
Left Lyndon Tree Construction

Golnaz Badkobeh1 and Maxime Crochemore2,3

1 Department of Computing
Goldsmiths University of London

United Kingdom
g.badkobeh@gold.ac.uk

2 Department of Informatics
King’s College London

United Kingdom
Maxime.Crochemore@kcl.ac.uk

3 Université Gustave Eiffel
Marne-la-Vallée, France

Abstract. We extend the left-to-right Lyndon factorisation of a word to the left Lyn-
don tree construction of a Lyndon word. It yields an algorithm to sort the prefixes
of a Lyndon word according to the infinite ordering defined by Dolce et al. (2019). A
straightforward variant computes the left Lyndon forest of a word. All algorithms run
in linear time on a general alphabet (letter-comparison model).

1 Lyndon words

In this article we consider algorithmic questions related to Lyndon words. Introduced
in the field of combinatorics by Lyndon (see [11]) and used in algebra, these words
have shown their usefulness for designing efficient algorithms on words. The notion of
Lyndon tree associated with the decomposition of a Lyndon word, for example, has
been used by Bannai et al. [1] to solve a conjecture of Kolpakov and Kucherov [9]
on the maximal number of runs (maximal periodicities) in words, following a result
in [2].

The key result in [1] is that every run in a word y contains as a factor, a Lyndon
root (according to the alphabet order or its inverse), that corresponds to a node of the
associated Lyndon tree. Since the Lyndon tree has a linear number of nodes according
to the length of y, browsing all its nodes leads to a linear-time algorithm in order
to report all the runs occurring in y. However, the time complexity of this technique
also depends on the time it takes to build the tree and to extend a potential root to
an actual run.

Here we consider the left Lyndon tree of a Lyndon word y. This tree has a single
node if y is reduced to a single letter, otherwise its structure corresponds recursively
to the left standard factorisation (see Viennot [13]) of y as uv where u is the longest
proper Lyndon prefix of y.

The dual notion of the right Lyndon tree of a Lyndon word y (based on the
factorisation y = uv where v is the longest proper Lyndon suffix of y) is strongly
related to the sorted list of suffixes of y. Indeed, Hohlweg and Reutenauer [8] showed
that the Lyndon tree is the Cartesian tree built from the ranks of suffixes in their
sorted list (sometimes called the inverse suffix array of the word). The list corresponds
to the standard permutation of suffixes of the word and is the main component of
the suffix array (see [4]), one of the major data structures for text indexing.

Golnaz Badkobeh, Maxime Crochemore: Left Lyndon Tree Construction, pp. 84–95.

Proceedings of PSC 2020, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-06749-9 © Czech Technical University in Prague, Czech Republic

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 85

Inspired by a result of Ufnarovskij [12], Dolce et al. [6] showed that the left Lyndon
tree is also a Cartesian tree built from ranks of prefixes sorted according to an order
they call the infinite order.

The main result of this article is to show that sorting prefixes of a Lyndon word
according to the infinite order can be attained in linear time in the letter-comparison
model (comparing letters is assumed to be carried out in constant time). This pro-
duces the prefix standard permutation of the word. The algorithm is based on the
Lyndon factorisation of words by Duval [7] and it extends naturally to build the
Lyndon forest of a word.

Definitions

Let A be an alphabet with an ordering < and A+ be the set of all non-empty words
over A. The length of a word w is denoted by |w|. Let ǫ denotes the empty word, i.e.,
word of length 0. We say that uv is a non-trivial factorisation of a word w if uv = w

and u, v are non-empty words.
A word is said to be strongly smaller than a word v, u << v, if there are words r,

s and t, and letters a and b with u = ras, v = rbt and a < b. A word u is smaller
than a word v, u < v, if either u << v or u is a proper prefix of v. In addition to this
usual lexicographical ordering the infinite order ≺ (see [5,6]) is defined by: u ≺ v if
u∞ < v∞ or both u∞ = v∞ and |u| > |v|. Note that u∞ = v∞ implies that u and v are
powers of the same word, consequence of Fine and Wilf’s Periodicity lemma (see [10,
Proposition 1.3.5]). For example, if u = abba, v = abb, then u∞ = abbaabbaabba . .

and v∞ = abbabbabb . ., therefore u∞ < v∞ and consequently u ≺ v. If u = ababab,
v = abab, then u∞ = v∞ = abababab . . and u ≺ v.

The next proposition defines Lyndon words that are not reduced to a single let-
ter. Condition in item (i) is the original definition and condition in item (iii) is by
Ufnarovskij [12].

Proposition 1. The following conditions are equivalent and define a Lyndon word
w, |w| > 1: for any non-trivial factorisation uv of w, (i) w < vu, (ii) w < v, (iii)
u∞ < w∞.

2 Lyndon suffix table

This section recalls known algorithms. The algorithms presented in this article strongly
use the notion of Lyndon suffix table of a word, which is denoted by LynS y or simply
by LynS for the generic word y. Table LynS of a word y is defined, for each position
j on y, by

LynS [j] = max{|w| | w Lyndon suffix of y[0 . . j]}.

Example 2. Let y0 = ababbababbabac on the alphabet of constant letters {a, b, . . .}
ordered as usual a < b < · · ·. The corresponding LynS y0

table is as follows:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a b b a b a b b a b a c

LynS y0
[j] 1 2 1 2 5 1 2 1 2 5 1 2 1 14

The LynS table is the dual notion of the Lyndon table l in [1] or Lyn in [3] used
to detect maximal periodicities (also called runs) in words: Lyn[j] is the maximal
length of the Lyndon prefixes of y[j . . |y| − 1].

86 Proceedings of the Prague Stringology Conference 2020

The computation of LynS is a mere extension of the algorithm for testing if a
word is the prefix of a Lyndon word. It includes the key point of the factorisation
algorithm in [7] and is recalled first as Algorithm LyndonWordPrefix that works
online on its input word y.

LyndonWordPrefix(y non-empty word of length n)

1 (per , i)← (1, 0)

2 for j ← 1 to n− 1 do

3 if y[j] < y[i] then ⊲ y[i] = y[j − per]

4 return false

5 elseif y[j] > y[i] then

6 (per , i)← (j + 1, 0)

7 else i← i+ 1 mod per

8 return true

y x x z
0 i j

z
✲✛

per

The key feature of the method stands in lines 5-6 of the algorithm and is illustrated
on the above picture. If y[j] > y[i] = y[j − per], not only the periodicity per of
y[0 . . j − 1] breaks but y[0 . . j] is a Lyndon word with period j + 1. This feature is a
consequence of the following known properties.

Proposition 3. (i) Let z be a word and a a letter for which za is a prefix of the
Lyndon word x. Let b be a letter with a < b. Then zb is a Lyndon word.
(ii) Let u and v be two Lyndon words with u < v, then uv is Lyndon word.

Algorithm LyndonSuffix computes the Lyndon suffix table of a Lyndon word.
This algorithm results from a minor modification of Algorithm LyndonWordPre-

fix and can be easily enhanced to compute also the smallest period of all non-empty
prefixes of the input.

LyndonSuffix(y Lyndon word of length n)

1 LynS [0]← 1

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 return LynS

Proposition 4. Algorithm LyndonSuffix computes the Lyndon suffix table of a
Lyndon word of length n in time O(n) in the letter-comparison model.

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 87

3 Left Lyndon tree construction

The left Lyndon tree L(y) of a Lyndon word y represents recursively the left standard
factorisation of Lyndon words. Leaves of the tree are positions on the word and inter-
nal nodes correspond to concatenations of Lyndon factors of the word, and as such
can be viewed as interpositions. Namely, L(y) = (0) if |y| = 1 else it is (p,L(u),L(v))
where the root p ∈ {|y| . . 2|y| − 2} is an integer and uv is the left standard factori-
sation of y, that is, u is the longest proper Lyndon prefix of y (v is then a Lyndon
word).

Subtrees of L(y) are handled from positions on y in the following manner. The
subtree associated with position j is L(y[i . . j]) with root root[j], where y[i . . j] is
the longest Lyndon suffix of y[0 . . j], i.e. j − i + 1 = LynS [j]. Position j on y is the
rightmost leaf of the subtree and LynS [j] is its width.

It is known that y, |y| > 1, is of the form xkzb where x is a Lyndon word of length
per = period(xkz), k > 0, z is a proper prefix of x and b is a letter greater than letter
a following z in x (za is a prefix of x) [7].

The construction of L(y) is achieved with the help of the table LynS of y. It is
done by processing y from left to right building first L(x) and reproducing that tree
or part of it up to z. The picture displays the subtrees built for the word (ababb)2aba.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

The main step of the procedure, in addition to computing LynS by Algorithm
LyndonSuffix, is to aggregate partial Lyndon trees when processing the last letter
b of y; to create the final tree as a bundle of all subtrees. In fact, this step is also
carried out when dealing with xkz at each position j for which LynS [j] > 1. In order
to aggregate the subtrees, the second property of Proposition 3 is applied iteratively,
processing the subtrees from right to left. Instruction of this step appear at lines 10-15
in Algorithm LeftLyndonTree, in which left[q] and right[q] are respectively the
left and right children of the internal node q of the tree.

The process of bundling can be viewed as a translation into the tree structure of
the proof of the key feature of Algorithm LyndonWordPrefix. Even so the latter
deals with this process in constant time, which is not the case here, the iteration
of bundling instructions does not affect the asymptotic running time of the present
algorithm.

88 Proceedings of the Prague Stringology Conference 2020

LeftLyndonTree(y Lyndon word of length n)

1 (LynS [0], root[0])← (1, 0)

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 root[j]← j

5 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

6 LynS [j]← j + 1

7 (per , i)← (j + 1, 0)

8 else LynS [j]← LynS [i]

9 i← i+ 1 mod per

10 (ℓ, k)← (1, j − 1)

11 while ℓ < LynS [j] do

12 q ← new node ≥ n

13 (left[q], right[q])← (root[k], root[j])

14 root[j]← q

15 (ℓ, k)← (ℓ+ LynS [k], k − LynS [k])

16 return root[n− 1]

The picture below shows thick links and nodes created by the final round of
instructions at lines 10-15 in Algorithm LeftLyndonTree.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

Proposition 5. Algorithm LeftLyndonTree builds the left Lyndon tree of a Lyn-
don word of length n in time O(n) in the letter-comparison model.

Proof. All instructions inside the for loop are executed in constant time except the
while loop. In addition, since each execution of instructions in the while loop takes
constant time and leads to the creation of an internal node of the final tree, twinned
with the fact that there are exactly n − 1 internal nodes, the total running time is
O(n).

4 Sorting prefixes

We show that Algorithm LeftLyndonTree can be adapted to sort the prefixes of a
Lyndon word according to the infinite ordering ≺. This is a consequence of Theorem
7 below.

An internal node p of the left Lyndon tree of a Lyndon word y is the root of
a Lyndon subtree associated with a Lyndon factor w, |w| > 1 of y. This factor is

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 89

obtained by concatenating two consecutive occurrences of Lyndon factors u and v. If
the concerned occurrence of w ends at position j on y, node p is identified with the
prefix of y ending at position j. The correspondence between internal nodes of the
tree and proper non-empty prefixes of y is clearly one-to-one because internal nodes
are identified with interpositions, pairs (i, i+ 1) of positions on y.

Labelling internal nodes with the ≺-ranks of their associated prefixes transforms
the tree into a heap, i.e. ranks are increasing from leaves to the root. The relation
between the infinite order and left Lyndon trees is established by the next result [6].

Theorem 6 (Dolce, Restivo, Reutenauer, 2019). The tree of internal nodes of
the left Lyndon tree of a Lyndon word y in which nodes are labelled by the ranks of
proper prefixes of y sorted according to the infinite order is the Cartesian tree of the
ranks.

The following picture shows the left Lyndon tree of y0 = ababbababbabac and
the ≺-rank labels of its internal nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b b a b a b b a b a c

1 2

3

4

5 6

7

8

9 10

11

12

13

Denoting a prefix of y0 by the position of its last letter (length minus 1), the table
below shows ≺-ranks of proper non-empty prefixes of the word and their sorted list,
inverse of Rank. The sorted list is a ≺ aba ≺ abab ≺ ab ≺ ababba ≺ ababbaba ≺
ababbabab ≺ ababbab ≺ ababbababba ≺ ababbababbaba ≺ ababbababbab ≺
ababbababb ≺ ababb.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13

y[j] a b a b b a b a b b a b a c

rank[j] 1 4 2 3 13 5 8 6 7 12 9 11 10

prefix list 0 2 3 1 5 7 8 6 10 12 11 9 4

The tree below is the Cartesian tree of prefix ≺-ranks.

1 4 2 3 13 5 8 6 7 12 9 11 10
a b a b b a b a b b a b a c

1 2

3

4

5 6

7

8

9 10

11

12

13

90 Proceedings of the Prague Stringology Conference 2020

Note that Algorithm LeftLyndonTree processes the resulting tree in left-to-
right post-order. The next result links this order to prefix ≺-ranks.

Theorem 7. Algorithm LeftLyndonTree on a Lyndon word y of length n > 1,
creates and processes internal nodes of the tree in the order of their corresponding
prefix ranks according to the ordering ≺.

Proof. A Lyndon word that is not reduced to a single letter, y is of the form xkzb

where x is a Lyndon word of length period(xkz), k > 0, z is a proper prefix of x and
b is a letter greater than letter a following prefix z in x [7].

Algorithm LeftLyndonTree processes nodes of the Lyndon trees L(y) as fol-
lows. Initially, it builds L(x) and Lyndon trees of the next occurrences of x in a
left-to-right manner. It continues with the tree related to z. Eventually during the
last bundling (run of instructions at lines 10-15) the algorithm builds L(zb) and fol-
lows with the nodes corresponding to the concatenations x · zb, x ·xzb, . . . , x ·xk−1zb

in that order.
The statement is proved by induction on the length of the period |x| of xkz. If is

|x| = 1, x is reduced to a single letter and y is of the form akb for two letters a and b

with a < b. Nodes associated with prefixes ak, ak−1, . . . , a are processed in this order,
which matches the ≺-order of prefixes, ak ≺ ak−1 ≺ · · · ≺ a, as expected.

We then assume |x| > 1 and consider disjoint groups of non-empty proper prefixes
of y. For e = 0, 1, . . . , k, let

Pe = {x
eu prefix of y | e|x| < |xeu| < min{(e+ 1)|x|, |y|}}.

The main part of the proof relies on three claims that we prove first.

Claim 1: prefixes xeu ∈ Pe, 0 < e ≤ k, are in the same relative ≺-order as prefixes
u ∈ P0. Let u, v ∈ P0 with u ≺ v and let us show xeu ≺ xev considering two cases.

x

u ū

v w v̄
x

Case u∞ = v∞ and |u| > |v|. By the Periodicity lemma u, v and v−1u are powers
of the same word. Let w = v−1u, v̄ = w−1x and ū the prefix of x of length |v̄| (see
picture). Since x is a Lyndon word, ū < x < v̄, which implies ux < vx because w is
a prefix of x. Therefore we have (xeu)∞ < (xev)∞, that is, xeu ≺ xev.

Case u∞ < v∞. Assume u is shorter than v and let h be the largest exponent for
which uh is a prefix of v. It is a proper prefix because u∞ < v∞ and then w = (uh)−1v

is not empty.
If |u| ≤ |w|, we have u << w, which implies ux << vx and (xeu)∞ < (xev)∞, that

is, xeu ≺ xev. (This case can happen if for example, u = ab, v = abababbbb, then
w = bbb which means |u| < |w|)

x

u u u u

v u

x

If |u| > |w|, v is a proper prefix of uh+1 but uh+1 shorter than vu cannot be a
prefix of it due to the Periodicity lemma applied on periods |u| and |v| of uh+1. Then

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 91

u << wu and since u is a prefix of x it implies ux << vx and (xeu)∞ < (xev)∞, that
is, xeu ≺ xev as before.

The situation in which u is longer than v is fairly symmetric and treated similarly.
Therefore again u ≺ v implies xeu ≺ xev, which proves the claim.

Claim 2: prefixes in Pe are ≺-smaller than prefixes in Pf when 0 ≤ e < f ≤ k. Let
u ∈ Pe and v ∈ Pf . We have to compare u and v according to ≺, that is, to compare
u∞ and v∞.

xkz x x x x z

u∞ · · ·r r

v∞ · · ·s

When e > 0, u is longer than x. Let r be the prefix of u for which |ur| = |xe+1|
(see picture in which u ∈ P1 and v ∈ P2) and s the suffix of x of the same length.
Comparing u∞ and v∞ amounts to compare r and s, because u is a prefix of v. Since
r is a prefix and s a suffix of the Lyndon word x, we have r < s and even more,
r << s, then u∞ < v∞ and u ≺ v.

When e = 0, u is shorter than x. Let h be the largest integer for which uh is a
prefix of x. It is a proper prefix because x is a Lyndon word and w = (uh)−1x is not
empty. As in the proof of previous claim, uh+1 cannot be prefix of xu that is a prefix
of v. The same conclusion follows, that it, uh+1 << vu and eventually u ≺ v.

Claim 3: prefixes in Pe, 0 ≤ e ≤ k, are ≺-smaller than prefixes xf , 0 < f ≤ k. To
prove the claim, in view of the statement of Claim 2 and the fact xk ≺ xk−1 ≺ x by
definition, it is enough to show that Pk ≺ xk. Note that if Pk is empty the proof can
be shown with Pk−1 instead, and if in addition k = 1 then we are left with an element
in the proof of Claim 2.

Let xku ∈ Pk, s = u−1x and r the prefix of x of length |s|. As prefix and suffix of
x, r and s satisfy r < s. Since xkur < xkus = xk+1 and r is a prefix of x, it results in
(xku)∞ < x∞ and eventually xku ≺ xk. This proves the claim.

To summarise, claims show

P0 ≺ P1 ≺ · · · ≺ Pk ≺ xk ≺ xk−1 ≺ · · · ≺ x.

Let us go back to induction. By induction hypothesis, the result holds for internal
nodes of L(x) corresponding to prefixes in P0.

Consider the next occurrences of x. Since the Lyndon suffix table for each of
them is copied from that of prefix x due to the instruction at line 8 in Algorithm
LeftLyndonTree, the Lyndon trees of all occurrences of x have the same structure.
Therefore, both from the induction hypothesis and from Claim 1, the order in which
internal nodes of the eth occurrence of x are processed and created matches the
≺-order of prefixes in Pe, for 0 < e ≤ k.

The algorithm processes occurrences of x from left to right, which corresponds to
the result of Claim 2. The treatment of zb is done at the beginning of the bundling
run, which also corresponds to the fact that prefixes in Pk are ≺-larger than all
prefixes that have been considered before.

Finally, the last part of the bundling creates nodes associated with xk, xk−1, . . . ,
x in that order, which matches the order xk ≺ xk−1 ≺ · · · ≺ x.

This ends the proof of the theorem.

92 Proceedings of the Prague Stringology Conference 2020

A consequence of the theorem is that Algorithm LeftLyndonTree can be down-
graded to compute directly the ≺-sorted list of non-empty proper prefixes of a Lyndon
word. Dolce et al. [6] call this ordered list the prefix standard permutation. The
following algorithm computes the prefix standard permutation.

PrefixStandardPermutation(y Lyndon word of length n)

1 S ← ()

2 (LynS [0], per , i)← (1, 1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] 6= y[i] then ⊲ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 (k,m)← (j − 1, 1)

10 while m < LynS [j] do

11 S ← S · (j −m)

12 m← m+ LynS [k]

13 k ← k − LynS [k]

14 return S

Corollary 8. Sorting the proper non-empty prefixes of a Lyndon word of length n ac-
cording to the infinite order ≺ can be carried out in time O(n) in the letter-comparison
model.

Proof. It essentially suffices to substitute the handling of the sequence to the process-
ing of internal nodes of the Lyndon tree of the word in Algorithm LeftLyndonTree,
which is equivalent to do a left-to-right post-order traversal of the tree. The change
is realised by Algorithm PrefixStandardPermutation.

5 Lyndon forest

When the non-empty word y is not a Lyndon word, the above process can be carried
out on each factor of its Lyndon factorisation, a decreasing list of Lyndon factors of the
word. Lyndon factorisation of y is a list x1, x2, . . . , xk for which both x1x2 · · · xk = y

and x1 ≥ x2 ≥ · · · ≥ xk. This factorisation is unique (see [10, Chen-Fox-Lyndon
theorem]).

The factorisation and its algorithm by Duval [7] is the guiding thread of previous
algorithms. The Lyndon forest of word y is the list of Lyndon trees L(x1), L(x2), . . . ,
L(xk). Its computation uses again the Lyndon suffix table of the word, computed by
Algorithm LongestLyndonSuffix whose input is not necessarily a Lyndon word.

It is a revision of Algorithm LyndonSuffix. The change stands in instructions
on lines 4-7. They reset the computation to the suffix y[h . . n− 1] of the input after
the factorisation of the prefix y[0 . . h− 1] is definitely achieved.

y x x z
h i j

z
✲✛

period(y[h . . j − 1])

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 93

LongestLyndonSuffix(y non-empty word of length n)

1 LynS [0]← 1

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 if y[j] < y[i] then

5 h← j − (i− h)

6 LynS [h]← 1

7 (per , i, j)← (1, h, h+ 1)

8 elseif y[j] > y[i] then

9 LynS [j]← j − h+ 1

10 j ← j + 1

11 (per , i)← (j − h, h)

12 else LynS [j]← LynS [i]

13 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

14 return LynS

Proposition 9. Algorithm LongestLyndonSuffix computes the Lyndon suffix ta-
ble of a word of length n > 0 in time O(n) in the letter-comparison model.

Proof. Let us consider values of expression h+j and show they form a strictly increas-
ing sequence after each iteration in the while loop. This claim holds if the condition
at line 4 is false, because j is incremented by at least one unit (on line 10 or on
line 13) and h remains unchanged. This claim also holds if the condition at line 4 is
true, because h is incremented by at least period(y[h . . j− 1]) while j is decremented
by less than the same value.

Since h+ j goes from 1 to at most 2n− 1 the running time is O(n).

Note the Lyndon factorisation of a word y can be retrieved from its LynS table by
sequentially tracing back the starting position of the previous factor, starting from
|y|. The list of starting positions of factors, in reverse order, is ik = |y|−LynS [|y|−1],
ik−1 = ik − LynS [ik−1 − 1], . . . , 0.

Example 10. The Lyndon suffix table of y1 = babbababbaabb is as follows.

j 0 1 2 3 4 5 6 7 8 9 10 11 12

y[j] b a b b a b a b b a a b b

LynS [j] 1 1 2 3 1 2 1 2 5 1 1 3 4

Starting positions of factors of its Lyndon factorisation are 9 = 13 − LynS [12], 4 =
9−LynS [8], 1 = 4−LynS [3], 0 = 1−LynS [0]. The factorisation is b·abb·ababb·aabb.

The following depicts the Lyndon forest corresponding to y1.

0 1 2 3 4 5 6 7 8 9 10 11 12

b a b b a b a b b a a b b

94 Proceedings of the Prague Stringology Conference 2020

Algorithm LeftLyndonForest is merely adapted from the previous algorithm
in order to manage Lyndon tree constructions of factors of the Lyndon factorisation
while computing the latter. The next proposition is a direct consequence of Proposi-
tion 9.

Proposition 11. Algorithm LeftLyndonForest computes the Lyndon forest of a
word of length n > 0 in time O(n) in the letter-comparison model.

LeftLyndonForest(y non-empty word of length n)

1 (LynS [0], root[0])← (1, 0)

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 root[j]← j

5 if y[j] < y[i] then

6 h← j − (i− h)

7 LynS [h]← 1

8 (per , i, j)← (1, h, h+ 1)

9 elseif y[j] > y[i] then

10 LynS [j]← j − h+ 1

11 j ← j + 1

12 (per , i)← (j − h, h)

13 else LynS [j]← LynS [i]

14 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

15 ⊲ Bundle

16 (p,m, k)← (root[j], 1, j − 1)

17 while m < LynS [j] do

18 q ← new node ≥ n

19 (left[q], right[q])← (root[k], p)

20 (p,m)← (q,m+ LynS [k])

21 k ← k − LynS [k]

22 return root[n− 1]

6 Conclusions

In this paper, algorithm LyndonSuffix computes, for a given Lyndon word, its
Lyndon suffix table. The Lyndon suffix table is an essential part of algorithm Left-

LyndonTree which constructs the left Lyndon tree of a Lyndon word in linear time.
We further investigated the prefix standard permutation, initially introduced by Dolce
et al. [6], and its relation to the left Lyndon tree. This study resulted in a linear-time
algorithm for computing prefix standard permutation in the letter-comparison model.
In addition, we exhibited a strong connection between the prefix ranks and the left
Lyndon tree. This connection dictates that the order in which the internal nodes of
the left Lyndon tree are created and processed coincides with that of the prefix ranks
according to infinite ordering.

We finally endeavoured to design a linear-time algorithm LyndonForest which
computes the Lyndon forest of a given word. This process entailed modifications

Golnaz Badkobeh and Maxime Crochemore: Left Lyndon Tree Construction 95

of algorithm LyndonSuffix to create algorithm LongestLyndonSuffix, which
enables us to construct the Lyndon suffix table of also non-Lyndon words.

Many interesting questions remain, for example, is there a connection between
runs and the internal nodes of the Lyndon forest? Is there a relation between the left
and the right Lyndon trees?

References

1. H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta: The “runs”

theorem. SIAM J. Comput., 46(5) 2017, pp. 1501–1514.
2. M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and

T. Walen: The maximal number of cubic runs in a word. J. Comput. Syst. Sci., 78(6) 2012,
pp. 1828–1836.

3. M. Crochemore, T. Lecroq, and W. Rytter: One Twenty Five Problems in Text Algo-

rithms, Cambridge University Press, 2020, In press.
4. M. Crochemore and L. M. S. Russo: Cartesian and Lyndon trees. Theoretical Computer

Science, 806 February 2020, pp. 1–9.
5. F. Dolce, A. Restivo, and C. Reutenauer: On generalized lyndon words. Theor. Comput.

Sci., 777 2019, pp. 232–242.
6. F. Dolce, A. Restivo, and C. Reutenauer: Some variations on Lyndon words. CoRR,

abs/1904.00954 2019.
7. J. Duval: Factorizing words over an ordered alphabet. J. Algorithms, 4(4) 1983, pp. 363–381.
8. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theor. Comput.

Sci., 307(1) 2003, pp. 173–178.
9. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,

in 40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, IEEE Computer Society, 1999, pp. 596–604.

10. M. Lothaire: Combinatorics on Words, Addison-Wesley, 1983, Reprinted in 1997.
11. R. C. Lyndon: On Burnside problem i. Trans. Amer. Math. Soc., 77 1954, pp. 202–215.
12. V. A. Ufnarovskij: Combinatorial and asymptotic methods in algebra, in Algebra VI: Com-

binatorial and Asymptotic Methods of Algebra. Non-Associative Structures, A. Kostrikin and
I. Shafarevich, eds., vol. 57 of Encyclopaedia of Mathematical Sciences, Springer, Berlin, 2011,
pp. 1–196.

13. G. Viennot: Algèbres de Lie libres et monöıdes libres, vol. 691 of Lecture Notes in Mathematics,
Springer-Verlag, Berlin, 1978.

