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Abstract. Dynamic compression methods continuously update the model of the un-
derlying text file to be compressed according to the already processed part of the file,
assuming that such a model accurately predicts the distribution in the remaining part.
Since this premise is not necessarily true, we suggest to update the model only selec-
tively. We give empirical evidence that this hardly affects the compression efficiency,
while it obviously may save processing time and allow the use of the compression scheme
for cryptographic applications.

1 Introduction

Compression systems often comprise three major components: the model, the encod-
ing process, and the corresponding inverse decoding process. The model is basically
the definition of the set of symbols, called the alphabet, and their distribution. The
alphabet defined in the model is not limited to characters only, and can also include
words and phrases, and we shall use the term alphabet in this border sense. Generally,
as the model becomes more and more accurate and adapted to the underlying text,
the compression efficiency achieved by the encoding phase becomes better. However,
the space overhead imposed by extending the model to be more precise, might di-
minish the savings achieved by the enhanced encoding, implying a crucial trade-off.
Thus, determining the model has a crucial impact on the compression efficiency.

Text compression systems can be partitioned into static and dynamic compres-
sion techniques. Static variants determine the model in a preprocessing stage, and
the model remains the same throughout the compression stage. The model can be
constructed based on known distributions as well as on statistics gathered through a
double pass over the file, the latter being suitable to off-line compressions. Dynamic
variants, called also adaptive compression, save the additional pass, and usually con-
sist of three main steps for each processed symbol:

1. reading the following symbol;
2. encoding the symbol according to the current model;
3. updating the model by incrementing the frequency of the currently read symbol.

The intuition of the dynamic variants is that as more information is collected about
the characters in the text seen so far, the more accurate the probabilities become,
and, thus, better approximation is achieved to the probabilities of the characters
that are still to be seen. Indeed, all adaptive compression methods are based on the
assumption that the distribution of the characters in the text starting from the current
position onwards will be similar to the distribution in the part of the text preceding
this current position. However, this is a statistic observation, which is not necessarily
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true, especially not for non-homogeneous texts. In these kind of texts it may happen
that basing the prediction of the character probabilities on a random subset of the
recently read characters may yield a compression performance that is not inferior,
and sometimes even better, than using the entire history. Such an example is given
in Section 3.2.

Evidence for basing the distribution of a certain alphabet in a given file on a
subset of its characters, rather than on the entire file, can be found in the reported
numbers for letter frequency analysis, which are often used in cryptography and
linguistics. For example, Norvig [3] generated tables of counts for letters, words and
letter sequences, on Google books, a collection of 23GB of the books that have been
scanned by Google. The probabilities are given with an accuracy of at most 5 digits
after the decimal point, corresponding to frequencies within a text of size 100,000,
less than a fraction of 10−5 of the actual text. Even if the entire text has been used to
generate the probabilities, the lower precision suffices to discriminate between them
and therefore using a higher precision would have been a overkill.

Another example for using a restricted history, rather than the entire available one,
can be found in the LZSS [4] compressor, which represents a given file T as a sequence
of substring copies and single characters. The copies are described in the form of
ordered pairs (off , len), meaning that the substring starting at the current position
can be copied from off characters before the current position in the decompressed
file, and the length of this substring is len. The variable off is often bounded by the
size of a predefined sliding window, which limits the history in practice. gzip uses a
default window size of 32K, and thus the off values can be written in 15 bits. The
use of a limited history implemented as a sliding window is motivated by the saving
incurred by the required bits to represent offsets within the restricted window. In this
research we show that a limited history may have advantages beyond explicit storage
savings.

The core motivation for basing the statistics of subsequent encoding only on a part
of the previously seen symbols, rather than on the entire history, is time savings due
to the processing of a smaller set. There is, however, a concern whether the restricted
history may hurt the compression efficiency. A Compression-Crypto System based on
arithmetic coding is introduced in [2], where the model gets updated according to a
secret key shared only by encoder and decoder. This is yet another motivation for the
encoding that is based on selectively updating the model, called selective encoding

for short, however, here we extend the method to general adaptive compressors as
well as for other purposes, other than encryption needs.

We focus on three different adaptive algorithms and examine the effect on time
and compression performance in case the model is updated selectively. Our empirical
results suggest that the loss in compression efficiency incurred by turning to a selec-
tive updating procedure as suggested, is hardly noticeable. Moreover, the encoding
and decoding processing times can only be improved using the selective method, as
expected, by saving the operations in case the model does not get updated, giving
noticeable practical time savings.

Traditional dynamic Huffman codes turn the encoded file into an extremely vul-
nerable one in case of even a single bit error [1]. As a solution to this problem,
blockwise dynamic Huffman variants are suggested, where the Huffman tree is peri-
odically, rather than constantly, updated. Experiments show that the new scheme is
more robust against single errors introduced in the encoded file. Here we suggest a
“semi-blockwise” variant in which not all occurrences get updated.
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The paper is constructed as follows. Section 2 presents the general method for
selective encoding. Section 3 adapts the general selective algorithms to the three
basic adaptive codings: dynamic Huffman, LZW and arithmetic coding. Section 4
presents empirical results and concludes.

2 General Method

Traditional dynamic algorithms update the frequencies adaptively after every char-
acter, according to the assumption that better compression can be achieved when all
previous characters are taken into account. This seems to justify the slow processing
time of some of the adaptive methods, such as dynamic Huffman coding. The selective
method calls for omitting a subset of these updates in a predefined setting that is syn-
chronized between the encoder and decoder. The selection may be done periodically,
randomly, or by supplying the specific cases in which the model should get updated.
We present here only the random version, with probability 1

2
for the occurrences of 0

and 1 bits, which can be easily updated to the other selection variants.

Algorithm 1: selective-encode
selective-encode(T = x1 · · ·xn )

1 initialize the model
2 initialize a random bit generator
3 for i← 1 to n do

4 encode xi according to the current model
5 bit← random()
6 if bit = 1 then

7 Update the model

The general random selective encoding and corresponding decoding algorithms
are presented in Algorithm 1 and Algorithm 2, respectively. The selective encoding
algorithm is applied on a given text T = x1 · · · xn where each xi is a symbol of the
alphabet Σ.

Algorithm 2: selective-decode
selective-decode(E(T ))

1 initialize the model
2 initialize a random bit generator identical to the one in selective-encode
3 for i← 1 to n do

4 decode xi according to the current model
5 bit← random()
6 if bit = 1 then

7 Update the model

The coding method is chosen in advance and known to both the encoder and
decoder. The model gets updated in case the bit returned by the random number
generator is set to 1. We refer to the chosen encoding and corresponding decoding
applications as a black box, and deal with specific encodings in the following section.
The selective decoding algorithm is applied on a given compressed text denoted by
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E(T ), where E is the encoding function. The model and random bit generator are
initialized identically in both procedures.

As mentioned above, instead of using a randomized algorithm, basing the selection
on a random bit generator, one may decide in advance of setting a constant k, so that
the model gets updated exactly every k symbols. The randomized version can be
approximated by the constant updates with k = 2.

3 Specific Variants

The general selective approach may require adaption when applied to a specific
method. Here we examine our proposed selective algorithms on three main adap-
tive compression techniques: arithmetic coding [7], dynamic Huffman coding [5] and
LZW [6]. The following describes the adaptation suggested for each variant.

3.1 Arithmetic Coding

One of the most effective compression schemes, in theory as well as in practice, is
arithmetic coding, for which the compression efficiency approaches the underlying
text’s entropy. The arithmetic compressor is initialized with the interval [low, high) =
[0, 1), which is narrowed for each processed character of the input file, according to
the character’s probability.

More formally, given a text T = x1 · · · xn over an alphabet Σ of size σ, the current
interval [low, high) is partitioned into σ subintervals, each corresponding to one of the
symbols σi ∈ Σ, where the size of the subinterval assigned to σi is proportional to its
probability pi. After iterating on all symbols of T , the compressed text is represented
by a single number within the final interval that corresponds to T .

For example, if Σ = {A, B, C}, initialized with uniform probabilities, one may
start with (fictitious) frequencies 1 for each of the three characters. The partition is
{[0, 1

3
), [1

3
, 2
3
), [2

3
, 1)}, and the intervals may be assigned lexicographically. If the text

to be compressed is BCB, then the initial interval [0, 1) is narrowed to I1 = [1
3
, 2
3
)

after having read the first B, and the probabilities are updated to P = {1
4
, 1
2
, 1
4
}; the

interval then narrows to I2 = [ 7

12
, 2
3
) after the processing of C and the probabilities are

updated to P = {1
5
, 2
5
, 2
5
}; and finally, after reading the second B, the interval narrows

to I3 = [3
5
, 19
30
). Any real number within I3 can be chosen to represent the compressed

file, e.g., 0.625 whose binary representation 0.101 is the shortest.
However, when the model gets updated selectively, for example for every second

character (k = 2 in our notation), the initial interval [0, 1) gets narrowed in the first
step, as in the traditional arithmetic coding, to S1 = [1

3
, 2
3
) after reading the first

character B, and P becomes P = {1
4
, 1
2
, 1
4
}; processing the character C does not cause

an update of the model, yet the interval narrows to S2 = [ 7

12
, 2
3
); but then, processing

the following B narrows the interval to S3 = [29
48
, 31
48
) and updates the probabilities

to P = {1
5
, 2
5
, 2
5
}. The same binary number 0.101 can represent this interval. The

compressed file will thus consist of a three bits in both cases.
Let P = (p1, . . . , pσ) be the probability distribution of all the characters of Σ in

the entire text, and let P ′ be the probability distribution of the characters within the
subtext that has been selected by the model, consisting by those corresponding to the
1-bits chosen by the random number generator. Because of the random selection and
if the subset is large enough, the distribution remains almost the same, and therefore
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H(P ) ≃ H(P ′), where H(P ) = −Σσ

i=1pi log pi is the entropy of the distribution P .
Since we know that the size of the encoded text is n · H(P ) in the first case and
n ·H(P ′) in the second, we conclude that there is practically no loss in compression
efficiency.

In the cryptographic application of [2], the bit sequence generated by the random
bit generator is kept as a secret key K shared only by encoder and decoder. Using
different keys yields completely different output files, and there seems to be no easy
way to decipher the message without guessing K, yet the sizes of the compressed files
were practically unchanged for different keys, as long as their 1-bit density was kept
at 1

2
.

3.2 Dynamic Huffman Coding

We assume, for simplicity, that all dynamic Huffman variants initialize the tree with
all the characters of the alphabet. We suggest two approaches for applying the pro-
posed selective method in case of dynamic Huffman coding. Both algorithms still
update the model periodically or via a random bit generator. The difference between
them relates to the way the model gets updated.

The first approach, analogous to the one used for arithmetic coding, updates
the dynamic Huffman tree by advancing the frequency of the current character only,
ignoring the previous characters that have been skipped, and using Vitter’s Algorithm
in order to fix the Huffman tree in case the sibling property is violated. The first
variant is denoted by Huf-subset.

The second approach, denoted by Huf-full, performs the updates according to the
changes in the frequencies of all the characters seen since the last update. Practically,
the updates in this case are spaced out and only done at the end of a block of several
characters, therefore, immediately after the processing of a set bit in Algorithm 1, the
updated Huffman tree reflects all symbols processed so far. As Vitter’s Algorithm is
based on updating the Huffman tree when only a single character frequency has been
incremented by 1, we generated a static Huffman tree from scratch to implement the
second suggestion.

Obviously, a bad selection may in the worst case jeopardize any compression
savings, for example, when processing fixed length lines of 80 characters and choosing
k = 80. The subset of Σ would then consist of the newline character only! On the
other hand, the selective Huffman algorithm can produce a compressed file that is not
only marginally smaller than the file constructed by traditional dynamic Huffman,
but may even reach only about 3

4
of its size, as shown in the following example.

Let T = B{CCBB}t for some positive integer t. For both variants, the Huffman tree
is initialized with Σ = {A, B, C} as shown in Figure 1(a). Consider first the traditional
dynamic algorithm as proposed in [5]. The first B is encoded as two bits, 10, and B is
exchanged with A, as shown in Figure 1(b). When processing C of the first quadruple
CCBB, only the second C causes a change in the structure of the Huffman tree, but
this happens after the two Cs have already been encoded by 11, using 2 bits each.
The Huffman tree after reading the prefix BCC of T , is depicted in Figure 1(c). When
the following two Bs of the first quadruple CCBB are processed, again the positions of
the B and C nodes are swapped only after the frequency of B exceeds that of C, so
each of the Bs is also encoded by two bits (11). This alternating structure between
two different Huffman trees proceeds until the end of the file, thus every character of
T uses 2 bits, for a total of 2|T | = 8t+ 2 bits.
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Figure 1. Example for which selective Huffman coding produces a file 3

4
of the size of that con-

structed by standard Huffman.

However, when selective Huffman coding is used with k = 2, the first B is again
encoded as two bits, 10, and B is exchanged with A, as shown in Figure 1(b). When
processing the following C, it does not change the model, and is encoded with 2 bits as
11. The following C does cause an update of the frequencies, but does not change the
structure of the Huffman tree. When the following two Bs of the first quadruple CCBB
are processed, they are both encoded as 0, using a single bit, and only the second B

causes an update of the frequencies in the tree, but no change in its structure. This
behavior proceeds until the end of the file, where the structure of the tree remains
the same, and only the frequencies of the Bs and Cs get updated, encoding all Bs as
0, and all Cs by 11. Thus every quadruple CCBB uses 6 bits, for a total of 6t+ 2 bits,
which is about 3

4
of the regular encoding.

A random selection of the characters that are chosen for updating the model may
be used to turn a dynamic Huffman encoder into a cryptosystem. Although in the long
run, the distribution of the characters in the selected subset will be so close to their
distribution in the entire text that there will be no noticeable loss in the compression,
the small details of when exactly to increment which frequency will have a cumulative
impact, producing ultimately completely different output sequences. Nevertheless, the
sizes of these output files will be very close. As example, we compressed a French text
file of 7.3MB with five independently generated random keys, and got compression
ratios 0.57801, 0.57812, 0.57803, 0.578058 and 0.578061.

3.3 LZW

We turn to LZW [6], which is a member of the family of dictionary methods introduced
by Ziv and Lempel [8,9], unlike the statistical compressions dealt with in the previous
sections. The dictionary is initialized by the single characters of the alphabet, and then
is updated dynamically by adding newly encountered substrings that have not been
seen previously in the parsing of the underlying text. The text is thereby partitioned
into a sequence of longest possible phrases that already occur in the dictionary, and
the encoded file is a list of indices, each pointing to the entry of the corresponding
phrase. LZW starts with a dictionary of size 512 which is filled to half its capacity by
the alphabet of ascii symbols, and each entry index is encoded by 9 bits. Once the
dictionary has filled up after adjoining 256 new phrases, its size is doubled to 1024
entries, and all dictionary entries are encoded from this point on using 10-bit pointers.
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In general, after processing 29, 210, . . . , 2i, . . . more elements of the input file, the size
of the dictionary is doubled to 211, 212, . . . , 2i+2, . . . entries, up to a predetermined
maximal size, which is 216 in our implementation. We consider two variants:

1. restarting the dictionary from scratch each time the dictionary reaches its maxi-
mum size, denoted here by LZW-restart; or

2. considering the dictionary as static once it gets full, and not adjoining any more
strings, denoted by LZW-static.

The dictionary built by LZWmaintains a prefix property, that is, for each substring
in the dictionary, all its prefixes also are included in the dictionary. In both cases of the
selective variant, the dictionary gets filled up at a slower pace than for the traditional
approach. As not all elements of the dictionary are necessarily used later, there are
situations where the selective variant may improve the space savings of the traditional
one, as can be seen in our experimental results presented in the following section.

Similarly to what could be done for Huffman coding, if the subset of newly en-
countered substrings is chosen randomly according to a secret key K, it will be hard
to decode the file for whoever has to guess the 1-bits in K. Even though the com-
pressed file consists of a sequence of integers and those are easy to decipher, it is their
interpretation as representing certain substrings that is only known to the encoder
and decoder. As before, different keys produce completely different dictionaries and
thus different output strings, but there is hardly any change in the size of these files.
For the same example input as in the previous section, the obtained compression
ratios for 5 different keys were 0.3988, 0.3978, 0.3994, 0.3987 and 0.3981.

4 Experimental Results and conclusion

We examined the traditional and selective methods comparing the compression effi-
ciency as well as the encoding and decoding processing times using the three basic
adaptive compression algorithms mentioned above. We considered the 50MB file En-
glish, downloaded from the Pizza&Chili Corpus, which is the concatenation of English
text files selected from etext02 to etext05 collections of the Gutenberg Project, from
which the headers related to the project were deleted so as to leave just the real text.
All experiments were conducted on a machine running 64 bit Windows 10 with an
Intel Core i5-8250 @ 1.60GHz processor, 6144K L3 cache, and 8GB of main memory.

Our first experiment compares the compression efficiency of the traditional vs.
selective variants of the various adaptive compression methods: Huf-subset, Huf-full,
LZW-restart, LZW-static and arithmetic codings. The results are given in Figure 2
depicting the compression ratio (defined as the size of the compressed over the size of
the original file) for k = 1, . . . , 8 and k = 16, 32. The traditional dynamic algorithms
correspond to k = 1, where the model gets updated after every character.

As can be seen, LZW-restart is less effective as the blocks become larger. However,
when the dictionary stays constant once it gets filled up, the compression improves
for larger blocks, until a point (not depicted in the graph), where the compression
gain declines. According to our results, the compression efficiency becomes worse than
for the traditional LZW for k = 256. This phenomenon can be explained by the fact
that the static variant needs only a single learning period, while the other method
undergoes, after each restart, a new learning phase during which the compression is
less effective. In any case, the difference between selective and traditional techniques
is less than 3%.
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Figure 2. Compression Efficiency as a function of k.

The performance of the blockwise dynamic Huffman encoding, Huf-full, is practi-
cally identical to that of the partial update variant, Huf-subset, and their plots are
overlapping in Figure 2. As for arithmetic coding, our results coincide with the theory
mentioned above, and selective arithmetic compression remains very similar to the
traditional one, as the probabilities are quite the same.

Figure 3 shows the processing times for both compression and decompression,
for the standard and selective methods. For each of the test files, the encoding and
decoding times were averaged over 10 runs. The displayed times are averages, given in
seconds. Obviously, the compression and decompression times improve as the spacing
becomes larger, because a smaller number of model updates is required.

Compression ratio Encoding time Decoding time
Trad Rand Trad Rand Trad Rand

Huf-subset 0.571 0.571 4447 2789 2388 1190
LZW-restart 0.452 0.446 10.667 9.781 5.321 4.348
LZW-static 0.456 0.454 8.796 8.771 3.096 3.097
arithmetic 0.5661 0.5661 41.61 27.11 46.65 32.39

Table 1. Results for Random as a function of k.

Table 1 presents the results for a random selection in which the choice to update
the model is determined by a random bit generator (columns Rand). The columns
headed Trad bring the results of the traditional, non-selective, approach. A random
selection is similar to a fixed length selection model with k = 2, but has the advan-
tage of almost surely avoiding worst case scenarios, like, e.g., a file for which even
indexed characters belong to a different and disjoint alphabet than the odd indexed
characters. As can be seen, the compression efficiencies are about the same, and that
of the selective choice may sometimes be better. The processing times are consistently
better, suggesting the usefulness of a selective encoder.
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