], z[ig+1]) if either x[i;] < x[if], or x[i;] = x[i,] and x[i;+1] <
x[ig+1]. They are sorted using radix sort, with keys of size 2, and assigned letters
from a chosen 7-alphabet that is a subset of {0,1,...,|7(x)|} so that the assignment
preserves the order. Because the input string was over an integer alphabet, the radix
sort is linear.

In the example, Fig. B the 7-pairs are (1,2)(3,4)(4,5)(6,7)(7,8)(9,10) and so
the symbol 7-pairs are (0,1)(1,0)(0,2)(3,1)(1,2)(2,$). The sorted symbol 7-pairs are
(0,1)(0,2)(1,0)(1,2)(2,%$)(3,2). Thus we chose as our T-alphabet {0,1,2,3,4,5} and
so the symbol 7-pairs are assigned these letters: (0,1) — 0, (0,2) — 1, (1,0) — 2,
(1,2) - 3, (2,8) — 4 and (3,1) — 5. Note that the assignments respect the order <
of the symbols 7-pairs, and the natural order < of {0,1,2,3,4,5}.

The 7-letters are substituted for the symbol 7-pairs and the resulting string is
terminated with $. This string is called the T-reduction of & and denoted 7(x),
and it is a $-terminated string over an integer alphabet. For our running example from
Fig. B 7(x) = 021534. The next lemma justifies calling the above transformation a
reduction.

Lemma 3. For any string , t|x| < |7(x)| < 2|x|.

Proof. One extreme case is when all the 7-pairs do not overlap at all, then |7(x)| =
:||. The other extreme case is when all the T-pairs overlap, then |7(x)| = 2|x|. Any
other case must be in between.

O

Let B(x) denote the set of all black positions of x. For any ¢ € 1..|7(x)|, b(i) = j
where j is a black position in x of the 7-pair corresponding to the new symbol in
7(x) at position i, while ¢(j) assigns each black position of @ the position in 7(x)
where the corresponding new symbol is, i.e. b(t(j)) = j and ¢(b(i)) = . Thus,

b
L.|7(x)| ? B(x)

In addition, we define p as the mapping of the 7-pairs to the T-alphabet.

In our running example from Fig. W (1) = 1,¢(3) = 2, t(4) = 3, t(6) = 4, t(7) = 5,
and t(9) = 6, while b(1) =1, b(2) = 3, b(3) =4, b(4) =6, b(5) =7, and b(6) = 9. For
the letter mapping, we get p(1,2) =0, p(3,4) = 2, p(4,5) = 1, p(6,7) = 5, p(7,8) = 3,
and p(9,10) = 4.
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9.3 Properties preserved by T-reduction

The most important property of 7-reduction is the preservation of maximal Lyndon
substrings of & that start at black positions. By that we mean the fact there is a
closed formula that gives for every maximal Lyndon substring of 7(x) a corresponding
maximal Lyndon substring of &. Moreover, the formula for any black position can
be computed in constant time. It is simpler to present the following results using L',
the alternative form of Lyndon array, the one where the end positions of maximal
Lyndon substrings are stored rather than their lengths. More formally:

Theorem 4. Let * = x[1..n], let L] 4 \[1..m] be the Lyndon array of 7(x), and let
L[1..n] be the Lyndon array of x.

b(L. ) [t(2)]) if ®[b(LL g [t(D)]) +1] < x[d]

Th blacki € 1..n, Lipli] =
en for any black i n, Loi] b(ﬁ;(m)[t(’i)])‘f‘l otherwise.

The proof of the theorem requires a series of lemmas that are presented below.
First we show that 7-reduction preserves relationships of certain suffixes of .

Lemma 5. Let x = x[l..n] and let 7(x) = 7(x)[1..m]. Let 1 < i,j < n. Ifi and j
are both black positions, then x[i..n] < x[j..n] implies T(x)[t(i)..m] < 7(x)[t(j)..m].

Proof. For the proof, please see the online report [#l], Lemma 6. ad

Lemma M shows that 7-reduction preserves the Lyndon property of certain Lyndon
substrings.

Lemma 6. Let ¢ = x[l..n] and let 7(x) = 7(x)[1..m]. Let 1 <i < j < n. Let x[i..j]
be a Lyndon susbtsring of «, and let i be a black position.

™ 7(x)[t(7)..t(7)] is Lyndon if j is black
7(x)[t(i)..t(j—1)] is Lyndon if j is white.

Proof. For the proof, please see the online report [ll], Lemma 7. O
Now we can show that 7-reduction preserves some maximal Lyndon substrings.

Lemma 7. Let ¢ = x[l..n] and let 7(x) = 7(x)[1..m]. Let 1 <i < j < n. Let x[i..j]
be a maximal Lyndon substring, and let © be a black position.

™ 7(x)[t(2)..t(7)] is a maximal Lyndon substring if 7 is black
7(x)[t(i)..t(j—1)] is a mazimal Lyndon substring if j is white.

Proof. For the proof, please see the online report [ll], Lemma 8. O

Now we are ready to tackle the proof Theorem Ml as we promised; please, see the
online report [l for the proof.
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for i<~ 1ton
ifi=1or (zfi— ] i nd x[i] < z[i+1]) then
i)])+1] < x[i] then

if b (ﬁlr(a:) =
Lo Heb(ﬁ;m[t@ )
Lipi] « b(L] () [t(0)]) +1
else
L%[i] + nil

Figure 2. Computing partial Lyndon array of the input string

9.4 Computing L7, from L/ ()

Theorem M indicates how to compute the partial £3, from ‘C;'(CC)' The procedure is
given in Fig. L

How to compute the missing values? The partial array is processed from right to
left. When a missing value at position i is encountered (note that it is recognized by
L%[i] = nil), the Lyndon array L£,[i+1..n] is completely filled and also L[i—1] is
known. Note that £[i+1] is the ending position of the maximal Lyndon substring
starting at the position i+ 1. If x[i] > @[i+1], then the maximal Lyndon substring
from position i+1 cannot be extended to the left, and hence the maximal Lyndon
substring at the position ¢ has length 1 and so ends in i. Otherwise, @ [i..Lpp[i+1]] is
Lyndon, and we have to test if we can extend the maximal Lyndon substring right
after, and so on. But of course, this is all happening inside the maximal Lyndon
substrmg starting at +—1 and endmg at Lp[i—1] due to Monge propertyl of the
maximal Lyndon substrings.

This is the while loop in the procedure given in Fig. Mthat gives it the O(n log(n))
complexity as we will show later. At the first, it may seem that it might actually give it
O(n?) complexity, but the “doubling of size” trims it effectively down to O(n log(n));
see Section [l

Len] < n
for i < n—1 downto 2
if £'[{] = nil then
if x[i] > a:[z—i—l] then
L)
else
if L'[i—1] =i—1 then
stop <—n
else
stop + L'[i—1]
L] + L]i+1]
while L'[i] < stop do
if x[i..L'[i]] < x[L'[i]+1..L'[L'[i]+1]] then
L] + L'[L[i]+1]
else
break

Figure 3. Computing missing values of the Lyndon array of the input string

Consider our running example from Fig. Bl Since 7(x) = 021534, we have
E’T(m)[l.ﬁ] = 6,2,6,4,6,6 giving L5[1..9] = 9,¢,3,9,¢,6,9,, 9. Computing L[8]

2 two maximal Lyndon susbtrings are either disjoint or one completely includes the other
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is easy as x[8] = x[9] and so L4,[8] = 8. L4[5] is more complicated: we can ex-
tend the maximal Lyndon substring from £2,[6] to the left to 23, but no more, so
L%[5] = 6. Computing L£7.[2] is again easy as x[2] = x[3] and so L[2] = 2. Thus
£h]1.9] = 9,2,3,9,6,6,9.8,9.

9.5 The complexity of TRLA

The complexity of TRLA is ©(n log(n)) for a string of length n. The detailed analysis
can be found in the online report [, Section 3.5. The analysis involves two steps:
the first step is showing that the complexity is O(n log(n)), and the second steps
gives a scheme (F) of generating binary strings that force ©(n log(n)) execution.
The space complexity of our C++ implementation is bounded by 9n integers. This
upper bound is derived from the fact that a Tau object (see Tau.hpp, [H]) requires 3n
integers of space for a string of length n. So the first call to TRLA requires 3n, the next
recursive call requires at most 3%71, the next recursive call requires at most 3(%)271,
o thus, 3n+32n+3(3)n+33)n+... =3n(1+3+CG)P+E)P+3)+..) =

Snl L —9n.
—3

10 Measurements

All the measurements were performed on the moore server of McMaster University’s
Department of Computing and Software; Memory: 32GB (DDR4 @ 2400 MHz), CPU:
8 of the Intel Xeon E5-2687W v4 @ 3.00GHz, OS: Linux version 2.6.18-419.el5 (gcc
version 4.1.2) (Red Hat 4.1.2-55), further, all the programs were compiled without
any additional level of optimizationl. The CPU time was measured for each of the
programs in seconds with a precision of 3 decimal places (i.e. milliseconds). Since the
execution time was negligible for short strings, the processing of the same string was
repeated several times (the repeat factor varied from 108, for strings of length 10, to
1, for strings of length 10°), resulting in a higher precision (of up to 7 decimal places).
Thus, for graphing, the logarithmic scale was used for both, the z-axis representing
the length of the strings, and the y-axis representing the time.

There were 4 categories of datasets: random tight binary strings over the alphabet
{0, 1}, random tight 4-ary strings (kind of random DNA) over the alphabet {0, 1,2, 3},
random tight 26-ary strings (kind of random English) over the alphabet {0, 1,...,25},
and random tight strings over integer alphabets. Each of the dataset contained 500
randomly generated strings of the same length. For each category, there were datasets
for length 10, 50, 102, 5102, ..., 10°, 510, and 10°. The average time for each dataset
was computed and used in the following graphs.

As the graphs clearly indicate, the performance of the three algorithms is virtu-
ally indistinguishable. We expected IDLA and TRLA to exhibit linear behaviour on
random strings as such strings tend to have almost all maximal Lyndon substrings
short with respect the length of the strings. However, we did not expect the results
to be so close.

We also tested all three algorithms on datasates containing a single string
01234 ...n referred to as an extreme_idla string, which, of course makes IDLA
exhibit its quadratic complexity, and indeed the results show it; see Fig. 8. The
extreme_trla strings were generated according to the scheme (F) used in the analysis

3 i.e. neither -01, nor -02, nor -03 flag were specified for the compilation
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of the complexity of TRLA in section Il These strings force worst-case execution
for TRLA. However, even log(10°) is too small to really highlight the difference, so
the results were again very close, see Fig. 9.
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——TRLA
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10 10? 10° 10¢ 10° 10° H,‘ 0 e o 3 T

Length of String Length of String

Figure 8. extreme_idla strings Figure 9. extreme_trla strings

11 Conclusion and Future Work

We presented an overview of current algorithms for computing maximal Lyndon sub-
strings, including new development since the publication of [Wl]:

« the algorithmic scheme based on the computation of the inverse Burrows-Wheeler
transform, BWLA, [Il];
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« the linear algorithm inspired by Phase I of Baier’s algorithm, BSLA, [B]; and
« the novel algorithm based on 7-reduction, TRLA.

Then performance of three of the presented algorithms, IDLA, BSLA, and TRLA was
compared on various datasets of random strings. The algorithm TRLA is mostly of
theoretical interest since it has the worst-case complexity ©(nlog(n)) for strings of
length n. Interestingly, on random strings it slightly outperformed BSLA, which is
linear. Additional effort will go into improving TRLA’s complexity in the computation
of the missing values. It is imperative that the three algorithms be compared to some
efficient SSLA or BWLA implementation.
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