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Abstract. We study h-lexicalized two-way restarting automata that can rewrite at
most i times per cycle for some i ≥ 1 (hRLWW(i)-automata). This model is con-
sidered useful for the study of lexical (syntactic) disambiguation, which is a concept
from linguistics. It is based on certain reduction patterns. We study lexical disam-
biguation through the formal notion of h-lexicalized syntactic analysis (hLSA). The
hLSA is composed of a basic language and the corresponding h-proper language, which
is obtained from the basic language by mapping all basic symbols to input symbols.
We stress the sensitivity of hLSA by hRLWW(i)-automata to the size of their win-
dows, the number of possible rewrites per cycle, and the degree of (non-)monotonicity.
We introduce the concepts of contextually transparent languages (CTL) and contextu-
ally transparent lexicalized analyses based on very special reduction patterns, and we
present two-dimensional hierarchies of their subclasses based on the size of windows and
on the degree of synchronization. The bottoms of these hierarchies correspond to the
context-free languages. CTL creates a proper subclass of context-sensitive languages
with syntactically natural properties.

1 Introduction

This paper is a continuation of conference paper [11]. The motivation for this pa-
per is to study lexical disambiguation, which is a basic concept of linguistic schools
working with lexicalized syntax. Let us note that traditional dependency syntaxes
are lexicalized in our sense.

In a lexicalized syntactical analysis of a sentence, at first all input words are
replaced by disambiguated word forms, i.e., original words are enhanced with, e.g.,
morphological and syntactic categories, like the input word ‘means’ can be extended
with a tag that it is a verb or a different tag that it is a noun which is further refined
with another tag distinguishing whether it plays the role of subject or object. After
such disambiguation, the lexicalized syntactic analysis checks whether the tagged
word forms constitute a (grammatically) correct sentence which is correctly tagged.

A model of the restarting automaton that formalizes lexicalized syntactic disam-
biguation in a similar way as categorial grammars (see, e.g., [1]) – the h-lexicalized
restarting automaton (hRLWW) – was introduced in [9]. This model is obtained from
the two-way restarting automaton of [8] by adding a letter-to-letter morphism h that
assigns an input symbol to each working symbol. This morphism models the (pure
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non-syntactic) lexical disambiguation. Now the basic language LC(M) of an hRLWW-
automaton M consists of all words over the working alphabet of M that are accepted
by M , and the h-proper language LhP(M) of M is obtained from LC(M) through the
morphism h.

The set of pairs { (h(w), w) | w ∈ LC(M) }, denoted as LA(M), is called the
h-lexicalized syntactic (sentence) analysis (hLSA) by M . Thus, in this setting the
auxiliary symbols themselves play the role of the tagged items. That is, each auxiliary
symbol b can be seen as a pair consisting of an input symbol h(b) and some additional
syntactico-semantic information (tags or categories).

In contrast to the original hRLWW-automaton that uses exactly one length-
reducing rewrite in a cycle, here we study h-lexicalized restarting automata that
allow up to i ≥ 1 length-reducing rewrites in a cycle (hRLWW(i)). Our first goal
is to show that these models are suited for a transparent and sufficiently flexible
modeling of the lexical analysis by analysis by reduction (compare to [6]).

Analysis by reduction is traditionally used to analyze sentences of natural lan-
guages with a higher degree of word-order freedom like, e.g., Czech, Latin, or Ger-
man (see, e.g., [6]). Usually, a human reader is supposed to understand the meaning
of a given sentence before he starts to analyze it; h-lexicalized syntactic analysis
(hLSA) based on the h-lexicalized analysis by reduction (ARh) simulates such a be-
havior by analyzing sentences, where morphological and syntactical tags have been
added to the word forms and punctuation marks (see, e.g., [6]). An important prop-
erty of analysis by reduction is the so-called correctness preserving property. Using
hRLWW(i)-automata the linguistic correctness preserving property is simulated by
the formal notion of basic correctness preserving property.

We stress here newly the constraint of strong cyclic form. It preserves the essen-
tial part of the power of hRLWW(i)-automata, and, additionally, it allows to extend
the complexity results obtained for classes of infinite languages and hLSAs also to
classes of finite languages and hLSAs. This is quite useful for the classification and
learning of individual phenomena in computational and corpus linguistics, where all
the (syntactic) observations are of a finite nature. It is also useful for the formulation
of techniques for the localization of syntactic errors (grammar-checking).

Finally, we introduce the concepts of contextually transparent languages (CTL)
and contextually transparent lexicalized analyses (CTLA), which create a formal basis
for an environment for lexical analysis and grammar-checking of natural languages.
We establish a two level and two-dimensional essential refinement of the Chomsky
hierarchy in the area of CTL. We transfer this refinement also to the area of CTLA.

In this paper we do not pay attention to input languages, which are the languages
usually studied in the automata theory, as they are not suitable for the modeling of
lexicalized sentence disambiguation (see [11]).

2 Definitions

By ⊆ and ⊂ we denote the subset and the proper subset relation, respectively.
Throughout the paper, λ will denote the empty word.

We start with the definition of the two-way restarting automaton as an extension
to the original definition from [8]. In contrast to [10], we do not consider general h-
lexicalized two-way restarting list automata which can rewrite arbitrary many times
during each cycle. Instead, we introduce two-way restarting automata which can
rewrite at most i times per cycle for an integer i ≥ 1.
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Definition 1. Let i be a positive integer. A two-way restarting automaton, an
RLWW(i)-automaton for short, is a machine with a flexible tape and a finite-state
control. It is defined through a 9-tuple M = (Q,Σ, Γ, ¢, $, q0, k, i, δ), where Q is a
finite set of states, Σ is a finite input alphabet, and Γ (⊇ Σ) is a finite working
alphabet. The symbols from Γ rΣ are called auxiliary symbols. Further, the symbols
¢, $ 6∈ Γ , called sentinels, are the markers for the left and the right border of the
workspace, respectively, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read/write
window, i ≥ 1 is the number of allowed rewrites in a cycle (see below), and

δ : Q× PC≤k → P( (Q× ({MVR,MVL} ∪ { SL(v) | v ∈ PC≤k−1 }))
∪{Restart,Accept,Reject})

is the transition relation. Here P(S) denotes the powerset of a set S and

PC≤k = ({¢} · Γ k−1) ∪ Γ k ∪ (Γ≤k−1 · {$}) ∪ ({¢} · Γ≤k−2 · {$})

is the set of possible contents of the read/write window of M .

Being in a state q ∈ Q and seeing a word u ∈ PC≤k in its window, the automaton
can perform six different types of transition steps (or instructions):

1. A move-right step (q, u) −→ (q′,MVR) assumes that (q′,MVR) ∈ δ(q, u), where
q′ ∈ Q and u /∈ {λ, ¢} · Γ≤k−1 · {$}. This move-right step causes M to shift the
window one position to the right and to enter state q′.

2. A move-left step (q, u) −→ (q′,MVL) assumes that (q′,MVL) ∈ δ(q, u), where
q′ ∈ Q and u 6∈ {¢} · Γ ∗ · {λ, $}. It causes M to shift the window one position to
the left and to enter state q′.

3. An SL-step (q, u) −→ (q′, SL(v)) assumes that (q′, SL(v)) ∈ δ(q, u), where q′ ∈ Q,
v ∈ PC≤k−1, v is shorter than u, and v contains all the sentinels that occur in u
(if any). It causes M to replace u by v, to enter state q′, and to shift the window
by |u|−|v| items to the left – but at most to the left sentinel ¢ (that is, the contents
of the window is ‘completed’ from the left, and so the distance to the left sentinel
decreases, if the window was not already at ¢).

4. A restart step (q, u) −→ Restart assumes that Restart ∈ δ(q, u). It causes M to
place its window at the left end of its tape, so that the first symbol it sees is the
left sentinel ¢, and to reenter the initial state q0.

5. An accept step (q, u) −→ Accept assumes that Accept ∈ δ(q, u). It causes M to
halt and accept.

6. A reject step (q, u) −→ Reject assumes that Reject ∈ δ(q, u). It causes M to halt
and reject.

A configuration of an RLWW(i)-automaton M is a word αqβ, where q ∈ Q, and
either α = λ and β ∈ {¢} ·Γ ∗ · {$} or α ∈ {¢} ·Γ ∗ and β ∈ Γ ∗ · {$}; here q represents
the current state, αβ is the current contents of the tape, and it is understood that the
read/write window contains the first k symbols of β or all of β if |β| < k. A restarting
configuration is of the form q0¢w$, where w ∈ Γ ∗; if w ∈ Σ∗, then q0¢w$ is an initial
configuration. We see that any initial configuration is also a restarting configuration,
and that any restart transfers M into a restarting configuration.

In general, an RLWW(i)-automaton M is nondeterministic, that is, there can be
two or more steps (instructions) with the same left-hand side (q, u), and thus, there
can be more than one computation that start from a given restarting configuration.
If this is not the case, the automaton is deterministic.
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A computation of M is a sequence C = C0, C1, . . . , Cj of configurations of M ,
where C0 is an initial or a restarting configuration and Cℓ+1 is obtained from Cℓ by
a step of M , for all 0 ≤ ℓ < j. In the following we only consider computations of
RLWW(i)-automata which are finite and end either by an accept or by a reject step.

Cycles and tails: Any finite computation of an RLWW(i)-automaton M consists
of certain phases. A phase, called a cycle, starts in a restarting configuration, the
window moves along the tape performing non-restarting steps until a restart step is
performed and thus a new restarting configuration is reached. If no further restart step
is performed, any finite computation necessarily finishes in a halting configuration –
such a phase is called a tail. It is required that in each cycle an RLWW(i)-automaton
executes at least one, but at most i SL-steps. Moreover, it must not execute any
SL-step in a tail.

This induces the following relation of cycle-rewriting by M : u ⇒c
M v iff there is a

cycle that begins with the restarting configuration q0¢u$ and ends with the restarting
configuration q0¢v$. The relation⇒c∗

M is the reflexive and transitive closure of⇒c
M . We

stress that the cycle-rewriting is a very important feature of an RLWW(i)-automaton.
As each SL-step is strictly length-reducing, we see that u ⇒c

M v implies that |u| > |v|.
Accordingly, u ⇒c

M v is also called a reduction by M .

An input word w ∈ Σ∗ is accepted by M , if there is a computation which starts
with the initial configuration q0¢w$ and ends by executing an accept step. By L(M)
we denote the language consisting of all input words accepted by M ; we say that M
recognizes (or accepts) the input language L(M).

A basic (or characteristic) word w ∈ Γ ∗ is accepted by M if there is a computation
which starts with the restarting configuration q0¢w$ and ends by executing an accept
step. By LC(M) we denote the set of all words from Γ ∗ that are accepted by M ; we
say that M recognizes (or accepts) the basic (or characteristic1) language LC.

Finally, we come to the definition of the h-lexicalized RLWW(i)-automaton.

Definition 2. Let i be a positive integer. An h-lexicalized RLWW(i)-automaton, or

an hRLWW(i)-automaton, is a pair M̂ = (M,h), where M = (Q,Σ, Γ, ¢, $, q0, k, i, δ)
is an RLWW(i)-automaton and h : Γ → Σ is a letter-to-letter morphism satisfying

h(a) = a for all input letters a ∈ Σ. The input language L(M̂) of M̂ is simply

the language L(M) and the basic language LC(M̂) of M̂ is the language LC(M).

Further, we take LhP(M̂) = h(LC(M)), and we say that M̂ recognizes (or accepts)

the h-proper language LhP(M̂).

Finally, the set LA(M̂) = { (h(w), w) | w ∈ LC(M) } is called the h-lexicalized

syntactic analysis (shortly hLSA) by M̂ .

We say that, for x ∈ Σ∗, LA(M̂, x) = { (x, y) | y ∈ LC(M), h(y) = x } is the

h-syntactic analysis (lexicalized syntactic (sentence) analysis) for x by M̂ . We see

that LA(M̂, x) is non-empty only for x from LhP(M̂).

Evidently, for an hRLWW(i)-automaton M̂ , L(M̂) ⊆ LhP(M̂) = h(LC(M̂)). Let
us note that h-syntactic analysis formalizes the linguistic notion of lexical sentence

disambiguation. Each auxiliary symbol x ∈ Γ r Σ of a word from LC(M̂) can be

1 Basic languages were also called characteristic languages in [9] and several other papers, therefore,
here we preserve the original notation with the subscript C.
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considered as a disambiguated form of the input symbol h(x). The following fact
ensures the transparency for computations of hRLWW(i)-automata.

Definition 3. (Basic Correctness Preserving Property)
Let M be an hRLWW(i)-automaton. If u ⇒c∗

M v and u ∈ LC(M) induce that
v ∈ LC(M), and therewith h(v) ∈ LhP(M) and (h(v), v) ∈ LA(M), then we say that
M is basically correctness preserving.

Fact 4. Let M be a deterministic hRLWW(i)-automaton. Then M is basically cor-
rectness preserving.

Notations. For brevity, the prefix det- will be used to denote the property of being
deterministic. For any class A of automata, L(A) will denote the class of input lan-
guages that are recognized by automata from A, LC(A) will denote the class of basic
languages that are recognized by automata from A, LhP(A) will denote the class of
h-proper languages that are recognized by automata from A, and LA(A) will denote
the class of hLSA (h-lexicalized syntactic analyses) that are defined by automata
from A.

For a natural number k ≥ 1, L(k-A), LC(k-A), LhP(k-A), LA(k-A) will denote
the classes of input, basic, h-proper languages, and hLSAs, respectively, that are
recognized by those automata from A that use a read/write window of size at most k.

2.1 Further Refinements, and Constraints on hRLWW(i)-Automata

Here we introduce some constrained types of rewrite steps which are motivated by
different types of linguistic reductions.

A delete-left step (q, u) → (q′,DL(v)) is a special type of an SL-step (q′, SL(v)) ∈
δ(q, u), where v is a proper (scattered) subsequence of u, containing all the sentinels
from u (if any). It causes M to replace u by v (by deleting excessive symbols), to
enter state q′, and to shift the window by |u| − |v| symbols to the left, but at most
to the left sentinel ¢.

A contextual-left step (q, u) → (q′,CL(v)) is a special type of DL-step (q′,DL(v)) ∈
δ(q, u), where u = v1u1v2u2v3, u1, u2 ∈ Γ ∗, |u1u2| ≥ 1, and v = v1v2v3, such that v
contains all the sentinels from u (if any). It causes M to replace u by v (by deleting
the factors u1 and u2 of u), to enter state q′, and to shift the window by |u| − |v|
symbols to the left, but at most to the left sentinel ¢.

An RLWW(i)-automaton is called an RLW(i)-automaton if its working alphabet
coincides with its input alphabet, that is, no auxiliary symbols are available for this
automaton. Note that in this situation, each restarting configuration is necessarily
an initial configuration. Within the denotation for types of automata, R denotes the
use of moves to the right, L denotes the use of moves to the left, WW denotes the
use of both input and working alphabets, and a single W denotes the use of an input
alphabet only (that is, the working alphabet coincides with the input alphabet).

Evidently, we need not distinguish between hRLW(i)-automata and RLW(i)-
automata, since for RLW(i)-automata the only possible morphism h is the
identity.

Fact 5. (Equalities of Languages for hRLW(i)-automata.)
For any RLW(i)-automaton M , L(M) = LC(M) = LhP(M).
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An RLW(i)-automaton is called an RLWD(i)-automaton if all its rewrite steps are
DL-steps, and it is an RLWC(i)-automaton if all its rewrite steps are CL-steps. Further,
an RLWW(i)-automaton is called an RLWWC(i)-automaton if all its rewrite steps are
CL-steps. Similarly, an RLWW(i)-automaton is called an RLWWD(i)-automaton if all
its rewrite steps are DL-steps. Observe that when concentrating on input languages,
DL- and CL-steps ensure that no auxiliary symbols can ever occur on the tape; if,
however, we are interested in basic or h-proper languages, then auxiliary symbols can
play an important role even though a given RLWW(i)-automaton uses only DL- or
CL-steps. Therefore, we distinguish between RLWWC(i)- and RLWC(i)-automata, and
between RLWWD(i)- and RLWD(i)-automata.

In the following we will use the corresponding notation also for subclasses of
RLWW(i)- and hRLWW(i)-automata. Additionally, prefix k- for a type X of RLWW(i)-
automata and an integer k ≥ 1 will denote the subclass of X of automata of window
size at most k. For example, 3-det-hRLWC(i) denotes the class of deterministic h-
lexicalized RLWC(i)-automata with window size at most 3.

We recall the notion of monotonicity (see e.g. [11]) as an important constraint
for computations of RLWW(i)-automata. Let M be an RLWW(i)-automaton, and
let C = Ck, Ck+1, . . . , Cj be a sequence of configurations of M , where Cℓ+1 is ob-
tained by a single transition step from Cℓ, k ≤ ℓ < j. We say that C is a sub-
computation of M . If Cℓ = ¢αqβ$, then |β$| is the right distance of Cℓ, which is
denoted by Dr(Cℓ). We say that a subsequence (Cℓ1 , Cℓ2 , . . . , Cℓn) of C is monotone
if Dr(Cℓ1) ≥ Dr(Cℓ2) ≥ · · · ≥ Dr(Cℓn). A computation of M is called monotone if
the corresponding subsequence of rewrite configurations is monotone. Here a config-
uration is called a rewrite configuration if in this configuration an SL-step is being
applied. Finally, M itself is called monotone if each of its computations is monotone.
We use the prefix mon- to denote monotone types of hRLWW(i)-automata. This no-
tion of monotonicity has already been considered in various papers (see [4]) similarly
as the following generalization of it.

A det-mon-hRLWW(i)-automaton can be used to model bottom-up, correctness
preserving, context-free parsers. In order to model also bottom-up, correctness pre-
serving, mildly context-sensitive parsers, a notion of j-monotonicity for restarting
automata is used here; j-monotonicity was introduced in [8]. For an integer j ≥ 1,
an hRLWW(i)-automaton is called j-monotone if, for each of its computations, the
corresponding sequence of rewriting configurations can be partitioned into at most j
(possibly noncontinuous) subsequences such that each of these subsequences is mono-
tone. We use the prefix mon(j)- to denote j-monotone types of hRLWW(i)-automata.

A restriction of the form of restarting automata called strong cyclic form (see [3])
can also be transferred to hRLWW(i)-automata. An hRLWW M is said to be in strong
cyclic form if |uv| ≤ k for each halting configuration ¢uqv$ ofM , where k is the size of
the read/write window of M . Thus, before M can halt, it must erase sufficiently many
letters from its tape. The prefix scf- will be used to denote restarting automata that
are in strong cyclic form. The concept of strong cyclic form is useful for techniques
of grammar-checking (localization of syntactic errors) by hRLWW(i)-automata.

Lemma 6. Let i ≥ 1, and let M be an RLWW(i)-automaton. Then there exists a
scf-RLWW(i)-automaton Mscf such that LC(M) = LC(Mscf) and, for all words u, v,
u ⇒c∗

M v implies u ⇒c∗

Mscf
v. Moreover, all reductions of Mscf that are not possible for

M are in contextual form. If M is deterministic and/or j-monotone for some j ≥ 1,
then Mscf is deterministic and/or j-monotone as well.
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Proof. Let M = (Q,Σ, Γ, ¢, $, q0, k, i, δ) be an RLWW(i)-automaton. It is easy to see
that the language La of words from Γ ∗ accepted byM in tail computations is a regular
sublanguage of LC(M). Therefore, there exists a deterministic finite automaton Aa

such that L(Aa) = {w ∈ La | |w| > k }. Similarly, the language Lr of words rejected
by M in tail computations is regular and there exists a deterministic finite automaton
Ar such that L(Ar) = {w ∈ Lr | |w| > k }. Assume that the automata Aa and Ar

have na and nr states, respectively.
Now we can transform M into an scf-RLWW(i)-automaton

Mscf = (Qscf , Σ, Γ, ¢, $, q0, kscf , i, δscf) of window size kscf = max{k, na + 1, nr + 1}.
The transition relation δscf contains all transitions of M with the following exception.
All accepting steps of M are replaced by MVL-steps into a new state ql,a. As M
cannot rewrite in tail computations, when Mscf enters the state ql,a, the contents of
its tape has not been changed since the last restart. In this case, Mscf moves to the
left sentinel and starts to simulate Aa. During this simulation:

– either Mscf detects that the current tape contents is of length at most kscf and it
accepts,

– or Mscf detects that the current tape contents w is of length greater than kscf ; in
this case, while moving to the right, it continues to simulate Aa until the right
sentinel $ appears in the window. From the pumping lemma for regular languages
we know that if w ∈ La, then there exists a factorization w = w′xyz such that
|y| > 0, |y|+|z| ≤ na, w

′xz ∈ La, and the word xyz$ of length kscf is the contents of
the read/write window of Mscf . Accordingly, Mscf deletes the factor y and restarts.
Even if there exist several such factorisations of w, for constructing Mscf we select
one such factor for any contents of the read/write window xyz$.

Finally, we must ensure that Mscf does not halt and reject for any word of length
greater than kscf . We can do that by adding new steps to the transition relation δscf .
If δ(q, u) contains Reject for some state q ∈ Q and some contents u of the read/write
window, then we replace this reject step by a MVL-step into a new state ql,r, in which
the automaton will move its window to the leftmost position, and then it starts to
move to the right while simulating Ar. Similarly as above for Aa, during the simulation
of Ar, the automaton either rejects if the current contents of the tape is not longer
than kscf , or it shortens the tape by applying the pumping lemma for Lr. Such a
simulation of Ar is possible, as when M enters a configuration with state q and u in
its read/write window, then it can halt, and hence, the tape contents has not been
rewritten since the last restart (as M cannot rewrite in tail computations).

From the construction above we immediately see that Mscf is in strong cyclic
form and that LC(Mscf) = LC(M). Moreover, if M is deterministic, then Mscf is
deterministic, too. Additionally, if M is j-monotone, then Mscf is j-monotone, too, as
the property of j-monotonicity is not disturbed by the delete operations at the very
right end of the tape that are executed at the end of a computation. Moreover, all
added reductions are in contextual form. ⊓⊔

3 On the Power and Sensitivity of Lexicalized Constructions

First we introduce the constraint of synchronization. We say that an hRLWW(i)-
automaton is synchronized if its degree of monotonicity is not higher than the num-
ber i of allowed rewrites per cycle. We denote the constraint of synchronization by the
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prefix syn-. In this paper we stress the relations of the degree of synchronization to
the levels of the Chomsky hierarchy and we show that it can also be used for building
a hierarchy within finite languages.

In this section we will study lexicalized constructions of scf-hRLWW(i)-automata.
By lexicalized constructions we mean the basic and h-proper languages and hLSAs.
We will see that with respect to lexicalized constructions, scf-hRLWW(i)-automata
(and their variants) are sensitive to several types of constraints, as, e.g., the window
size, the number of rewrites per cycle, and the degree of synchronization. Through
these constraints we essentially refine the Chomsky hierarchy, and we will do so in
two phases. In phase one we refine the context-sensitive languages by degrees of
synchronization. Then, by using the window size, we refine the individual areas of
lexicalized constructions that are given by the individual degrees of synchronization.

In order to present our results, we still have to introduce some additional notions.
For any type X of RLWW(i)-automaton and any integer j ≥ 0, we use fin(j)-X to
denote the subclass of X-automata that perform at most j reductions in any accepting
computation. Thus, for such an automaton, each accepting computation consists of
up to j cycles only and a tail. Finally, by fin-X, we denote those X-automata that are
of type fin(j)-X for some j ≥ 0.

3.1 Small Finite Separating Witness Languages

This subsection represents the technical core of this section. It establishes the sensi-
tivity of basic and h-proper languages of scf-hRLWW(i)-automata to the size of their
windows, to the number of deletions by a reduction, and to the degree of monotonic-
ity. This is achieved by constructions of small finite languages. In this way it is shown
that the sensitivity relies on small syntactic observations.

Proposition 7. Let k ≥ 2, let a be a letter, and let L1(k) = {ak}. Then the
following statements hold for L1(k):

(a) L1(k) ∈ LC(k-scf-fin(0)-det-mon-RLWC).
(b) L1(k) 6∈ LC((k − 1)-scf-hRLWW) ∪ LhP((k − 1)-scf-hRLWW).

This proposition shows that for the separation of language classes based on the
size of the read/write window it suffices to consider witness languages of cardinality
one.

Proof. (a) Let M1(k) be the deterministic RLWC-automaton with window size k that
proceeds as follows given a word w = an as input:

1. If n < k, then M1(k) rejects in a tail computation.
2. If n = k, then M1(k) accepts in a tail computation after moving its window to

the right sentinel.
3. If n = i · k for some i ≥ 2, then M1(k) deletes the last occurrence of the letter a

and restarts.
4. If n = i · k + j for some i ≥ 1 and some j ∈ {1, 2, . . . , k − 1}, then M1(k) deletes

the suffix ak and restarts.

It is now easily seen that L(M1(k)) = LC(M1(k)) = L1(k), that M1(k) is in strong
cyclic form, and that it is monotone (of degree 1). Further, as each accepting compu-
tation of M1(k) consists of just a tail, M1(k) is a fin(0)-RLWC-automaton.
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(b) For any (k − 1)-scf-hRLWW-automaton M , the language LC(M) (and therewith
the language LhP(M)) is either empty or it contains at least one word of length at
most k − 1. As L1(k) only contains a word of length k > k − 1, we see that L1(k)
is neither the basic language nor the h-proper language of any (k − 1)-scf-hRLWW-
automaton. ⊓⊔

Proposition 8. Let k, j ≥ 1, let a be a letter, and let L2(j, k) = {ak·(j+1), ak}. Then
the following statements hold for L2(j, k):

(a) L2(j, k) ∈ LC(k-scf-fin(1)-det-mon-RLWC(j)).
(b) L2(j, k) 6∈ LC(k-scf-hRLWW(j′)) ∪ LhP(k-scf-hRLWW(j′)) for any j′ < j.

This proposition shows that for the separation of language classes based on the
number of rewrites that can be executed during a cycle it suffices to consider witness
languages of cardinality two.

Proof. (a) Let M2(j, k) be the deterministic RLWC-automaton with window size k
that proceeds as follows given the word an as input:

1. If n < k, then M2(j, k) rejects in a tail computation.
2. If n = k, then M2(j, k) accepts in a tail computation.
3. If n = i · k for some 2 ≤ i ≤ j, then M2(j, k) rewrites the word an into the empty

word and restarts. Each of the rewrite steps deletes the suffix ak of the current
tape contents.

4. If n = (j+1) ·k, then M2(j, k) rewrites the word an into the word ak and restarts.
Each of the rewrite steps deletes the suffix ak of the current tape contents.

5. If n = i · k for some i ≥ j + 2, then M2(j, k) simply deletes the last occurrence of
the letter a and restarts.

6. If n = i · k + ℓ for some i ≥ 1 and ℓ ∈ {1, 2, . . . , k − 1}, then M2(j, k) simply
deletes the suffix ak and restarts.

It follows that L(M2(j, k)) = L2(j, k), that M2(j, k) is in strong cyclic form, and
monotone (of degree 1). Further, each accepting computation of M2(j, k) consists of
at most a single cycle and a tail, that is, M2(j, k) is a fin(1)-RLWC-automaton.

(b) Assume that M is a k-scf-hRLWW(j′)-automaton such that LC(M) = L2(j, k),
where j′ < j. As ak·(j+1) ∈ L2(j, k) and |ak·(j+1)| = k · (j + 1) > k, and as M is in
strong cyclic form, each accepting computation of M on input ak·(j+1) begins with a
cycle. As ak is the only other word in L2(j, k), this cycle must rewrite ak·(j+1) into
the word ak, for which j ·k letters must be deleted. However, as M has window size k
and can only execute j′ < j many rewrites per cycle, we see that it can delete at
most j′ · k < j · k many letters in a single cycle. This implies that LC(M) 6= L2(j, k).
Finally, as each word w ∈ LhP(M) corresponds to a word of the same length from
LC(M), the argument above also shows that LhP(M) 6= L2(j, k). ⊓⊔

Proposition 9. Let k, j ≥ 2, Σ = {a, b, c}, and let ui = ak for even i and ui = bk

for odd i. Finally, let

L3(j, k) = { (uiui+1 · · · ujc
k·j2)j | i = 1, 2, . . . , j } ∪ { ck·j·r | 0 ≤ r ≤ j2 }.

Then the following statements hold for L3(j, k):

(a) L3(j, k) ∈ LC(k-scf-fin(j + j2)-det-mon(j)-RLWC(j)).
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(b) L3(j, k) 6∈ LC(k-scf-mon(j′)-hRLWW(j)) ∪ LhP(k-scf-mon(j′)-hRLWW(j)) for any
j′ < j.

(c) L3(j, k) 6∈ LC(k-scf-hRLWW(j′)) ∪ LhP(k-scf-hRLWW(j′))) for any j′ < j.

This proposition shows that for the separation of language classes based on the
degree of monotonicity it suffices to consider finite witness languages.

Proof. To simplify the notation we introduce, for each i = 1, 2, . . . , j, the word wi =
(uiui+1 · · · ujc

k·j2)j and the word wj+1 = ck·j
2·j .

(a) Let M3(j, k) be the deterministic RLWC-automaton that proceeds as follows given
a word w as input. If |w| ≤ k, then M3(j, k) performs a tail computation in which
it accepts if w = λ and rejects otherwise. If |w| > k, then M3(j, k) performs a cycle
with the following rewrites completed by a restart step:

1. If w = wi for some i ∈ {1, 2, . . . , j}, then M3(j, k) executes j rewrite steps that
each delete a factor ui. In this way wi is rewritten into wi+1.

2. If w = ck·j·r for some r ∈ {1, 2, . . . , j2}, then M3(j, k) deletes the suffix ck·j by
executing j rewrite steps that each delete the suffix ck.

3. When w is not of any of the forms considered above, then M3(j, k) executes a
rewrite step which either

– deletes the last symbol of w, if |w| = k · ℓ, for some ℓ > 1, or

– deletes a k-letter suffix of w, if the length of w is not divisible by k.

Now it is easily seen that L(M3(j, k)) = L3(j, k), that M3(j, k) is in strong cyclic
form, and that each of its accepting computations consists of at most j + j2 cycles
and a tail. It remains to show that M3(j, k) is j-monotone.

If the input word w does not belong to the language L3(j, k), then in each cycle
just a suffix is deleted, that is, the resulting computation is monotone. If w = ck·j·r

for some r ∈ {1, 2, . . . , j2}, then the suffix ck·j is deleted by j rewrite steps that all
have right distance k + 1. Thus, the resulting accepting computation is monotone.

Hence, it remains to consider the first j cycles for the input w1 = (u1u2 · · · ujc
k·j2)j.

In the first cycle the j factors u1 are deleted, in the second cycle the j factors u2 are
deleted, and so forth. Now the leftmost rewrites in all these cycles yield a monotone
sequence, the leftmost but one rewrites in all these cycles yield another monotone
sequence, and so forth. Thus, we see that M3(j, k) is indeed j-monotone.

(b) Let M be a k-scf-hRLWW(j)-automaton such that LC(M) = L3(j, k). We claim
that M is not j′-monotone for any j′ < j. Assume to the contrary that M is j′-
monotone for some j′ < j. As w1 ∈ L3(j, k), M has an accepting computation
for w1 that is j′-monotone. In addition, as M is in strong cyclic form, this accepting
computation must rewrite w1 into a word of length at most k before it accepts. From
the definition of L3(j, k) we see that this computation must start with the following
sequence of cycles, as in each cycle M can delete at most k · j letters:

w1 ⇒
c
M w2 ⇒

c
M · · · ⇒c

M wj ⇒
c
M wj+1.
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Thus, the rewrite (delete) steps that are executed in this sequence can be displayed
as follows:

cycle no. 1-st rewrite 2-nd rewrite · · · (j − 1)-st rewrite j-th rewrite
1 u1 u1 · · · u1 u1

2 u2 u2 · · · u2 u2

· · · · · · · · · · · · · · · · · ·
j − 1 uj−1 uj−1 · · · uj−1 uj−1

j uj uj · · · uj uj

The next table shows the corresponding right distances, where we disregard the right
sentinel:

cycle no. 1-st rewrite 2-nd rewrite · · · j-th rewrite
1 j · k · (j2 + j) (j − 1) · k · (j2 + j) · · · 1 · k · (j2 + j)
2 j · k · (j2 + j − 1) (j − 1) · k · (j2 + j − 1) · · · 1 · k · (j2 + j − 1)
· · · · · · · · · · · · · · ·
j − 1 j · k · (j2 + 2) (j − 1) · k · (j2 + 2) · · · 1 · k · (j2 + 2)
j j · k · (j2 + 1) (j − 1) · k · (j2 + 1) · · · 1 · k · (j2 + 1)

Now it can be checked easily that, for each i ∈ {1, 2, . . . , j − 1}, the right distance of
the i-th rewrite in cycle j, which is d1 = (j + 1 − i) · k · (j2 + 1), is larger than the
right distance of the (i + 1)-st rewrite in cycle 1, which is d2 = (j − i) · k · (j2 + j),
since

d1 = (j + 1− i) · k · (j2 + 1) = (j − i) · k · (j2 + 1) + k · (j2 + 1),

while

d2 = (j − i) · k · (j2 + j) = (j − i) · k · (j2 + 1) + (j − i) · k · (j − 1).

Hence,

1
k
· (d1 − d2) = j2 + 1− (j − i) · (j − 1) = j2 + 1− (j2 − j − i · j + i)

= 1 + j + i · j − i = 1 + j · (1 + i)− i > 0.

Hence, in order to arrange the j2-many rewrite steps in the above computation into
monotone subsequences, we need at least j such subsequences. This implies that the
above computation is not j′-monotone for any j′ < j. Thus, L3(j, k) is not the basic
language of a k-scf-mon(j′)-hRLWW(j)-automaton for any j′ < j. The same argument
also shows that L3(j, k) is not the h-proper language of such an automaton.

(c) Let M be a k-scf-hRLWW(j′)-automaton for some j′ < j. We will first show
that LC(M) cannot be the language L3(j, k). Assume to the contrary that LC(M) =
L3(j, k). As w1 ∈ L3(j, k), M has an accepting computation for w1. In addition, as
M is in strong cyclic form, this accepting computation must reduce w1 into a word
v ∈ L3(j, k). But this is impossible with window size k and less than j rewrites in a
cycle. The same argument also shows that L3(j, k) is not the h-proper language of
such an automaton. ⊓⊔

3.2 Sensitivity of scf-hRLWW(i)-Automata

Now we focus on results that are related to the sensitivity of scf-hRLWW(i)-automata.
In particular, we show the sensitivity of these automata to the size of the window, to
the number of rewrites in a cycle, and to the degree of monotonicity.
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Corollary 10. For all j, k ≥ 1, the following hold:

(1) LC(k-scf-fin(1)-det-syn-RLWC(j + 1))r LhP(k-scf-hRLWW(j)) 6= ∅.
(2) LC((k + 1)-scf-fin(0)-det-syn-RLWC(j))r LhP(k-scf-hRLWW(j)) 6= ∅.

Proof. The statement in (1) follows from Proposition 8, where L2(j, k) was shown
to belong to LC(k-scf-fin(1)-det-mon-RLWC(j)), but not to LC(k-scf-hRLWW(j′)) ∪
LhP(k-scf-hRLWW(j′))) for any j′ < j. Just observe that the automaton M2(j, k) for
the language L2(j, k) is synchronized and that each of its accepting computations
consists of at most one cycle and a tail.

The statement in (2) follows from Proposition 7, where L1(k) = {ak} was shown
to belong to LC(k-scf-fin(0)-det-mon-RLWC) and not to LC((k − 1)-scf-hRLWW) ∪
LhP((k − 1)-scf-hRLWW). Recall that the automaton M1(k) for L1(k) is synchronized
and that its only accepting computation consists just of a tail computation. ⊓⊔

Next we show a similar hierarchy with respect to the degree of monotonicity which
is related to the number of rewrites in a cycle.

Corollary 11. For all j, k ≥ 1, the following hold:

LC(k-scf-fin-det-syn-RLWC(j + 1))r LhP(k-scf-mon(j)-hRLWW(j + 1)) 6= ∅.

Proof. This result follows from Proposition 9. ⊓⊔

3.3 On Characterizations of Context-Free Constructions

In what follows we use LRR to denote the class of left-to-right regular languages.
Several characterizations of LRR in terms of restarting automata can be found in [7].

Theorem 12. Let X ∈ {hRLWW(1), hRLWWD(1), hRLWWC(1)}. Then
LRR = LC(scf-det-syn-X) and CFL = LhP(scf-det-syn-X).

Proof. An hRLWW(1)-automaton is synchronized if and only if it is monotone. It
is known that the basic languages of monotone hRLWW(1)-automata are context-
free [10]. As the class of context-free languages is closed under the application of
morphisms, it follows that LhP(syn-hRLWW(1)) only contains context-free languages.

On the other hand, it is shown in [10] that the class CFL coincides with the class
of h-proper languages of det-mon-hRLWWC(1)-automata. Now we can use Lemma 6
to complete the proof. ⊓⊔

Remark. This theorem presents the robustness of the constraint of synchronization
for several subclasses of hRLWW(1)-automata with respect to basic and h-proper
languages. It enhances the results about the robustness of context-free and LRR-
languages.

Notation. By CFLA we denote the class LA(scf-det-syn-hRLWW(1)). With this no-
tion we enhance the concept of context-freeness from formal languages to lexicalized
syntactic analyses.

Corollary 13. For all X ∈ {hRLWW(1), hRLWWD(1), hRLWWC(1)},

CFLA = LA(scf-det-syn-X).
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Proof. Let us first recall the definition of LA(X). For a class of restarting automataX,
a set of pairs L belongs to the class LA(X) if there are a restarting automaton M ∈ X
and a letter-to-letter homomorphism h such that L = { (h(w), w) | w ∈ LC(M) }. The
proof then follows from the Theorem 12. ⊓⊔

Remark. This corollary presents the robustness of the constraint of synchronization
for several subclasses of hRLWW(1)-automata with respect to the lexicalized syntactic
analysis.

4 On Contextually Transparent Constructions

In this section we introduce and study classes of contextually transparent (lexicalized
language) constructions (CTC) which are composed from infinitely many subclasses
given by degrees of synchronization.

Notations. For i ≥ 1, we denote by CTL(i) the class LhP(scf-det-syn-hRLWWC(i))
and by CTLA(i) the class LA(scf-det-syn-hRLWWC(i)). Taking the union over all pos-
itive integers we obtain the classes CTL =

⋃
i≥1 CTL(i) and CTLA =

⋃
i≥1 CTLA(i).

We say that CTL is the set of contextually transparent languages and that CTLA is
the set of contextually transparent lexicalized analyses.

Corollary 14. For all i ≥ 1, we have the following relations:

(1) CFL = CTL(1), CFLA = CTLA(1),
(2) CTL(i) ⊂ CTL(i+ 1) ⊂ CTL, CTLA(i) ⊂ CTLA(i+ 1) ⊂ CTLA,
(3) CTL ⊂ CSL.

Proof. We just give outlines of the proofs. With the definitions in mind, claim (1)
follows from Theorem 12 and Corollary 13, and claim (2) follows from Corollary 11.

Finally, the separation in (3) can be shown by using the context-sensitive language
Le = { a2

n

|n ≥ 1 }. It is easily seen that the languages in CTL have the constant
growth property, which is defined as follows (cf. [5]). Let X be an alphabet, let
L ⊆ X∗. The language L is said to have the constant growth property if there are a
constant c0 > 0 and a finite set of positive integers C such that, for all w ∈ L with
|w| > c0, there is a w′ ∈ L with |w| = |w′|+c for some c ∈ C. Obviously, the language
Le does not have the constant growth property, and hence, it does not belong to the
class CTL. ⊓⊔

The sensitivity of hRLWWC(i)-automata to the size of their windows can be uti-
lized to essentially refine the hierarchies of CTLA. These refined hierarchies yield a
fine classification of syntactic phenomena in lexicalized syntaxes of natural languages.

Recall that the prefix k- indicates the window size. So, k-CTL(i) is the class
LhP(k-scf-det-syn-hRLWWC(i)); analogously for k-CTLA(i), k-CTLA, and k-CTL. We
say that k-CTL(i) is the set of k-transparent context-sensitive languages of degree i,
k-CTLA(i) is the set of k-transparent context-sensitive lexicalized (sentence) analyses
of degree i, k-CTL is the set of k-contextually transparent languages, and k-CTLA is
the set of k-contextually transparent lexicalized analyses. The next corollary easily
follows from Corollary 10.

Corollary 15. For all i, k ≥ 1, the following relations hold:

(1) k-CTL(i) ⊂ k-CTL(i+ 1) ⊂ k-CTL, k-CTLA(i) ⊂ k-CTLA(i+ 1) ⊂ k-CTLA,
(2) k-CTL(i) ⊂ (k + 1)-CTL(i), k-CTLA(i) ⊂ (k + 1)-CTLA(i).
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For i, k ≥ 1, we denote the class LhP(k-scf-fin-det-syn-hRLWWC(i)) by k-
CTL(i)FIN and the class LA(k-scf-fin-det-syn-hRLWWC(i)) by k-CTLA(i)FIN. Further,
by k-CTLFIN we denote the union

⋃
i≥1 k-CTL(i)FIN and by k-CTLAFIN we denote

the union
⋃

i≥1 k-CTLA(i)FIN.

Corollary 16. For all i, k ≥ 1, the following relations hold:

(1) k-CTL(i)FIN ⊂ k-CTL(i+ 1)FIN ⊂ k-CTLFIN,
k-CTLA(i)FIN ⊂ k-CTLA(i+ 1)FIN ⊂ k-CTLAFIN,

(2) k-CTL(i)FIN ⊂ (k + 1)-CTL(i)FIN and k-CTLA(i)FIN ⊂ (k + 1)-CTLA(i)FIN.

Proof. These results also follow from Corollary 10. ⊓⊔

5 Conclusion

The hRLWW(i)-automata satisfy the reduction correctness preserving property with
respect to their basic and h-proper languages, and consequently also with respect to
their lexicalized syntactic analysis and analysis by reduction. The basic correctness
preserving property enforces the sensitivity to the degree of synchronization, number
of rewrites in a cycle, and to the size of the window.

Thanks to the long time study of the PDT (Prague Dependency Treebank) we
believe that class 12-CTLA(2) defined above is strong enough to model the lexicalized
surface syntax of Czech, that is, to model the lexicalized sentence analysis based on
PDT.

Our long term goal is to propose and support a formal (and possibly also software)
environment for a further study and development of Functional Generative Descrip-
tion (FGD) of Czech (see [6]). We believe that the lexicalized syntactic analysis of
full (four level) FGD can be described by tools very close to 24-CTLA(4).

We stress that our current efforts cover an important gap in theoretical tools sup-
porting computational and corpus linguistics. Chomsky’s and other types of phrase-
structure grammars and the corresponding types of automata do not support lexical
disambiguation, as these grammars work with categories bound to individual con-
stituents with respect to constituent syntactic analysis. They do not support syntac-
tic analysis with any kind of correctness preserving property, they do not support
any type of sensitivity to the size of individual grammar (automata) rules (see sev-
eral normal forms for context-free grammars, like Chomsky normal form [2]), and,
finally, they do not support any kind of classification of finite syntactic constructions
of (natural) languages.

On the other hand, in traditional and corpus linguistics, only finite language
phenomena can be directly observed. Now the basic and h-proper languages of
hRLWWC(i)-automata in strong cyclic form with constraints on the window size
allow common classifications of finite phenomena as well as classifications of their
infinite relaxations. All these classifications are based on the reduction correctness
preserving property and the strong cyclic form. Let us recall that for restarting and
list automata the monotonicity means a synonymy for context-freeness. Here we
are able to distinguish degrees of non-monotonicity of finite languages (syntactic
phenomena), too.

Finally, note that many practical problems in computational and corpus linguistic
become decidable when we only consider languages parametrized by the size of the
windows, or even easier when they are parametrized by a finite number of reductions.
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