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Abstract. We study the online Parameterized Dictionary Matching with One Gap
problem (PDMOG) which is the following. Preprocess a dictionary D of d patterns,
where each pattern contains a special gap symbol that can match any string, so that
given a text that arrives online, a character at a time, we can report all of the patterns
from D that parameterized match to suffixes of the text that has arrived so far, before
the next character arrives. Two equal-length strings are a parameterized match if there
exists a bijection on the alphabets, such that one string matches the other under the
bijection. The gap symbols are associated with bounds determining the possible lengths
of matching strings. Online Dictionary Matching with One Gap (DMOG) captures the
difficulty in a bottleneck procedure for cyber-security, as many digital signatures of
viruses manifest themselves as patterns with a single gap. Parameterized match cap-
tures possible encryption of the patterns. We also define and study the strict PDMOG
problem, in which sub-patterns of the same dictionary pattern should be parameter-
ized matched via the same bijection. This captures situations where sub-patterns of a
dictionary pattern are encoded simultaneously.

Keywords: pattern matching, dictionary matching, online dictionary matching with
gaps, parameterized matching

1 Introduction

Cyber security is a critical modern concern. Network intrusion detection systems
(NIDS) perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear on several packets, hence the
need for gapped matching [25].

A gapped pattern P is one of the form lp {α, β} rp, where each sub-pattern lp, rp
is a string over alphabet Σ, and {α, β} matches any substring of length at least α
and at most β, which are called the gap bounds. Gapped patterns may contain more
than one gap, however, those considered in NIDS systems typically have at most one
gap, and are a serious bottleneck in such applications [8]. Consider for example the
SNORT software, which is a free open source network intrusion detection system and
intrusion prevention system. Analyzing the set of gapped patterns considered by the
SNORT software rules shows that 77% of the patterns have at most one gap, and
more than 44% of the patterns containing gaps have only one gap [7].

For this reason, Amir et al. [9,8] defined the Dictionary Matching with One Gap
problem (DMOG) as follows. Preprocess a dictionary D of total size D over alphabet
Σ consisting of d gapped patterns each containing a single gap, so that given a
query text T of length n over alphabet Σ, we can output all locations ℓ in T , where
any gapped pattern ends. Note that, D is the sum of lengths of all patterns in the
dictionary, not including the gaps sizes. For example, let D be {P1 = a b a {2, 4} d d,
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P2 = a b {2, 4} c d, P3 = b a {2, 4} c}. Then, the text T = c d a b a b e b c d a c
has occurrences of P2 ending at location 10 with gap length 4 and gap length 2, and
of P3 ending at location 9 with gap length 3.

We study an extension to the dictionary matching with one gap (DMOG) problem
suggested by Shalom [31], where every pattern in the dictionary has a single gap, in
which the gapped malware is encrypted in order to evade virus scanners. We consider
the situation where units of plain text are replaced with ciphertext according to
a fixed system, i.e., a parameterized mapping is used as a strategy of encryption.
Parameterized matching is a well-known problem in computer science [12]. Two equal-
length strings are a parameterized match if there exists a bijection on their alphabet
symbols under which one string matches the other.

The Parameterized Matching problem (PM) is formally defined as follows. Given
a Text T of length n and a pattern P of length m, both over alphabet Σ ′ ∪ Σ, s.t.
Σ ′ ∩ Σ = ∅, output all locations ℓ in T , where there exists a bijection f : Σ → Σ
and the following hold: (1) ∀P [i] ∈ Σ ′, P [i] = T [ℓ + i − 1], and (2) ∀P [i] ∈ Σ,
f(P [i]) = T [ℓ + i − 1]. For example, let Σ ′ = {a, b}, Σ = {x, y, z} for text T =
x x y b z y y x b z x and pattern P = z z x b there are two p-matches ending at
locations {4, 9}. The former implies mapping function f(z) = x, f(x) = y, while the
latter implies mapping function f(z) = y, f(x) = x. Throughout the paper we denote
a parameterized match by p-match.

We thus study the Parameterized Dictionary Matching with One Gap (PDMOG)
problem formally defined below. However, unlike Shalom [31], who studied the offline
scenario where all the text is given in advance, we focus on the online setting.

Definition 1. The Parameterized Dictionary Matching with One Gap problem
(PDMOG):
Preprocess: A dictionary D consisting of d gapped patterns {Pi} over alphabet Σ ′ ∪Σ,

s.t. Σ ′ ∩Σ = ∅, where every Pi is of the form lpi{αi, βi}rpi and αi, βi,
are Pi’s gap boundaries.

Query: A text T of length n over alphabet Σ ′ ∪Σ, Σ ′ ∩Σ = ∅
Output: All locations ℓ in T , where a p-match of gapped pattern Pi ∈ D ends, i.e.,

there exist bijections f1, f2 : Σ → Σ and the following hold for some
Pi and a gap length g ∈ [αi, βi]:
(1) ∀lpi[j] ∈ Σ ′, lpi[j] = T [ℓ− |rpi| − g − |lpi|+ j].
(2) ∀lpi[j] ∈ Σ, f1(lpi[j]) = T [ℓ− |rpi| − g − |lpi|+ j].
(3) ∀rpi[j] ∈ Σ ′, rpi[j] = T [ℓ− |rpi|+ j].
(4) ∀rpi[j] ∈ Σ, f2(rpi[j]) = T [ℓ− |rpi|+ j].

Note, that the gapped pattern parts lpi, rpi need to be p-matched separately,
hence, each can be matched using a different matching function. For example, let
Σ ′ = {a, b}, Σ = {q, u, v, w, z} for text T = a u v b u b a z w w z and D = {P1 =
z x b z{2, 4}u u q, P2 = u b q{1, 4}a u v}. We have two p-matches ending at locations
{11, 9}. The first p-matches P1 using matching function f(z) = u, f(x) = v for lp1,
a gap of length 3 and a matching function f(u) = w, f(q) = z for rp1. The second
p-matches P2 using f(u) = v, f(q) = u for matching lp2, a single character gap and
f(u) = z, f(v) = w for matching rp2. For simplicity, we assume that Σ ′ = ∅. Our
solutions can be easily adapted to Σ ′ 6= ∅ case.
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The Strict PDMOG Problem. In some situations it is more reasonable that the
encodings of both sub-patterns of the same dictionary pattern are done simultane-
ously and, therefore, equal. Hence, we suggest another formalization of the PDMOG
definition, which we call strict PDMOG, that enforces the requirement of both left
and right sub-patterns have the same parameterized matching function. The strict
PDMOG formal definition is identical to Definition 1, with the additional requirement
that f1 = f2, implying that both sub-patterns of a gapped pattern are parameterized
matched via the same bijection function.

In the above example, the parameterized occurrence of P1 in the text T ending at
location 11 is a strict parameterized occurrence, since the bijection f(z) = u, f(x) = v
for lp1, and the bijection f(u) = w, f(q) = z for rp1 do not contain collisions, i.e.,
matching of the same character to different characters. In contrary, the p-matching
of P2 ending at location 9 using a matching function f(u) = v, f(q) = u for lp2 and
a mapping function f(u) = z, f(v) = w for rp2 contains a collision matching the
character u to two different characters in lp2 and rp2, and therefore, is not a strict
parameterized occurrence.

Throughout the paper we use the following notations. LetD = {P1, . . . , Pd}, where
every Pi is a gapped pattern of the form lpi{αi, βi}rpi. We denote β∗ = maxi βi,
α∗ = mini αi. If D has uniform gap boundaries {α, β}, then ∀1 ≤ i ≤ d, αi = α,
βi = β.

1.1 Related Previous Work and the Current Work

Dictionary Matching with Gaps. Dictionary matching has been amply researched
(see e.g. [1,2,3,4,6,15]). The problem definition varies and many parameters affect the
complexity when patterns are gapped. [30] [14] and [13] solve the problem, yet their
solutions include a factor of socc – the total number of occurrences of the sub-patterns
in the text, which can be very large. Others [26,33] solve the problem of matching a
set of patterns with variable length of don’t cares, yet, they report only a leftmost
occurrence of a pattern if there exists one. In [21] an online algorithm for the problem
is given, however, at most one occurrence for each pattern at each text position is
reported.

The first results on the DMOG problem are due to [9], which solved the offline
DMOG problem for a single set of gap boundaries reporting all appearances of all
gapped patterns. They suggest an algorithm using range queries and an additional
algorithm using a look-up table. The solution is generalized to variable-length gaps
dictionaries achieving linear space in [22]. Finally, the online DMOG problem is con-
sidered in [8,7] and a connection to the 3SUM conjecture is shown. The conditional
lower bound (CLB) provides insight for the inherent difficulty in DMOG, and reveals
that the CLB from the 3SUM conjecture can be phrased in terms of a new parame-
ter of the problem – δ(GD), where GD is a graph representing the input dictionary.
δ(GD) turns out to be a small constant in some input instances considered by NIDS.
In fact, δ(GD) is not greater than 5 in the graph created using SNORT software
rules [7]. This leads to designing algorithms whose runtime can be expressed in terms
of δ(GD), and can therefore be helpful in such practical settings. Online Dictionary
Recognition with One Gap (DROG), where each gapped pattern is reported at most
once during the entire online text scan, is considered in [10].
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Parameterized Matching. The problem was initially defined as a tool for soft-
ware maintenance, motivated by the observation that programmers introduce du-
plicate code into large software systems when they add new features or fix bugs,
thus slightly modify the duplicated sections [12]. The problem has many application
in various fields, such as Image processing, where parameterized matching can help
searching an icon on the screen, or improving ergonomy of databases of URLS [28]
and extensive research followed (see [27,28]). Among the extensions are: suggesting
a parameterized version of KMP [5], studies of maximal p-matches over a threshold
length and a p-suffix tree [11,12], parameterized fixed and dynamic dictionary prob-
lems presented [23] and improved by [20], efficient parameterized text indexing [18],
p-suffix arrays [17], parameterized LCS [24], and many more.

Parameterized Dictionary Matching with One Gap (PDMOG). Shalom [31]
first formalized the extension of the dictionary matching with one gap (DMOG)
problem to parameterized dictionary matching with one gap (PDMOG), in which
the gapped malware is encrypted in order to evade virus scanners. [31] study the
offline scenario where all the text is given in advance, and give two solutions. The
first solves offline PDMOG for dictionaries with non-uniform gap boundaries with
O(n(β∗−α∗) log2 d+ occ) query time, where n is the size of the text, d is the number
of gapped patterns in the dictionary, β∗ − α∗ is the maximal gap size and occ is the
number of the gapped patterns reported as output. The second offline PDMOG so-
lution is for dictionaries with uniform gap boundaries with O(n(β − α) + occ) query
time, where n is the size of the text, β − α is the gap size and occ is the output size.

This Paper Contributions. In this paper, we focus on the online setting of PDMOG
and strict PDMOG, where the text arrives a character at a time, and the require-
ment is to report all gapped patterns that parameterize-match to suffixes of the text
that has arrived so far, before the next character arrives. This is the more realistic
situation in NIDS applications. The main contributions of this paper are:

– Formalizing the online PDMOG and strict PDMOG problems, which are natural
extensions to the online DMOG problem.

– Obtaining algorithms for online PDMOG that are fast for some practical inputs.
A basic property of suffixes of any dictionary pattern is that they form a chain
where each is a proper suffix of the other. This property, that was crucial in the
online DMOG solutions [8,7], no longer holds for parameterized suffixes. Never-
theless, we show that it is possible to by-pass this difficulty.

– Obtaining algorithms for online strict PDMOG that are fast for some practical
inputs where dictionary sub-patterns contain the same alphabet symbols. Enforc-
ing the requirement that both left and right sub-patterns of a dictionary pattern
are p-matched using the same parameterized matching function necessitates rep-
resentation and maintenance of these functions.

Paper Organization. The paper is organized as follows. Section 2 describes our
results for the online PDMOG problem. Section 3 details the algorithms for solving
online strict PDMOG problem. Section 4 concludes the paper and poses some open
questions.
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2 Solving Online PDMOG

In this section we describe the online PDMOG solution. We detail the changes and
modifications that should be made to the basic scheme of [8,7] in order to adapt it
to our problem.

The Bipartite Graph GD. We use [8,7] dictionary representation as a graph
GD = (V,E): sub-patterns are represented by vertices and there is an edge (u, v) ∈ E
if and only if there is a pattern Pi ∈ D, where lpi is associated with node u and rpi
is associated with v. The graph GD = (V,E) is converted to a bipartite graph by
creating two copies of V called L (left vertices) and R (right vertices) as follows.
For every edge (u, v) ∈ E, an edge is added to the bipartite graph from uL ∈ L to
vR ∈ R, where uL is a copy of u and vR is a copy of v.

P-Matches Detection. Parameterized matching does not require exact matches
between the characters, but rather to capture the characters order. Therefore, Baker
[12] defined a p-string over a string S = s1, s2 · · · using the prev function, where
prev(si) = si in case si ∈ Σ ′, but for si ∈ Σ, prev(si) = 0 if si is the leftmost position
in S of si, and prev(si) = i − k if k is the previous position to the left at which si
occurs. For example, let Σ ′ = {a, b}, Σ = {u, v} and S = a b u v a b u v u, then the
p-string of S is prev(S) = a b 0 0 a b 4 4 2.

Lemma 2. [12] Strings S1, S2 have prev(S1) = prev(S2) if and only if they are p-
matched.

[23] construct a modified Aho-Corasick automaton (AC) [1] suitable for p-strings
similarly to the original AC construction, with modifications to goto and fail
links adapting it to work with p-strings. Their automaton is constructed in time
O(D log |Σ|), takes O(m logm) = O(D logD) bits, where m is the number of
automaton states, and reports all p-matches of dictionary D patterns in text T in
O(|T | log |Σ| + occ) time, where occ is the number of reported occurrences. If only
the longest pattern located for each text location is reported, the query is answered
in O(|T | log |Σ|).1

In the preprocessing, we calculate in linear time the p-string, prev(lpi), prev(rpj)
for every lpi, rpj of some Pi, Pj ∈ D, and construct a parameterized AC automaton
upon them, denoted by pAC. Using a standard binary encoding technique each char-
acter costs O(log |Σ|) worst-case time. However, for simplicity of exposition, |Σ| is as-
sumed to be constant, whenever this assumption is not critical, i.e, if |Σ| only appears
as a logarithmic factor due to this binary encoding. Note that, the prev function does
not preserve the suffix relation of the strings it is applied to. Consider sub-patterns
x, y, where x is a suffix of y, then, prev(x) is not necessarily a suffix of prev(y). For
example, consider lpi = uuua and its suffix uua. It holds that prev(lpi) = 011a, yet
prev(uua) = 01a, which is not a suffix of 011a. Nevertheless, p-suffixes of all dictionary
sub-patterns can be traced using fail links of pAC automaton.

The pAC automaton consists of states representing p-strings of prefixes of dictio-
nary sub-patterns. A state representing prev function of a sub-pattern lpi or rpj is
called an accepting state. An arriving character may correspond to several arriving

1 [19] suggest a space efficient data structure for the parameterized dictionary matching, improving
the pAC automaton of [23] by using sparsification technique. Due to our cyber security motivation,
we prefer the data structure of [23] for its faster query time.
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parameterized sub-patterns, since prev function of a sub-pattern could be a proper
p-suffix of prev function of another sub-pattern. We therefore, phrase complexities in
terms of plsc – the maximum number of sub-patterns that their prev functions are
p-suffixes of each other, implying vertices in the bipartite graph that arrive due to
a character arrival. A similar (probably smaller) lsc factor was used in [8,7] DMOG
solutions, and even for simplified DMOG relaxations [21]. While lsc (and plsc) could
theoretically be as large as d, in many practical situations it is very small. A graph
created using SNORT software rules has lsc not greater than 5 [7]. In natural lan-
guages dictionaries such as the English dictionary lsc is also a small constant. While
it is possible to find a suffix chain of English words with length 7, it is difficult (if
possible) to find chains of greater length.

At each time unit, at most plsc vertices are handled, as follows. A vertex u ∈ L,
representing a longest sub-pattern associated with the current accepting pAC automa-
ton state, is handled. Other (not necessarily proper) p-suffixes of that sub-pattern are
also handled. The preprocessing enabling this procedure uses a p-graph structure.

The P-Graph Structure. We construct a graph pG among the sub-patterns associ-
ated with vertices of GD, where an edge (u′, u) ∈ E(pG) if and only if the sub-pattern
associated with u′ is a p-suffix of the sub-pattern associated with u. An additional
end vertex corresponding to the empty string is added to the graph pG, since it is a
p-suffix of every sub-pattern. The graph pG can be constructed in linear time while
constructing the pAC automaton of D. The bipartite graph GD vertices arriving due
to a text character arrival correspond to vertices on a BFS scan of pG from a vertex u
associated with the pAC accepting state (one of the longest sub-patterns having the
same p-suffix recognized by this state), creating a BFS-tree rooted at u, not including
the end leaves of the BFS-tree.

Text Scan. This phase online detects p-matching sub-patterns in the text, while
saving in adequate data structures occurrences of sub-patterns represented by u ∈ L
nodes that where located during the proper bounds of time units ago (which are calcu-
lated differently for the uniform/non-uniform gap bounds cases). When a sub-pattern
represented by a v ∈ R node is p-matched, parameterized occurrences of all gapped
patterns Pi where rpi is represented by v ∈ R and lpi is represented by u ∈ L saved
in the data structures, are reported. During text scan phase, prev(T ) is calculated
online using a |Σ|-sized array preserving for each σ ∈ Σ its last occurrence. Scanning
prev(T ) using pAC enables finding all sub-patterns p-matching T [1..ℓ] ending at ℓ.
Note, that even for non-fixed alphabets, calculating prev(T ) requires O(|T |) time by
using perfect hash tables for latest occurrence position of a character in T . Due to
synchronization reasons described in [8], removal from the data structures of vertices
u that become non-relevant is delayed by M − 1 time units, where M is the length
of the longest sub-pattern corresponding to a vertex in R.

2.1 PDMOG via Graph Orientations

Graph Orientation. As in [8,7], the graph GD is preprocessed using linear time
greedy algorithm suggested by Chiba and Nishizeki [16] to obtain a δ(GD)-orientation
of the graph GD, where every vertex has out-degree at most δ(GD) ≥ 1. Orientation
is viewed as assigning “responsibility” for data transfers occurring on an edge to one
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of its endpoints, depending on the direction of the edge in the orientation. If an edge
e = (u, v) is oriented from u to v, the vertex u is called a responsible-neighbour of v
and v an assigned-neighbour of u. The notion of graph degeneracy δ(GD) is defined
as follows. The degeneracy of a graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU

(u),
where dGU

is the degree of u in the subgraph ofG induced by U . Hence, the degeneracy
of G is the largest minimum degree of any subgraph of G. A non-multi graph G with
m edges has δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a

multi-graph can be much higher.
The construction and use of the data structures in the algorithms is done as

in [8,7], except for the use of the auxiliary pG for recognizing the actual arriving
vertices when an accepting state of pAC is reached. This gives Theorem 3.

Theorem 3. 1. The online PDMOG problem with uniformly bounded gap borders
can be solved in: O(D log |Σ|) preprocessing time, O(δ(GD) · plsc+ pocc) time per
text character, where pocc is the number of parameterized patterns reported due to
character arrival, and O(D+ plsc · (β +M)) space.

2. The online PDMOG problem with non-uniformly bounded gap borders can be solved
in: O(D log |Σ|) preprocessing time, Õ(plsc · δ(GD) + pocc) time per text charac-
ter, where pocc is the number of parameterized patterns reported due to character
arrival, and O(D log |Σ|+ plsc · δ(GD)(β

∗ − α∗ +M) + plsc · α∗) space.

2.2 PDMOG via Threshold Orientations

Subsection 2.1 focuses on orientations whose out-degree is bounded by δ(GD). Thus,

when δ(GD) =
√
d the PDMOG algorithms basically take O(plsc ·

√
d) time. In the

non-uniform case the degeneracy can be much larger, since the same sub-patterns can
represent different gapped patterns if they have different gaps boundaries, thus two
vertices can be connected by more than one edge. Moreover, the plsc factor maybe
larger than the lsc factor used in DMOG solutions. Therefore, in this subsection we
reduce the factor of plsc · δ(GD) to

√
plsc · d, by using a different graph orientation

method, referred to as a threshold orientation.

Definition 4. A vertex in GD is heavy if it has more than
√

d/plsc neighbors, and
light otherwise.

Two key properties are used: light vertices have at most
√

d/plsc neighbors, and
the number of heavy vertices is less than

√
plsc · d. We orient all edges that touch a

light vertex to leave that vertex, breaking ties arbitrarily if both vertices are light.
Thus, every edge e connecting a light vertex with a light/heavy vertex, the light ver-
tex is the responsible-neighbor, and the heavy vertex, if exists in e, is the assigned-
neighbor. We handle differently edges with at most one heavy vertex as an endpoint
and edges connecting two heavy vertices.

Edges Connecting at Most One Heavy Vertex. Data structures used for dealing
with edges where at most one of its endpoints is heavy when considering uniformly
bounded gaps, are as in Subsection 2.1 in uniformly bounded gaps (ordered report-
ing lists Lv for each v ∈ R, ordered lists τu of the time stamps for each u ∈ L and
the list Lβ of the last β +M vertices u ∈ L). Data structures used for dealing with
edges where at most one of their endpoints is heavy when considering non-uniformly



48 Proceedings of the Prague Stringology Conference 2019

bounded gaps, are as in Subsection 2.1 in non-uniformly bounded gaps (Range query
data structures Sv for each v ∈ R, ordered lists τu of the time stamps for each u ∈ L
and the list Lβ∗ of the last β +M vertices u ∈ L).

Edges Connecting two Heavy vertices. The set of heavy vertices is less than√
plsc · d, and so even if the number of vertices from L arriving at the same time

can be as large as plsc and the set of their neighbors can be very large, the number
of vertices in R is still less than

√
plsc · d. Thus, using a batched scan on all of R

keeps the time cost low, after some preprocessing. In addition, at each time unit, we
handle only a single u ∈ L currently arriving, one representing a longest sub-pattern
found by the pAC automaton at that time, which is a sub-pattern associated with
the current accepting state. Other sub-patterns, which are (not necessarily proper)
p-suffixes of that sub-pattern are handled implicitly, without increasing the time com-
plexity unless they are reported. The preprocessing that enables this procedure uses
a p-heavy-graph structure phG (replacing the tree-structure T used in [8,7]).

The p-heavy-Graph Structure. A graph phG among the sub-patterns associated
with heavy vertices from L is constructed, where an edge (u′, u) ∈ E(phG) if and only
if the sub-pattern associated with u′ is a p-suffix of the sub-pattern associated with
u. An additional end vertex corresponding to the empty string is added to the graph
phG, since it is a p-suffix of every sub-pattern. The graph phG can be constructed
in linear time during the construction of pG. The bipartite graph GD heavy vertices
arriving due to a text character arrival correspond to vertices on a BFS scan of phG
from some vertex u, creating an O(plsc)-size BFS-tree rooted at u, not including the
end leaves of the BFS-tree.

The construction and use of the data structures in the algorithms is done as
in [8,7] except for the replacement of T by phG and the use of the auxiliary pG for
recognizing the actual arriving vertices when an accepting state of pAC is reached.
This gives Theorem 5.

Theorem 5. 1. The online PDMOG problem with uniform gap borders can be solved
in O(D log |Σ|) preprocessing time, O(plsc+

√
plsc · d+ pocc) time per text char-

acter, and O(D+ plsc(β +M)) space.
2. The online PDMOG problem with non-uniform gap borders can be solved in Õ(D+

d(β∗ − α∗)) preprocessing time, Õ(plsc+
√
plsc · d(β∗ − α∗ +M) + pocc) time per

text character, and O(D log |Σ|+ d(β∗ − α∗) +
√
plsc · d(β∗ +M)) space.

3 Solving Online Strict PDMOG

In this section we study online strict PDMOG problem, requiring both sub-patterns
of a gapped pattern to be p-matched via the same function. We solve the problem
for dictionaries where every sub-pattern contains all characters of Σ. The basic al-
gorithmic scheme is as Section 2, however, there are now additional issues to handle
due to the new requirement.

The Matching Permutation. The pAC automaton reports an occurrence of pa-
rameterized match of sub-patterns in the text, yet it does not report the matching
function used. We define the matching permutation, πu,t, via which the current p-
matching of sub-pattern represented by node u to the suffix ending at time t in the
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text occurred. πu,t can be represented as a |Σ|-length array, where entry i contains
σ′ if f(σi) = σ′ for the current p-match. Hence, we can save at every step the last M
symbols of the text, where M is the length of the longest sub-pattern in the dictio-
nary. πlpi,t of a sub-pattern lpi can be calculated in |Σlpi | time, where Σlpi contains
all distinct symbols that appear in lpi.

3.1 Uniformly Bounded Gaps

The Permutation Tree. Matching permutations are saved in a permutation tree
data structure. The permutation tree Tu maintains a set S of permutations of Σ used
to p-match occurrences of sub-pattern associated with node u. A permutation tree
can be basically maintained as a y-fast trie [32] with additional linked lists in its
leaves.

The data structures used in this case are:

1. For each u ∈ L we save a y-fast trie Tu containing all matching permutations
πu,t via which the sub-pattern represented by u was p-matched to the text ending
at location t, at least α and at most β time units ago. For every node l in Tu,
representing the matching permutation πl, we save an ordered list τu,πl

of time
stamps of the occurrences of u p-matching the text via πl.

2. For each vertex v ∈ R, we save a y-fast trie Tv containing all matching per-
mutations πu,t via which the sub-pattern represented by u was matched to the
text ending at location t, at least α and at most β time units ago, where u is a
responsible-neighbours of v. For every node l′ in Tv, representing a permuta-
tion πl′ , we save an ordered list Lv,π′

l
of links to the nodes representing permutation

πl′ in trees Tu, where u is a responsible neighbour of v.
3. The list Lβ of delayed vertices u ∈ L for at least α time units before they are

considered. To each node u in Lβ we attach the matching permutation πu,t via
which the sub-pattern represented by u was p-matched to the text ending at time
stamp t.

The details of the construction and use of the data structures in the algorithms
are as follows.

When the pAC automaton reaches state s in time t, the data structures of the
vertices are updated accordingly, as follows.
For every vertex v associated with a sub-pattern that its prev function is a p-suffix
of the prev function of the sub-pattern represented by state s,

1. If the arrived vertex is v ∈ R that was p-matched to the text via πv,t,
(a) Search the matching permutation πv,t in Tv.
(b) if πv,t appears in Tv at node l′,

Let l∗ = Lv,π
l′
.f irst (a link to a node l ∈ Tu, where πl = πl′).

i. Let t′ = τu,πl
.f irst

ii. while t′ ≥ t−mv − β − 1
A. Report edge (u, v) with matching permutation πv,t, where the nodes u,

v appearances are at locations t′, t.
B. If all appearances of the gapped pattern associated with edge (u, v) are

required, continue the scan of t′ elements of τu,πl
while t′ ≥ t−mv−β−1.

C. Let l∗ be the next link in the list Lv,π
l′
.

(c) For every vertex u which v is its responsible-neighbour.
i. If Tu contains a node l where πl = πv,t, let t

′ = τu,πl
.f irst
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ii. If t − mv − β − 1 ≤ t′, report edge (u, v) with matching permutation πv,t

where the nodes u, v appearances are at locations t′, t.
iii. If all appearances of the gapped pattern associated with edge (u, v) are

required, continue the scan of the elements of τu,πl
while t−mv−β−1 ≤ t′

where t′ is the next element in τu,πl
.

2. If the arrived vertex is u ∈ L, (u, πu,t) is inserted into Lβ.

In addition, the data structures are updated by perviously arrived nodes u ∈ L
saved in Lβ that have become relevant.
For vertices u ∈ L, where (u, πu,t−α−1) was inserted into Lβ, α + 1 time units before
time t,

1. Search for node l, representing the matching permutation πu,t−α−1 in Tu.
2. If πu,t−α−1 is not saved in Tu, insert a new node l representing πu,t−α−1 to Tu.
3. For every v ∈ R that is an assigned neighbour of u,
(a) Search for node l′, representing the matching permutation πu,t−α−1 in Tv,
(b) If πu,t−α−1 is not saved in Tv, insert a new node l′ representing πu,t−α−1 to Tv.
(c) Add to the beginning of Lv,π

l′
a link to the node l in Tu, where πl = πl′ .

(d) If τu,πl
is not empty, remove the previous link to node l of Tu, from Lv,π

l′
.

4. The time stamp t− α− 1 is added to the beginning of τu,πl
saved for the node l

in Tu.

For vertices u ∈ L,where (u, πu,t−β−M−1) was inserted into Lβ, exactly β +M + 1
time units before time t,

1. (u, πu,t−β−M−1) is removed from Lβ.
2. Search Tu for node l representing the matching permutation πu,t−β−M−1.
3. The time stamp t− β −M − 1 is removed from the end of the listτu,πl

, attached
to node l.

4. If τu,πl
becomes empty,

(a) The node l is deleted from Tu.
(b) For every Tv, where v is an assigned neighbour of u, the link to node l ∈ Tu

(for πl = πu,t−β−M−1), is removed from the end of Lv,π
l′
where l′ ∈ Tv and

πl′ = πu,t−β−M−1.

This gives Theorem 6.

Theorem 6. The online strict PDMOG problem with uniformly bounded gap borders
can be solved in: O(D log |Σ|) preprocessing time, O(plsc·δ(GD) log(|Σ| log |Σ|)+pocc)
time per text character, and O(D logD + δ(GD) · plsc · |Σ|(β − α + M) + plsc · α)
space.

Proof. In preprocessing, the pAC automaton is built in time O(D log |Σ|). The query
algorithm scans the text prev function using pAC in O(|T | log |Σ|). At time/location
t, the vertex representing the sub-pattern prev function is recognized by pAC, and
all its possible O(plsc) vertices representing p-suffixes sub-patterns in the dictionary.
Every such vertex requires O(δ(GD)) operations on y-fast trie (search - when πv,t of
v ∈ R is searched in Tv as well as in all the Tu of its assigned neighbours u ∈ L, insert
- when πu,t of u ∈ L is inserted into Tu as well as a link to the node representing πu,t

inserted to all the Tv of its assigned neighbours v ∈ R, delete - when πu,t of u ∈ L
is deleted from all the Tv of its assigned neighbours v ∈ R, and from Tu when the
p-matches of u become irrelevant.) Search, insert and delete operations applied to a
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y-fast trie, require O(log(|Σ| log |Σ|)) time each, as the number of possible matching
permutations is O(|Σ||Σ|) and each operation on a y-fast trie costs O(log logU), where
U is the maximum value of an element [32].

Reporting the output: A vertex v ∈ R that was p-matched via permutation πv,t

scans the list Lv,π
l′
of node l′ ∈ Tv representing permutation πv,t, where each element

in the list is a link to a node l ∈ Tu, representing permutation πv,t for some responsible
neighbour u of v. If τu,πl

of node l is scanned, each time stamp represents additional
parameterized occurrence of u. Lv,π

l′
scan terminates when a link to τu,πl

is reached,
where the gap between the newest time stamp of τu,πl

and t−mv + 1 (the current v
occurrence beginning) is larger than β, as the rest of the elements of Lv,π

l′
are older.

Hence, each considered element in Lv,π
l′
, except the last one, is a parameterized

occurrence. In addition, each scanned element in the τu,πl
lists of nodes in Tu trees,

where u is an assigned-neighbor of v and πl = πv,t, is reported.
Regarding space: The pAC automaton requires O(D logD) space. Each Tu main-

tains distinct permutations of all p-matches of u in T at the last β−α+M locations.
Since at every time there are at most plsc p-matches of sub-patterns simultaneously,
all Tu for u ∈ L have at most plsc · (β − α + M) nodes and the same total time
stamps number. For each Tu node, the saved matching permutations represented by
it require |Σ| space. Hence, the total Tu trees size is O(plsc · |Σ| · (β − α+M)). The
space of all permutation trees Tv, v ∈ R, is O(δ(GD) · plsc · |Σ|(β − α+M)), since a
single l ∈ Tu can be linked to δ(GD) leaves of Tv, where u is a responsible-neighbor
of v. Additional O(plsc · α) is required for the u ∈ L vertices maintained by Lβ for α
time units until they are considered as arrived.

3.2 Non-Uniformly Bounded Gaps

Non-uniformly bounded gapped patterns yield a multi-graph, where each edge e =
(u, v) has its own boundaries {αe, βe}, as (u, v) with boundaries [3, 5] is a distinct edge
from (u, v) with boundaries [4, 10]. A framework similar to Subsection 3.1 is used, yet
using permutation trees is not efficient as the information saved at the leaves of the
trees should be checked and not necessarily be reported, due to the different bound-
aries of the edges. Fortunately, we can overcome this by exploiting an alphabetical
ordering of the permutations which maps each permutation π into a unique number
num(π) in O(|Σ|) time. Thus, a fully dynamic data structure Sv supporting 6-sided
3-dimensional orthogonal range reporting queries, is used (instead of the 4-sided 2-
dimensional Sv in Subsection 2.1) for saving occurrences of responsible neighbour of
v. Similar structures for 2-dimensional orthogonal range reporting queries are used
for the time stamps of the occurrences of u ∈ L nodes.

The data structures used in this case are:

1. For each vertex v ∈ R, a data structure Sv maintaining points from R
3, rep-

resenting all time intervals in which an occurrence of v implies a gapped pattern
occurrence due to a previous occurrence of u, a responsible-neighbour of v, if the
matching permutations of u and v are the same.

2. For each u ∈ L we save a data structure Su maintaining points from R
2 rep-

resenting time stamps t of the occurrences of u with the number of the matching
permutation πu,t.

3. The list Lβ∗ of the last β∗ +M vertices u ∈ L with their matching permutation.
They are delayed for at least α∗ time units before they are considered.
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The details of the construction and use of the data structures in the algorithms
are as follows.

When the pAC automaton reaches state s in time t, the data structures of the
vertices are updated accordingly, as follows.
For every vertex v associated with a sub-pattern that its prev function is a p-suffix
of the prev function of the sub-pattern represented by state s,

1. If the arrived vertex is v ∈ R, that was p-matched to the text via πv,t,
(a) A range query of [0, t −mv + 1] × [t −mv + 1,∞] × [num(πv,t), num(πv,t)] is

performed over Sv.
(b) The edges representing the range output are reported.
(c) For every vertex u which v is its responsible-neighbour, such that e = (u, v),

i. A range query of [t − mv − βe, t − mv − αe] × [num(πv,t), num(πv,t)] is
performed over Su.

ii. The edges representing the range output are reported.
2. If the arrived vertex is u ∈ L, (u, πu,t) is inserted into Lβ∗ .

In addition, the active window is maintained by updating Lβ∗ and acknowledging
arrived nodes u ∈ L that have become relevant.
For vertices u ∈ L where (u, πu,t−α∗−1) was inserted into Lβ∗ , exactly α∗ + 1 time
units before time t,

1. The point (t− α∗ − 1, num(πu,t−α∗−1) is inserted to Su.
2. For every v ∈ R that is an assigned neighbour of u, such that e = (u, v), the point

(t− α∗ + αe, t− α∗ + βe, num(πu,t−α∗−1)) is inserted to Sv.

For vertices u ∈ L, where (u, πu,t−β∗−M−1) was inserted into Lβ∗ , exactly β∗ +M + 1
time units before time t,

1. (u, πu,t−β−M−1) is removed from the end of Lβ∗ .
2. The point (t− β −M − 1, num(πu,t−β∗−M−1)) is removed from Su.
3. For every v that is an assigned neighbour of u, such that e = (u, v), the point

(t− β∗ −M + αe, t− β∗ −M + βe, num(πu,t−β−M−1)) is removed from Sv.

This gives Theorem 7.

Theorem 7. The online strict PDMOG problem with non-uniformly bounded gap
borders can be solved in: Õ(D) preprocessing time, Õ(plsc · δ(GD) + pocc) time per
text character, and Õ(D+ plsc · δ(GD)(β

∗ − α∗ +M) + plsc · α∗) space.

Proof. Preprocessing is similar to the uniformly bounded gaps case, detailed in 3.1.
The query algorithm scans the text prev function using pAC. At each time/location
t, the vertex representing the sub-pattern prev function recognized by pAC at t and
all its possible O(plsc) p-suffixes, are considered and their data structures are updates
or queried. To implement the data structures, we use Mortensen’s data structure [29]
supporting the set of |S| points from R

d with O(|S| logd−2+ǫ |S|) words of space,

insertion and deletion time of O(logd−2+ǫ |S|) and O(( log |S|
log log |S|

)d−1+op) time for range

reporting queries on S, where op is the output size.
When a vertex u ∈ L arrives, i.e., it was p-matched via the matching permutation

πu,t in time t, the point (t, num(pu,t)) is inserted to Su in O(logǫ |Su|) time. In addition,
for each assigned neighbour v of u, where e = (u, v), the point (t+ αe +mv, t+ βe +
mv, num(πu,t)), where mv is the length of the sub-pattern represented by node v, is
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inserted into Sv. This insertion requires O(log1+ǫ |Sv|) time, yielding the time requires
for the u ∈ L nodes is O(plsc·(logǫ plsc(β∗−α∗+M)+δ(GD) log

1+ǫ plsc(β∗−α∗+M))).
When a vertex v ∈ R arrives at time t, a range query [0, t] × [t,∞] ×

[num(πv,t), num(πv,t)] over Sv returns the points that have (x, y, p) coordinates in the
given range, thus a parameterized appearance. The range query is applied to Sv con-

taining at most plsc(β∗−α∗+M) points, thus requires O( log2(plsc·(β∗−α∗+M))

log log2(plsc(β∗−α∗+M))
+pocc)

time. Additional time is required for considering all the u assigned-neighbors of v
and applying range query [t − mv − βe, t − mv − αe] × [num(πv,t), num(πv,t)] on
the Su structures in order to report all occurrences sharing the same matching
permutations within the gaps boundaries. The total number of time stamps saved
in all Tu trees is O(plsc(β∗ − α∗ +M)), thus, the total time required for the v ∈ R

nodes is O(plsc · (δ(GD) · log plsc(β∗−α∗+M)
log log plsc(β∗−α∗+M)

+ log2 plsc(β∗−α∗+M)

log log2 plsc(β∗−α∗+M)
+ pocc).

Regarding space: The pAC requires O(D logD) space. Each Su maintains all ap-
pearances u in the text, at the last β∗ − α∗ +M locations in the text. Hence, all Su

for u ∈ L have at most plsc(β∗ −α∗ +M) points, thus the space required for them is
O(plsc(β∗−α∗+M) logǫ plsc(β∗−α∗+M)). Sv contains points only from its respon-
sible neighbor, thus, each of the plsc vertices that were located at each of the last
β∗−α∗+M locations in the text can be inserted to δ(GD) structures of Sv, yielding the
space of all the Sv lists is O(plsc·δ(GD)(β

∗−α∗+M) log1+ǫ plsc·δ(GD)(β
∗−α∗+M)).

The additional space usage is required for the O(plsc) vertices maintained for O(α∗)
time units by Lβ∗ until they can be considered as arrived.

4 Conclusion and Open Problems

We presented the online PDMOG and strict PDMOG problems and described effi-
cient algorithms for their solution in some practical inputs. As demonstrated in this
paper, online PDMOG and strict PDMOG pose additional challenges and difficulties
to overcome while designing algorithms for their solutions. It is an open question
whether there exist better solutions or efficient solutions for other practical inputs.
Additional open research direction is to consider other types of encryption instead of
parameterized mapping.
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