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Abstract. We define a tree pattern border array as a property of linearised trees anal-
ogous to border arrays from the string domain. We use it to define a new forward tree
pattern matching algorithm for ordered trees, which finds all occurrences of a single
given linearised tree pattern in a linearised input tree. As with the classical Morris-Pratt
algorithm, the tree pattern border array is used to determine shift lengths in the search-
ing phase of the tree pattern matching algorithm. We compare the new algorithm with
the best performing previously existing algorithms based on backward linearised tree
pattern matching algorithms, (non-)linearised tree pattern matching algorithms using
finite tree automata or stringpath matchers. We show that the presented algorithm
outperforms these for single tree pattern matching.
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1 Introduction

Trees are one of the fundamental data structures used in Computer Science and the
theory of formal tree languages has been extensively studied and developed since
the 1960s [9,11]. Tree pattern matching on node-labeled trees is an important al-
gorithmic problem with applications in many tasks such as compiler code selection,
interpretation of nonprocedural languages, implementation of rewriting systems, or
markup languages processing. Trees can be represented as a string by various lineari-
sations [16]. Such a linear notation can be obtained by a corresponding tree traversal.
Moreover, every sequential algorithm on a tree traverses its nodes in a sequential
order, which corresponds to some linear notation. Such a linear representation need
not be built explicitly.

Tree patterns are trees whose leaves can be labelled by a special wildcard, the
nullary symbol S, which serves as a placeholder for any subtree. Since the linear
notation of a subtree of a tree is a substring of the linear notation of that tree, the
subtree matching and tree pattern matching problems are in many ways similar to the
string pattern matching problem. We note that the tree pattern matching problem is
more complex than the string matching one because there can be at most n(n− 1)/2
distinct substrings of a string of size n, whereas there can be at most 2n−1+n distinct
tree patterns which match a tree of size n [13].
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Border array and borders in general are one of well-studied string properties used
in various efficient single pattern string pattern matching algorithms (Morris-Pratt
and Knuth-Morris-Pratt algorithms, etc.) [17,15,4], and multi-pattern ones (Aho-
Corasick) [1].

For unrestricted tree pattern sets, among the fastest pattern matching algorithms
in practice are algorithms based on deterministic frontier-to-root (bottom-up) tree au-
tomata (DFRTAs) [6,8,12] and Hoffmann-O’Donnell-style stringpath matchers [2,12].
The latter uses Aho-Corasick pattern matching algorithm, but processes the tree in
its natural representation.

Tree pattern matching algorithms processing a linearised representation of a tree
exist as well. They either use pushdown automata [10] or, in the case of single pattern
matching, adapt ideas known from backward string pattern matching [20]. However,
no existing tree pattern matching algorithm uses the border array constructed for a
linearised tree pattern directly on linearised trees.

The best performing algorithms using deterministic tree automata or deterministic
pushdown automata generally run in Θ(n+occ) time, where n is the size of the subject
tree [8]. On the other hand, the backward tree pattern matching algorithm require
Ω(n/m+ occ) and O(m · n+ occ) time, where m is the size of the tree pattern [20].

While modifying forward string pattern matching to forward subtree matching
(searching for occurrences of given subtrees) is straightforward, this is not the case
for forward tree pattern matching, where complications arise due to the use of nullary
symbol S and matched subtrees being possibly recursively nested.

In this paper, a definition of tree pattern border array is presented. The size of the
tree pattern border array table is linear with the size of the linearised pattern. The tree
pattern border array is later used in the design of a new forward tree pattern matching
algorithm. The presented forward tree pattern matching algorithm is a modification of
the Morris-Pratt algorithm from the string domain and even though it does not keep
the linear complexity of the searching phase with respect to the size of the subject tree
n, it often performs better in practice than sublinear backward tree pattern matching
algorithm [20]. Even though the Knuth-Morris-Pratt algorithm is a straight-forward
extension of the Morris-Pratt algorithm, this is not the case in trees and therefore the
presented algorithm is based on the Morris-Pratt algorithm. Our experimental results
show that the presented algorithm outperforms even the aforementioned DFRTAs and
Aho-Corasick stringpath matchers in single-pattern matching case.

The paper is organised as follows: Section 2 recalls basic definitions and properties
of trees and the Morris-Pratt algorithm. Section 3 defines the tree pattern border array
and presents the new forward linearised tree pattern matching algorithm based on
the Morris-Pratt algorithm. Section 4 compares the results with other state-of-the-art
algorithms. Some concluding remarks are presented in Section 5.

2 Basic notions

An alphabet is a finite nonempty set of symbols. In a ranked alphabet A, each symbol
ℓ is assigned a nonnegative arity or rank denoted by Arity(ℓ). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are called nullary (constants),
unary, binary, . . ., p-ary symbols, respectively. We assume that A contains at least
one constant. In the examples, we use numbers at the end of identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.
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A string s is a sequence of n symbols s1s2s3 · · · sn from a given alphabet, where
n is the size of the string. A sequence of zero symbols is called the empty string. The
empty string is denoted by symbol ε. A s[i .. j] is a substring (factor) si · · · sj of s,
note that ε substring of s is obtained by s[i..i−1]. A prefix and a suffix of a string s of
length n is a substring s[1..j] and s[i..n], respectively, where 1 ≤ j ≤ n and 1 ≤ i ≤ n.
A proper prefix and a proper suffix of s is a prefix and a suffix, respectively, which is
not equal to s.

Based on concepts and notations from graph theory [3], a rooted tree t is a weakly
connected acyclic directed graph t = (V,E) with a special node r ∈ V , called the
root, such that r has in-degree 0, all other nodes of t have in-degree 1, and there is
just one path from the root r to every f ∈ V and f 6= r, where a path from a node
f0 to a node fn is a sequence of nodes (f0, f1, ..., fn) for n > 0 and (fi, fi+1) ∈ E for
each 0 ≤ i < n. Nodes of a rooted tree with out-degree 0 are called leaves.

A node g is a direct descendant of node f if a pair (f, g) ∈ E and descendant of
node f if (f, f1, f2, ..., fn, g) for n ≥ 0 is a path in t.

A tree is an ordered, ranked and labelled rooted tree with nodes labelled by symbols
from a ranked alphabet satisfying that the out-degree of a node f labelled by symbol
ℓ ∈ A equals Arity(ℓ) and with the direct descendants g1, g2, . . . , gn of a node f
ordered.

A subtree (a complete subtree) of tree t = (V,E) is any tree t′ = (V ′, E ′) such
that:

1. V ′ is an nonempty subset of V ,
2. E ′ = (V ′ × V ′) ∩ E, and
3. no node of V \ V ′ is a descendant of a node in V ′.

The prefix notation pref (t) of a tree t is defined as follows:

1. pref (ℓ) = ℓ0 if ℓ is a leaf,
2. pref (t) = ℓn pref (t1) pref (t2) · · · pref (tn), where ℓ is the label of the root of tree

t, n = Arity(ℓ) and t1, t2, . . . , tn are direct descendants of the root of t.

Let s = s1s2 · · · sn, n ≥ 1, be a string over a ranked alphabet A. Then, the arity
checksum ac(s) =

∑n
i=1 Arity(si) − n + 1. Let pref (t) and s of size n be a tree t in

prefix notation and a substring of pref (t), respectively. Then, s is the prefix notation
of a subtree of t, if and only if ac(s) = 0, and ac(s[1..j]) ≥ 1 for all 1 ≤ j < n [16].

Example 1. Consider a tree t1r over a ranked alphabet A = {a2, a1, a0}, pref (t1r) =
a2 a2 a0 a1 a0 a1 a0. Trees can be represented graphically, as is done for tree t1r
in Figure 1a.

To define a tree pattern, we use a special wildcard symbol S 6∈ A, Arity(S) = 0,
which serves as a placeholder for any subtree. A tree pattern is defined as a labelled
ordered tree over ranked alphabet A ∪ {S}. We will assume that the tree pattern
contains at least one node labelled by a symbol from A. Note that the wildcard
symbol can only label leaves of tree pattern.

A tree pattern p with k ≥ 0 occurrences of the symbol S matches a subject tree t
at node n if there exist subtrees t1, t2, . . . , tk (not necessarily the same) of t such that
the tree p′, obtained from p by substituting the subtree ti for the i-th occurrence of
S in p, i = 1, 2, . . . , k, is equal to the subtree of t rooted at n.
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(c) Tree pattern p2r
from Example 2.

Figure 1. Trees and tree patterns over a ranked alphabet from Example 1 and Example 2.

Example 2. Consider a tree t1r from Example 1, which is illustrated in Figure 1a.
Consider a subtree p1r over ranked alphabet A, pref (p1r) = a2 a0 a1 a0 and a tree
pattern p2r over ranked alphabet A∪{S}, pref (p2r) = a2 S a1 S, which are illustrated
in Figure 1b and Figure 1c. Tree pattern p1r occurs once in t1r — match is at node
2 of t1r. Tree pattern p2r occurs twice in t1r, it matches at nodes 1 and 2 of t1r.

2.1 Forward string pattern matching algorithm

A classical representant of a forward string pattern matching algorithm is the Morris-
Pratt algorithm [17,15]. The algorithm’s execution splits into preprocessing and search-
ing phases.

A precomputed table to determine the length of shift and also to know the num-
ber of symbols not required to be matched again in the following match attempt is
constructed during the preprocessing phase. The table used in the algorithm is the
border array [18,5]. The border array for a string of length m can be constructed in
O(m) time.

Note the border array is defined as in [5] without explicitly defining borders to
ease transition from strings to linearised tree patterns where concepts of prefix and
suffix do not apply.

Definition 3 (border array ([5]) B(s)). Let s be a string of length n. The border
array B(s) is defined for each index 1 ≤ i ≤ n such that B(s)[1] = 0 and otherwise
B(s)[i] = max({0} ∪ {k : s[1..k] = s[i− k + 1..i] ∧ k ≥ 1 ∧ i− k + 1 > 1}).

From the definition, the substrings s[1..k] and s[i − k + 1..i] are referred to as
borders.

Example 4. Consider a string s = ababc of length 5. The border array B(s) =
0, 0, 1, 2, 0.

The algorithm locates all occurrences of a pattern in a text in a searching phase.
Note that the presented algorithms deviates from the classical presentation of the
Morris-Pratt algorithm to simplify the transition from its string version to a tree
version.

The searching phase of the Morris-Pratt algorithm has time complexity O(m+n).
The algorithm makes at most 2n− 1 comparisons during the searching phase [17,15].
Line 10 of Algorithm 1 represents the shift and line 11 of Algorithm 1 represents a
carry of information of how many symbols do not need to be matched again.
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Algorithm 1: Morris-Pratt matching function.
Input: The subject string s of size n, the pattern string p of size m, the border array table

B(p)
Result: A list of matches.

1 begin

2 i := 0
3 j := 1
4 while i ≤ n−m do

5 while j ≤ m and s[i+ j] = p[j] do
6 j += 1
7 end

8 if j > m then yield i+ 1
9 if j 6= 1 then

10 i += j − B(p)[j − 1]− 1
11 j := B(p)[j − 1] + 1

12 else

13 i += 1
14 end

15 end

16 end

3 Forward Linearised Tree Pattern Matching

The pattern occurrences in linear notation are represented by substrings of trees in
the linear notation. They can contain “gaps” given by a special wildcard symbol S,
which serves as a placeholder for any subtree.

The string pattern matching algorithm must be modified to handle these gaps.
The wildcard symbol S represents any subtree. Moreover, matched subtrees may be
possibly nested. The wildcard symbol S therefore needs special care.

In order to handle these gaps a Subtree jump table structure is defined. The struc-
ture was introduced in [14].

Definition 5 (subtree jump table for prefix notation sjt(pref (t))). Let t and
pref (t) = ℓ1ℓ2 · · · ℓn, n ≥ 1, be a tree and its prefix notation, respectively. A sub-
tree jump table for prefix notation sjt(pref (t)) is a mapping from a set {1..n} into
a set {2..n + 1}. If ℓiℓi+1 · · · ℓj−1 is the prefix notation of a subtree of tree t, then
sjt(pref (t))[i] = j, 1 ≤ i < j ≤ n+ 1.

Note that the definition of subtree jump table for prefix notation is applicable to
tree patterns without changes as well.

Informally, the subtree jump table contains an entry for each subtree r of tree t.
The entry for subtree r is located at the position of its root in the prefix notation
pref (t) of the tree t. The entry stores an index into string pref (t) to a symbol that
is one after the last of the subtree r, i.e., position of the root of r plus the length
of pref (r). This structure has the same size as the prefix notation of the tree t. The
construction time is O(n) where n is the length of pref (t) [14].

3.1 Linearised tree border

The Morris-Pratt algorithm uses shift heuristics based on borders. One needs to
define a tree pattern border array in order to obtain similar shift heuristics in the
Morris-Pratt algorithm modification for trees.
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In order to define the tree pattern border array, first, let us define equivalence of
linear representations of a tree pattern and its factor.

Definition 6 (matches relation s matches r). Let S be a wildcard symbol repre-
senting a complete subtree in prefix ranked notation of trees. Two strings s and r are
in relation matches if:

s = ℓs′ r = ℓr′ and s′ matches r′

and ℓ ∈ A,
s = Ss′ r = Sr′ and s′ matches r′,
s = ℓ1 · · · ℓms

′ r = Sr′ and ac(ℓ1 · · · ℓm) = 0
and ∀k, 1 ≤ k < m, ac(ℓ1 · · · ℓk) ≥ 1
and s′ matches r′,

s = Ss′ r = ℓ1 · · · ℓmr
′ and ac(ℓ1 · · · ℓm) = 0
and ∀k, 1 ≤ k < m, ac(ℓ1 · · · ℓk) ≥ 1
and s′ matches r′,

s = Ss′ r = ℓ1 · · · ℓm and ∀k, 1 ≤ k ≤ m, ac(ℓ1 · · · ℓk) ≥ 1,
s = ε or r = ε

The two strings s and r are in relation matches if symbols of strings r and s
compare on corresponding positions, wildcards in string r correspond to complete
subtrees in string s, and wildcards in string s correspond to complete subtrees within
string r and possibly incomplete subtree at the end of string r. Note that the cor-
responding symbols may not be on the same indexes in strings s and r as a subtree
corresponding to wildcard S may be longer than a single symbol.

Informally, the two strings s and r representing prefixes of prefix notation of
a tree pattern are in relation matches if the corresponding tree pattern subgraphs
structurally and symbol-wise align.

Definition 7 (tree pattern border array B(pref (p))). Let pref (p) be a tree pat-
tern in a prefix notation of length n. The B(pref (p)) is defined for each index 1 ≤
i ≤ n such that B(pref (p))[1] = 0 and otherwise B(pref (p))[i] = max({0} ∪ {k :
pref (p) matches pref (p)[i− k + 1..i] ∧ k ≥ 1 ∧ i− k + 1 > 1}).

Notice that the definition of tree pattern border array is different from the defi-
nition of the border array for strings in the use of the matches relation and in use of
the complete linear representation of tree pattern as its left argument.

1 2 3 4 5 6 7 8
pref(p) a2 a2 S a2 b1 S a0 a0

pref(p)[2..5] a2 ⊢ S ⊣ a2 mismatch at position 8
pref(p)[3..5] ⊢ S ⊣ a2 b1 match
pref(p)[4..5] a2 b1 mismatch at position 2
pref(p)[5..5] b1 mismatch at position 1
pref(p)[6..5] match because pref(p)[6..5] = ε

Table 1. Trace of naive computation of pref (p) matches pref (p)[j + 1..5] for 1 ≤ j ≤ 5 and
pref (p) = a2 a2 S a2 b1 S a0 a0.

Example 8. Let pref (p) = a2 a2 S a2 b1 S a0 a0 be a prefix notation of a tree pattern
p. In order to compute B(pref (p))[5] according to Definition 7 the computation of
pref (p) matches pref (p)[j + 1..5] for 1 ≤ j ≤ 5 is necessary.
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The minimal j for which pref (p) matches pref (p)[j + 1..5] is 2, therefore, the
B(pref (p))[5] = 5−2 = 3. The process of computation of relation matches is depicted
in Table 1.

The visualisation of the alignment of pref (p) and pref (p)[2..5], internally com-
puted by the matches relation is depicted in Figure 2 on non-linearised tree pattern
p and tree pattern p subgraph corresponding to pref (p)[2..5]. The other alignment
visualisations can be depicted in a similar manner.

a2

a2

S a2

b1

S

a0

a0

(a) Tree pattern p and the sub-
graph of p corresponding to the
prefix of pref (p) relevant to the
computation of relation matches.

a2

S a2

b1

(b) The subgraph of
p corresponding to
pref (p)[2..5].

a2

a2

S a2

b1

S

a0

a0

a2

S a2

b1

=

= 6=

(c) Visualisation of the
alignment.

Figure 2. Visualisation of a single alignment of p and subgraph corresponding to pref (p)[2..5] in
computation of pref (p) matches pref (p)[j + 1..5]) for 1 ≤ j ≤ 5.

The B(pref (p)) can naively be implemented using Definition 7. The relation
matches is easy to implement using iteration with the help of sjt(pref (p)). The naive
computation requires O(m3) time, where m is the length of pref(p).

The computation of B(pref (p)) can also be done in quadratic time with respect
to the length of pref (p). All the factors beginning at offset are tested in one iteration
through the pattern pref (p) to determine the result of pref (p)matches pref (p)[offset+
1..i] ∀ 1 ≤ offset ≤ i ≤ m. This approach avoids repeating some comparisons. One
iteration through pref (p) takes O(m) time and has to be repeated m − 1 times for
different values of offset . The procedure of creating B(pref (p)) is formalised in Algo-
rithm 2.

3.2 Forward linearised tree pattern matching algorithm

One of the usages of the border array is in the Morris-Pratt algorithm. The string
version of the algorithm consists of two alternating components – occurrence check
and shift computation. Both can be adapted to trees with the later requiring the tree
pattern border array defined.

The Algorithm 3 is a modification of the Morris-Pratt algorithm for strings. It
uses index j into the pref (p) and two indexes i and offset into the pref (s). The index
i holds the position of the current attempt and offset holds the position of currently
compared symbol. Index offset is needed due to the “elasticity” of the pattern caused
by the wildcards. The shift distances are precomputed but otherwise the computation
is unchanged, however, the number of symbols that are not required to be matched
again is derived from the border array and is limited by the first occurrence of the
wildcard due to variability of the subtree in place of the wildcard.
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Algorithm 2: Computation of tree pattern border array.
Input: A pattern tree pref (p) (pattern) of size m and a vector of integers sjt(pref (p))
Output: A vector of integers B(pref (p)) indexed as [1..m]

1 begin

2 for i := 1 to m do B(pref(p))[i] := 0
3 for offset := 1 to m do

4 i := 1 /* index into full pref(p) */

5 j := offset + 1 /* index into a factor of pref(p) */

6 while True do

7 if i > m then

8 while j ≤ m do

9 B(pref (p))[j] := max (B(pref (p))[j], j − offset)
10 j += 1

11 end

12 break

13 else if j > m then

14 break

15 else if pref (p)[i] = pref (p)[j] then
16 B(pref (p))[j] := max (B(pref (p))[j], j − offset)
17 i += 1
18 j += 1

19 else if pref (p)[i] = S ∨ pref (p)[j] = S then

20 for k := j to sjt(pref(p))[j]− 1 do

21 B(pref (p))[k] := max (B(pref (p))[k], k − offset)
22 end

23 i := sjt(pref (p))[i] /* skip S */

24 j := sjt(pref (p))[j]

25 else

26 break /* mismatch */

27 end

28 end

29 end

30 end

Theorem 9. Given a tree pattern p in prefix notation pref (p) and tree pattern bor-
der array B(pref (p)) constructed by Algorithm 2, the Algorithm 3 does not skip any
occurrence of the pattern p in an input tree t.

Proof. Assume that the match attempt found a mismatch on j-th symbol of the
pattern, therefore the shift is either by single position if j = 1, which is always safe,
or, according to the tree pattern border array, j − B(pref (p))[j − 1]− 1 if j ≥ 1.

Assume, that for the shift where j ≥ 1 there is a shorter shift by k positions,
where 0 < k < j − B(pref (p))[j − 1] − 1. It must therefore be possible to match
pref (p)[k..j − 1] with the pattern pref (p) itself. However, the shift for mismatch at
j-th position is derived from the B(pref (p))[j−1], which according to the Definition 7
failed to match pref (p)[k..j − 1] with the pattern pref (p) itself by Definition 6 for
each 0 < k < j − B(pref (p))[j − 1]− 1. ⊓⊔

3.3 Example

Example 10. Consider a tree pattern p and a subject s with their respective repre-
sentations in prefix notation pref (p) = a2 a2 S a2 b1 S a0 a0 and pref (s) = a2 a2
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Algorithm 3: Forward tree pattern matching algorithm
Input: The subject tree in pref (s) notation of size n, the tree pattern in pref (p) notation

of size m, and a vector of integers sjt(pref (p))
Input: A vector of integers B(pref (p))
Result: Locations of occurrences of the tree pattern p in the subject tree s.

1 begin

2 Spos := min({j : pref (p)[j] = S ∧ 1 ≤ j ≤ m})
3 shift[1] := 1
4 for i := 2 to m+ 1 do shift[i] := i− B(pref (p))[i− 1]− 1
5 i := 0
6 j := 1
7 while i ≤ n−m do

8 offset := i+ j

9 while j ≤ m and offset ≤ n do

10 if pref (p)[j] = pref (s)[offset ] then
11 j += 1
12 offset += 1

13 else if pref (p)[j] = S then

14 offset := sjt(pref (s))[offset ]
15 j += 1

16 else

17 break

18 end

19 end

20 if j > m then yield i+ 1
21 i += shift(pref (p))[j]
22 j := max(1,min(Spos, j)− shift(pref (p))[j])

23 end

24 end

id 1 2 3 4 5 6 7 8 9
pref(p) a2 a2 S a2 b1 S a0 a0

B(pref(p)) 0 1 2 2 3 4 5 6
shift(pref(p)) 1 1 1 1 2 2 2 2 2

Table 2. The tree pattern border array B(pref (p)) and shift(pref (p)) used in Algorithm 3.

a2 a0 a2 b1 b0 a0 a0 a2 a2 a0 a2 b1 b0 a0 a0. Table 2 shows the tree pattern border
array and derived shift function values for pattern p and Table 3 shows the run of
the tree pattern matching algorithm. Matches are at indexes 2 and 10.

3.4 Time complexity

Consider a pattern p of length m and a subject s of length n. The time complexity
of the preprocessing phase (construction of sjt(pref (p)) and Algorithm 2) is O(m2).

The classical Morris-Pratt algorithm runs in linear time with respect to the subject
size thanks to the saving some subject to pattern symbol comparisons arising from the
border array properties. Since the Forward linearised tree pattern matching algorithm
skips some parts of the subject tree where wildcards are and the information about
symbols inside the skipped subtree is not known while doing so, the number of symbols
not needed to be matched in the next pattern to subject alignment is limited by the
first subtree wildcard in the tree pattern. Matching itself therefore takes O(m·n+occ)
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id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pref(s) a2 a2 a2 a0 a2 b1 b0 a0 a0 a2 a2 a0 a2 b1 b0 a0 a0
sjt 18 10 9 5 9 8 8 9 10 18 17 13 17 16 16 17 18

1 a2 a2 ⊢ S ⊣ a2
2 a2 a2 S a2 b1 S a0 a0
3 a2
4 a2 a2
5 a2
6 a2
7 a2
8 a2
9 a2 a2 S a2 b1 S a0 a0

Table 3. Algorithm 3 run for the subject and the pattern from Example 10.

in general and Θ(n+ occ) time when the pattern tree does not contain any wildcard.
Time required for construction of sjt(pref (s)) is included.

4 Some empirical results

An existing Forest FIRE toolkit and accompanying FIRE Wood graphical user inter-
face [7,19] were extended with the implementation of the presented algorithm. Many
tree pattern matching algorithms based on automata, like those described in [2,6,8,12]
and others, are already implemented within the toolkit. Single pattern matching al-
gorithm based on linearisations of both pattern tree and subject tree utilising a back-
ward shift heuristics [20] is also present. Performance of the presented algorithm is
compared with some of the best-performing algorithms in the toolkit based on auto-
mata, according to the results in [8], and with the algorithm based on linearisation of
tree structures utilising a backward shift heuristics. The running time of the pattern
preprocessing was not measured as it is done only once for all queries by the pattern
on many subjects.

We have measured the following running times of searching phases: 1) our new
forward tree pattern matching algorithm based on linearisations of pattern and sub-
ject tree (FLTPM); 2) an algorithm based on linearisation of pattern and subject tree
utilising a backward shift heuristics (BLTPM); 3) an algorithm based on the use of a
deterministic frontier-to-root (bottom-up) tree automaton constructed for the pattern
(DFRTA); and 4) an algorithm based on the use of a Aho-Corasick automaton con-
structed for the pattern’s stringpath set (AC). The construction of a subtree jump
table is included in the running time for both FLTPM and BLTMP algorithms and
these algorithms’ running times were recorded with trees represented in their prefix
notation. Additionally, a modified version of the DFRTA algorithm reading prefix no-
tation of a subject was implemented in the Forest FIRE toolkit as another reference
algorithm (DFRTA Prefix). Since this algorithm doesn’t need subtree jump table, its
construction isn’t included in the running time of DFRTA Prefix algorithm.

The performance of the new algorithm was measured using a pattern set previ-
ously used to measure the performance of preexistent algorithms in the Forest FIRE
toolkit. This pattern set was obtained by taking the Mono project’s X86 instruction
set grammar and, for each grammar production, taking the tree in the production’s
right-hand side, and replacing any nonterminal occurrences by wildcard symbol oc-
currences. The resulting pattern set consists of 460 tree patterns of varying sizes.
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Two sets of subject trees were used previously to measure the performance of
Forest FIRE toolkit and the same two sets were used in the benchmarking of the new
algorithm. The two subject sets were a set of 150 trees of approximately 500 nodes
each and a set of 500 trees of approximately 150 nodes each.

As in the case of the BLTPM algorithm, the new algorithm is a single-pattern
one. All chosen algorithms were executed with each pattern from the pattern set and
each subject tree from two subject sets individually. The running times of the pattern
matching algorithms were aggregated for a single tree pattern and all subject trees.

Benchmarking was conducted on a 2GHz Intel Core i7 with 24GB of RAM run-
ning OpenSUSE GNU/Linux version 15.2 using Java SE 11.

The linearised representations of subject trees and pattern trees were constructed
in-memory and are linear in size with respect to the sizes of the subject trees and
the pattern trees. The time required to construct the linear representation was not
included in the running time of the searching phase. Also, because the search time
was our primary concern, we do not consider memory use. Figure 3a and Figure 3b
show the search times of tree patters with a wildcard symbol as boxplots. The figures
of BLTPM and FLTPM algorithms were split to three based on the distance of the
first wildcard symbol from the beginning of the pattern in its prefix representation
to present this distance affects the running time. The distances are one symbol, two
symbols, and three and more symbols. Similarly, Figure 4a and Figure 4b show the
search times of tree patterns without a wildcard symbol as boxplots. The figures for
BLTPM and FLTPM algorithms were split to three based on the length of the tree
patterns, to patterns of length one, two, and three and more.

(a) Results on 150 trees of ca. 500 nodes each. (b) Results on 500 trees of ca. 150 nodes each.

Figure 3. Distributions of pattern matching times for the respective algorithms and patterns with
wildcards.

The BLTPM algorithm generally runs faster for longer tree patterns without a
wildcard or with a wildcard further from the beginning of the pattern whereas the
FLTPM algorithm is unaffected by the wildcard position nor by the length of the
pattern. The plots are clearly showing that on average, our new forward linearised
tree pattern matching algorithm considerably outperforms the existing ones based on
the automata approach for the single-pattern case (note the logarithmic scale) and
even the backward linearised tree pattern matching algorithm.
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(a) Results on 150 trees of ca. 500 nodes each. (b) Results on 500 trees of ca. 150 nodes each.

Figure 4.Distributions of pattern matching times for the respective algorithms and patterns without
wildcards.

5 Concluding remarks

We presented a property of linearised trees similar to border arrays from strings. Using
tree pattern border arrays, a new forward tree pattern matching algorithm similar to
the Morris-Pratt algorithm for strings is defined. The algorithm was designed for trees
represented in the prefix notation, but the idea can be adapted to other notations.
The algorithm was empirically compared with other pattern matching algorithms and
was shown to perform well in practice. Future work should focus on the identification
of properties of the tree pattern border array to improve the preprocessing time and
modification of the shift heuristics similar to the one used in the Knuth-Morris-Pratt
algorithm. Future work should also include an investigation into a shift heuristics for
multiple tree patterns, i.e., into a modification of the Aho-Corasick algorithm.
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J. Trávńıček et al.: Forward Linearised Tree Pattern Matching Using Tree Pattern. . . 73
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