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Abstract. The notion of periods is key in stringology, word combinatorics, and pattern
matching algorithms. A string has period p if every two letters at distance p from each
other are equal.
There has been a growing interest in more general models of sequences which can de-
scribe uncertainty. An important model of sequences with uncertainty are degenerate
strings. A degenerate string is a string with “undetermined” symbols, which can de-
note arbitrary subsets of the alphabet Σ. Degenerate strings have been extensively
used to describe uncertainty in DNA, RNA, and protein sequences using the IUPAC
code (Biochemistry, 1970).
In this work, we extend the work of Blanchet-Sadri et al. (2010) to obtain the following
results about the combinatorial aspects of periodicity for degenerate strings:
– We compare three natural generalizations of periodicity for degenerate strings,
which we refer to as weak, medium and strong periodicity. We define the concept of
total autocorrelations, which are quaternary vectors indicating these three notions
of periodicity.

– We characterize the three families of period sets, as well as the family of total
autocorrelations, for each alphabet size. In particular, we prove necessary conditions
period sets should satisfy and, to prove sufficiency, we show how to construct a
degenerate string which gives rise to particular period sets.

– For each notion of periodicity, we (asymptotically) count the number of period
sets, by combining known techniques from partial words with recent results from
number theory.

– Moreover, we show that all families of period sets, as well as the family of total
autocorrelations, form lattices under a suitably defined partial ordering.

– We compute the population of weak, medium and strong period sets (i.e., the
number of strings with that period set). We also compute the population of total
autocorrelations.
Keywords: Periodicity, Degenerate string, Indeterminate string, Auto-
correlation.

1 Introduction

Sequences of letters taken over an alphabet Σ, also called strings or words, are used
to represent texts in natural languages, biomolecules such as DNA, RNA or proteins,
or the sequence of states in dynamical systems. The notion of periodicity proves to be
crucial for investigating word combinatorics [18], the properties of symbolic dynamical
systems [19], or to design efficient pattern matching algorithms [9].

However, the classic notion of a string is insufficient to handle undetermination.
Instead, sequences of sets of letters were considered and several definitions that gen-
eralize the classic notion of strings have been proposed such as partial strings and
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degenerate strings. In partial strings, the undetermined symbol ⋄ can represent any
letter in Σ. In degenerate strings, we can have multiple different undetermined sym-
bols, each representing a specified non-empty subset of Σ from which we must choose
a letter. Degenerate strings thus generalize partial strings.

Regarding representations of biomolecules, reasons or causes of undetermina-
tion are multiple. First, undetermination appears in DNA/RNA sequences when se-
quencing machines fail to identify a precise nucleotide due to a noisy signal (which
is frequent with the third generation of deep sequencing technologies, like Oxford
Nanopore [21]. Second, undetermined symbols are used to represent binding sites
(sequence regions at which biomolecules chemically bind to each other) at positions
where alternative residues are observed. There exist databases of binding site repre-
sentations using degenerate strings (JASPAR [5], HOCOMOCO [16]), which serve to
identify new binding sites in genomes. Third, in the context of pangenomics, which
investigates the genetic variations observed within a population, undetermined sym-
bols serve to represent the variant nucleotides at a given genomic position in this
population [28]. If only nucleotidic substitutions are considered, degenerate strings
are adequate, but if multiple insertions/deletions need to be represented then elastic
degenerate strings are preferred [13].

Related works. In classical finite strings, a period denotes the possibility of a word to
self-overlap. In seminal articles Guibas and Odlyzko introduced the notion of period
set of a finite word (and its binary representation the autocorrelation), proposed a
characterization of it, investigated how the autocorrelation controls the probability of
absence of a word in random texts, and extended it into correlation to study overlaps
between pair of words. An alternative simpler proof of the “Fine and Wilf” theorem
for period sets was given [10] and the set of period sets for words of length n and
related combinatorics was investigated [24], while the asymptotic convergence on the
number of period sets has recently been solved [25].

Our goal is to study combinatorics of period sets for string definitions allowing
undetermined symbols. In a first step, Blanchet-Sadri et al conducted a combinatorial
study in the case of partial strings [4,3] (similar to that on classical strings [23]), and
investigated related algorithmic questions [2]. However, partial strings are inadequate
to represent undetermination arising in biomolecules, while degenerate strings are. As
degenerate strings generalize partial strings, we study combinatorics of period sets
in the case of degenerate strings. In a related work, Iliopoulos and Radoszewski[14]
showed that the weak period array of a degenerate string can be computed in O(n

√
n)

and O(n) space, while its strong period array cannot be computed in O(n2−ǫ|Σ|O(1))
time if the Strong Exponential Time Hypothesis holds. Other algorithmic questions
related to degenerate strings have also been investigated [6,12,11,26].

Contributions. For degenerate strings, three notions of period sets (weak, medium,
and strong) are necessary and we characterize period sets for each, exhibiting neces-
sary and sufficient conditions (Section 3). Then, we count the number of period sets
for degenerate strings of length n for each notion and study its convergence using
recent results from number theory (Section 4). We investigate the structure of the set
of period sets in Section 5, and how many degenerate strings share a given period set
(i.e., the population of a period set) extending the graph approach proposed in [3].
Finally, we outline some directions for future work (Section 7).
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2 Preliminaries

A classic string u = u[0 . . n − 1] ∈ Σn of length n is a sequence of n letters over a
non-empty finite alphabet Σ. For any 0 ≤ i ≤ j ≤ n − 1, we denote the substring
starting at position i and ending at position j with u[i . . j]. In particular, u[0 . . j]
denotes a prefix of u and u[i . . n− 1] a suffix. Throughout this paper, all our strings
and vectors will be zero-indexed.

2.1 Degenerate strings

A degenerate alphabet ∆ over Σ is a set of subsets of Σ, i.e., ∆ ⊆ P(Σ), where P(Σ)
is the power set of Σ. We call the elements of a degenerate alphabet undetermined
symbols, or symbols for short. A degenerate string ŵ = ŵ[0 . . n− 1] ∈ ∆n is a string
of length n over the degenerate alphabet ∆. We define the size of ŵ as the sum of
the cardinalities of its symbols ‖ŵ‖ =

∑n−1
i=0 |ŵ[i]|.

Degenerate strings are used to model uncertainty. Undetermined symbols are used
to denote all possible letters at a given position. This way, the degenerate string
defines a language of words over the original alphabet Σ. Specifically, we define the
language of a degenerate string ŵ of length n over degenerate alphabet ∆ ⊆ P(Σ) as

L(ŵ) = {w ∈ Σn | ∀i ∈ {0, . . . , n− 1} w[i] ∈ ŵ[i]} .

Example 1. Let ŵ =

{

a
b

}

·
{

b
c

}

·
{

c
}

. Note that ŵ has length |ŵ| = 3, size ‖ŵ‖ = 5

and language L(ŵ) = {abc, acc, bbc, bcc}.
A hollow string ŵ is a degenerate string such that ŵ[i] = ∅ for at least one

i ∈ {0, . . . , n − 1}, or equivalently a degenerate string such that L(ŵ) = ∅. We say
two degenerate strings x̂ and ŷ of length n over the same degenerate alphabet match,
if for all i ∈ {0, . . . , n− 1} the intersection x̂[i] ∩ ŷ[i] is non-empty.

Sometimes, there are some restrictions on the degenerate alphabet ∆. In motif
searching [22,27] for example, the k-motif which is a k-length degenerate string, con-
sists of symbols such that the union of them is Σ and no symbol is a subset of another
symbol. We will take ∆ = P(Σ) \ ∅ unless stated otherwise, i.e., we have an undeter-
mined symbol for every non-empty subset of Σ. This is the most general choice of ∆
which excludes hollow strings. Hollow strings have an empty language, which is not
very interesting when studying periodicity. Moreover, a nice consequence of excluding
hollow strings is that now no two degenerate strings correspond to the same language.

2.2 Periodicity

Before we introduce the notion of periodicity in degenerate strings, we first recall its
definition in the case of classic strings over the alphabet Σ. One such definition is as
follows.

Definition 2 (Period of a string). A string u = u[0 . . n − 1] has period p ∈
{0, 1, . . . , n−1} if and only if u[0 . . n−p−1] = u[p . . n−1], i.e., for all 0 ≤ i ≤ n−p−1,
we have u[i] = u[i+ p].
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There are several other equivalent definitions, e.g. one could require that u[i] =
u[j] whenever i ≡ j mod p. Generalizing the notion of periodicity to degenerate
strings is therefore not straightforward. Holub and Smyth introduced the concept of
quantum and deterministic periods [11]. Blanchet-Sadri et al. call the same concepts
weak and strong periods in the context of partial words [3]. We use the naming
convention from Blanchet-Sadri et al. with the difference that we additionally define
the concept of medium periodicity, which coincides with strong periodicity in the case
of partial words but exhibits a different behaviour in the case of degenerate strings.

First, we recall the definition of weak periodicity.

Definition 3 (Weak period of a degenerate string). A degenerate string ŵ =
ŵ[0 . . n−1] has weak period p ∈ {0, 1, . . . , n−1} if and only if ŵ[0 . . n−p−1] matches
ŵ[p . . n− 1], i.e., for all 0 ≤ i ≤ n− p− 1 we have ŵ[i] ∩ ŵ[i+ p] 6= ∅.

This is the most flexible type of periodicity, for which we want two strings in the
language to overlap by n − p letters. This type is most suitable when we use the
degenerate string to model variations in a set of related strings.

Although periodicity p implies periodicity kp for classic strings, this is not the
case for weak periods in degenerate strings (see Example 6). If we want to require
this, we need a second stronger notion: medium periodicity.
Definition 4 (Medium period of a degenerate string). A degenerate string
ŵ = ŵ[0 . . n − 1] has medium period p ∈ {0, 1, . . . , n − 1} if and only if for any
0 ≤ i, j ≤ n− 1 such that i ≡ j ( mod p ) we have ŵ[i] ∩ ŵ[j] 6= ∅.

An equivalent definition is: a degenerate string ŵ has medium period p if every
multiple kp with k ∈ N is a weak period of ŵ. First notice that 0 is both medium
period and weak period by definition.

Finally, we define strong periodicity.
Definition 5 (Strong period of a degenerate string). A degenerate string ŵ
has strong period p if there exists a string w ∈ L(ŵ) with period p.

This is the most restrictive type of periodicity, where we require a word in the
language to overlap itself. This type is most suitable when we use the degenerate
string to model one specific string, of which letters are not precisely known.

Given a degenerate string ŵ, we denote its sets of weak, medium, and strong
periods by Pw(ŵ), Pm(ŵ) and P s(ŵ) respectively. From the definitions, we can easily
see that P s ⊆ Pm ⊆ Pw. We illustrate the difference between the different types of
period sets with the following example.

Example 6. Let ŵ =

{

a

b

}

·
{

b

c

}

·
{

b

c

}

·
{

c

}

·
{

a

c

}

. Then Pw(ŵ) = {0, 1, 2, 4}, Pm(ŵ) =

{0, 2, 4} and P s(ŵ) = {0, 4}.
Finally, we denote the set of all possible weak, medium and strong period sets of

degenerate strings of length n by Ωw
n , Ω

m
n and Ωs

n respectively.

2.3 Autocorrelations

One useful way to represent period sets is using autocorrelations, a concept introduced
in 1981 by Guibas and Odlyzko [8]. The autocorrelation of a string w ∈ Σn is the
binary vector s ∈ {0, 1}n indicating its period set. We extend this definition by
defining different autocorrelations for degenerate strings corresponding to different
types of period sets.
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Definition 7 (Autocorrelation of degenerate string). For every degenerate string
ŵ, its weak (resp. medium, resp. strong) autocorrelation is the binary vector s ∈
{0, 1}n such that

s[i] =











1 if i is a weak (resp. medium,
resp. strong) period of ŵ

0 otherwise
∀i ∈ {0, . . . , n− 1}.

We will denote the weak, medium and strong autocorrelations by ŝw, ŝm and ŝs

respectively.
In [3], Blanchet-Sadri et al. take advantage of ternary vectors to simultaneously

represent the weak and strong period sets of partial words. In our work, we introduce
the concept of a total autocorrelation as a quaternary vector indicating these three
notions of autocorrelations.

Definition 8 (Total autocorrelation of degenerate string). For a degenerate
string ŵ, its total autocorrelation is the sum of the weak, medium and strong auto-
correlation ŝ = ŝw + ŝm + ŝs.

We can equivalently define ŝ ∈ {0, 1, 2, 3}n to be the vector such that

ŝ[i] =















0 if i /∈ Pw (not a period)
1 if i ∈ Pw \ Pm (weak period)
2 if i ∈ Pm \ P s (weak and medium period)
3 if i ∈ P s (weak, medium and strong period)

for all i ∈ {0, . . . , n− 1}. To illustrate the weak, medium, strong and total autocor-
relations, we review the degenerate string from example 6.

Example 9. Let ŵ =

{

a

b

}

·
{

b

c

}

·
{

b

c

}

·
{

c

}

·
{

a

c

}

. Then ŵ has weak autocorrelation

ŝw = 11101, medium autocorrelation ŝm = 10101, strong autocorrelation ŝs = 10001
and total autocorrelation ŝ = 31203.

3 Characterization of total autocorrelations

In this section, we characterize the total (and hence also the weak, medium and
strong) autocorrelation vectors of degenerate strings.

First, note that if the alphabet is unary, there exists a unique degenerate string
of length n, which has total autocorrelation 3n. Thus, we will henceforth assume that
|Σ| ≥ 2.

Theorem 10. Let P s ⊆ Pm ⊆ Pw ⊆ {0, . . . , n − 1}. Then Pw, Pm and P s are
respectively the weak, medium, and strong period sets of some non-hollow degenerate
string ŵ of length n if and only if

A. 0 ∈ P s,
B. for all p ∈ Pw we have p ≥ n/2 =⇒ p ∈ P s,
C. p ∈ Pm if and only if for all k ∈ N with kp ∈ {0, . . . , n − 1} we have kp ∈ Pw,

and
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D. p ∈ P s if and only if for all k ∈ N with kp ∈ {0, . . . , n− 1} we have kp ∈ P s.

Furthermore, these conditions are sufficient for any specific alphabet Σ of cardinality
at least 3. For a binary alphabet, we additionally require that Pm = P s.

Proof. We will first prove the necessity of these four properties. Let ŵ be a degenerate
string with weak, medium and strong period sets Pw, Pm and P s respectively.
(I) Since ŵ is not hollow, there exists a string w ∈ L(ŵ). Since w has period 0, the

degenerate string ŵ has strong period 0.
(II) For every p ∈ Pw, there exist two strings w1, w2 ∈ L(ŵ) such that w1[p . . n− 1] =

w2[0 . . n − 1 − p]. Note that w =: w2[0 . . p − 1]w1[p . . n − 1] ∈ L(ŵ) as well.
Moreover, since p ≥ n/2, we have that i ≡ j mod p implies
– i = j and hence w[i] = w[j], or
– j = i+ p in which case w[i] = w2[i] = w1[i+ p] = w[i+ p] = w[j], or
– i = j + p and analogously w[i] = w[j].
Thus, w has period p. Consequently, ŵ has strong period p.

(III) This is the definition of medium periodicity.
(IV) Since p ∈ P s, there exists w ∈ L(ŵ) such that w has period p. If kp < n, then w

also has period kp. Therefore kp is also a strong period of ŵ. Conversely, if kp is
a strong period for all natural k such that kp < n, then trivially 1 · p is a strong
period as well.

To prove sufficiency, assume that P s ⊆ Pm ⊆ Pw ⊆ {0, . . . , n − 1} satisfy the four
properties. We construct the degenerate string ŵ such that

ŵ[i] =



















{a, b} if i = 0

{a, c} if i ∈ P s \ {0}
{b, c} if i ∈ Pw \ P s

{c} otherwise

and verify that it has weak, medium and strong period sets Pw, Pm and P s respec-
tively.
– Note that every pair of sets intersects, except for {a, b} and {c}. Thus p is a weak
period if and only if ŵ[p] 6= {c}, which is indeed if and only if p ∈ Pw.

– The medium period set is defined by the weak period set by property (III). Thus,
since ŵ has the specified weak period set P s, it also has the corresponding medium
period set Pm.

– Note that for all p ∈ P s \ {0}, the classic string w ∈ {a, b, c}n such that

w[i] =

{

a if p | i
c otherwise

is in L(ŵ). Therefore ŵ has strong period p. However, if p /∈ P s, then either p /∈ Pw

(in which case p is not a weak period and thus not a strong period either) or there
exists k ∈ N such that kp is a strong period with n/2 ≤ kp ≤ n− 1 by property
(II). It follows that

ŵ[0] ∩ ŵ[p] ∩ ŵ[kp] = {a, b} ∩ {b, c} ∩ {a, c} = ∅.

Therefore p is not a strong period.
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We conclude that the four properties characterize the three period sets.
Note that the construction above uses an alphabet of size 3 and thus charac-

terizes all possible total autocorrelations, even if we restrict to some specific alpha-
bet Σ of cardinality at least 3. For binary alphabets, note that degenerate strings
are the same as partial words, because they both have the same degenerate alpha-
bet ∆ = {{a}, {b}, {a, b}}. Thus, every medium period is a strong period. In other
words, the autocorrelation is in {0, 1, 3}n. Conversely, any such autocorrelation is the
autocorrelation of the binary degenerate string ŵ ∈ ∆n such that

ŵ[i] =











{a} if i = 0

{a, b} if i ∈ Pw \ {0}
{b} otherwise,

because p is a weak period of ŵ if and only if p ∈ Pw, and because the medium— and
in the binary case also strong — periods are defined by the weak periods by property
(III).

4 Structure of autocorrelations

In this section, we take a closer look at the structure and number of weak, medium
and strong autocorrelations.

4.1 Weak autocorrelations

We show that Ωw
n , the set of autocorrelations of degenerate strings of length n with

respect to weak periodicity, equals {1}{0, 1}n−1. This result holds irrespective of (non-
unary) alphabet size.

Theorem 11. Ωw
n = {1}{0, 1}n−1

Proof. Let s ∈ {1}{0, 1}n−1. We construct a corresponding degenerate string over a
binary alphabet {a, b}. We set ŵ[0] =

{

a

}

, and for every 1 ≤ i ≤ n − 1, we set

ŵ[i] =
{

b

}

if s[i] = 0 and
{

a

b

}

if s[i] = 1. It can easily be seen that s is the weak

autocorrelation of ŵ. Note that any pair of symbols at position i, j ≥ 1 in ŵ has
nonempty intersection

{

b

}

. Therefore, we only need to observe that ŵ[0] and ŵ[p]
match if and only if s[p] = 1.

4.2 Medium and strong autocorrelations

Blanchet-Sadri et al. define R(v) as the irreducible period set of partial word v and
Φn to be the set of all irreducible period sets of partial words of length n [3]. They
show that R(v) is a primitive set, a set wherein no two numbers divide each other,
and that any primitive subset of {1, . . . , n − 1} is an irreducible period set. They
also show that there is a one-to-one mapping between Φn and the number of period
sets of partial words of length n. Consequently, to count the number of period sets,
it is sufficient to count the number of primitive subsets of {1, . . . , n − 1}. In this
section, we will similarly characterize the sets of medium and strong autocorrelations
of degenerate strings.
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Let us fix an integer interval I = [0 . . n − 1]. Given a subset P ⊆ I, we write
〈P 〉 = {kp ∈ I | p ∈ P, k ∈ Z≥0} and say that P generates 〈P 〉. We say that P
is closed under multiplication if 〈P 〉 = P . Note that this implies in particular that
0 ∈ P .

This is a direct reformulation of Theorem 10 in the case of medium and strong
autocorrelations:

Corollary 12. The subsets of [0 . . n − 1] that are medium (resp. strong) period sets
of a degenerate string ŵ having length n over any fixed alphabet of cardinality at least
2 are exactly the multiplicative subsets of [0 . . n− 1]. In particular, one has Ωm

n = Ωs
n

for any n ≥ 1.

We say that a set P of integers is primitive if it does not contain a pair i 6= j such
that i divides j. Equivalently, that means that 〈P 〉 = 〈P ′〉 only if P ⊆ P ′. Note that
if P is a primitive set containing 0, then P = {0}.

Lemma 13. Let I = [0 . . n− 1]. Any set P ⊆ I which is closed under multiplication
contains a unique minimum set Pprim generating it, and this set is primitive.

Therefore, primitive subsets in I are in a 1-to-1 correspondence with multiplicative
sets in I.

Proof. The subset Pprim can be obtained by taking every pair i 6= j with i dividing
j and removing j. The order of removal does not affect the result by transitivity of
the divisibility relation. Note that if P 6= {0}, then 0 will be removed from P as
it is a multiple of every integer. The resulting set generates P and is primitive by
construction. It is also the minimum generating set because if 〈Pprim〉 = P = 〈P ′〉 for
some P ′ ⊆ I then Pprim ⊆ P ′ from the definition of a primitive set.

The reciprocal mappings P 7→ Pprim and P 7→ 〈P 〉 hence form a 1-to-1 correspon-
dence.

4.3 Counting the number of period sets

We have seen that weak period sets can be any subset of {0, . . . , n− 1} containing 0.
It follows that there are exactly |Ωw

n | = 2n−1 weak period sets of strings of length n.
Counting the number of medium and strong period sets is a lot more complex, but
luckily we can rely on tools from the literature.

In [3], Blanchet-Sadri et al. provide upper and lower bounds on the number of
autocorrelations of partial words of length n. They use a result by Erdős [7] to deter-
mine the logarithm of the number of primitive sets with elements smaller than n (and
hence the number of autocorrelations of partial words of length n) up to a factor of
two. However, recently there have been major developments concerning the number of
primitive sets. Let Q(n) be the number of primitive sets with largest element at most
n. Angelo proved that ln(Q(n))/n converges to some constant α [1]. Liu, Pach and
Palincza [17] and McNew [20] proved that α is effectively computable and computed
upper and lower bounds on them.

Theorem 14 (Liu, Pach and Palincza [17], McNew [20]). For any ǫ > 0, we
have

Q(n) = αn(1+O(exp((−1+ǫ)
√
logn log logn))).

The constant α is effectively computable and 1.5729 < α < 1.5745.



50 Proceedings of the Prague Stringology Conference 2023

Since |Ωm
n | = |Ωs

n| = Q(n − 1), this implies the same asymptotic behaviour for
the number of medium and strong period sets.

Corollary 15. For any ǫ > 0, we have

|Ωm
n | = |Ωs

n| = αn(1+O(exp((−1+ǫ)
√
logn log logn))).

The constant α is effectively computable and 1.5729 < α < 1.5745.

Proof. By Theorem 14, it follows directly that

|Ωm
n | = |Ωs

n| = α
(n−1)

(

1+O
(

exp
(

(−1+ǫ)
√

log(n−1) log log(n−1)
)))

.

Then one can notice that

(n− 1)
(

1 +O
(

exp
(

(−1 + ǫ)
√

log(n− 1) log log(n− 1)
)))

= n

(

1− 1

n
+

n− 1

n
O
(

exp
(

(−1 + ǫ)
√

log n log log n
))

)

= n
(

1 +O
(

exp
(

(−1 + ǫ)
√

logn log logn
)))

,

because 1
n
= exp(− log n) = exp

(

−
√

log2 n
)

= O
(

exp
(

−√
log n log logn

))

.

5 Lattice structure

Blanchet-Sadri et al. show that the sets of all binary and ternary autocorrelations of
partial words of length n both form lattices under set inclusion of the correspond-
ing period sets [3]. Moreover, they show these lattices satisfy the Jordan-Dedekind
condition.

We investigate the structure of individual autocorrelations, as well as the total
autocorrelation of degenerate strings. We show that Ωw

n , Ω
m
n and Ωs

n all follow lattice
structure under set intersection and set union, and hence satisfy the Jordan-Dedekind
condition. We also show the set of total autocorrelations is a lattice with respect to
product order. Due to similarity with [3], we refer to Appendix A for the definitions
of respectively the weak, medium, and strong autocorrelations, and for the proof of
Theorem 16.

Theorem 16. (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are lattices with respect to the inclusion

order.

In a poset (and hence also in a lattice), a chain is defined as a subset of totally
ordered elements. The length of a chain is its cardinality minus one. The Jordan-
Dedekind condition requires that all maximal chains between the same elements have
equal length. If a lattice is distributive (i.e., x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all
x, y, z in the lattice) and finite, then it satisfies the Jordan-Dedekind condition.

Since the meet and join of weak, medium and strong period sets correspond to
set intersection and set union, we have the following corollary.

Corollary 17. The lattices (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are all distributive and

thus satisfy the Jordan-Dedekind condition.
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Let Ψn be the set of all total autocorrelations of length n. We will now show that
Ψn is also a lattice with respect to product order (i.e., u ≤ v if and only if ui ≤ vi for
all indices i) using the results for the individual families of period sets.

Theorem 18. (Ψn,≤) is a lattice with respect to product order.

Proof. To show that this is a lattice, we need to show that its meet (∧) and join
operations (∨) are well-defined. In this case, the meet will be the pointwise mini-
mum of two total autocorrelations, while the join will be the minimum of all total
autocorrelations greater than both. Formally,

u ∧ v = min(u, v) and u ∨ v =
∧

w∈Ψn s.t. w≥u,v

w.

Meet Let u and v be two total autocorrelations. Let Pw, Pm, P s and Qw, Qm, Qs

be the weak, medium and strong period sets of u and v respectively. We define
Rw = Pw ∩Qw, Rm = Pm ∩Qm and Rs = P s ∩Qs. Note that Rs ⊆ Rm ⊆ Rw ⊆
{0, . . . , n− 1} and
– 0 ∈ P s ∩Qs = Rs,
– for all p ∈ Rw = Pw ∩Qw we have p ≥ n/2 =⇒ p ∈ P s ∩Qs = Rs,
– p ∈ Rm = Pm ∩ Qm if and only if for all k ∈ N with kp ∈ {0, . . . , n − 1} we
have kp ∈ Pw ∩Qw = Rw, and

– p ∈ Rs = P s ∩Qs if and only if for all k ∈ N with kp ∈ {0, . . . , n− 1} we have
kp ∈ P s ∩Qs = Rs.

Therefore there exists a degenerate string with weak, medium and strong period
sets Rw, Rm and Rs respectively. Since we are taking intersections of the individual
period sets, the corresponding total autocorrelation is the minimum of u and v.

Join Let u and v be two total autocorrelations. The join is the minimum of the
autocorrelations greater than both u and v. Note that the minimum of all greater
or equal autocorrelations is greater or equal than both u and v and not greater
than any autocorrelation w ≥ u, v. Observe that this join is well-defined since
there is always at least one autocorrelation greater than or equal to both (namely
3n) and that the join is an autocorrelation as well (because it is the meet of
autocorrelations).

We conclude that (Ψn,≤) is a lattice.

6 Population of autocorrelations

In this section we will give formulae to compute the population of autocorrelations
of degenerate strings, in the case ∆ = P(Σ) \ {∅}. The population of an autocor-
relation (resp. period set) is defined as the number of degenerate strings with this
autocorrelation (resp. period set). We will follow the work of Blanchet-Sadri et al. [3],
who compute the population number of partial words using graph theory. However,
instead of looking at graph colourings, we look at independent sets to account for
arbitrary sets of letters at each position of the degenerate string. We will first give
the formulae for weak periods, and then explain how these can be adapted to find the
population of medium periods. Finally, we discuss the case of strong periodicity and
give an analogous hypergraph formulation to illustrate our difficulty in generalizing
the result.
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6.1 Weak and medium period sets

We are given a set P ⊆ {0, 1, . . . , n − 1} and would like to compute how many
degenerate strings there are over Σ with weak (resp. medium) period set P .

We define a graph on the set of positions {0, 1, . . . , n−1}, with an edge connecting
two vertices if and only if they differ by a period p ∈ P . We will first compute how
many strings there are that have these periods (and possibly more periods). This is
the number of ways we can assign subsets of Σ to the vertices such that
(a) no vertex is assigned the empty set, and
(b) the sets assigned to any two adjacent vertices have non-empty intersection.
We will first count the number of sets satisfying property (b) using the inclusion-
exclusion principle. For each subgraph H we compute how many assignments there
are where all pairs of adjacent vertices have no letter in common. For each letter there
are i(H) ways to assign it, where i(H) is the number of independent sets in H . This
gives i(H)|Σ| ways in total for the subgraph. There are 2(|V (G)|−|V (H)|)·|Σ| assignments
for the rest of G. The number of assignments where every pair of adjacent positions
has a letter in common — those satisfying property (b) — is thus

∑

H⊆G

(−1)|E(H)|2(|V (G)|−|V (H)|)·|Σ|i(H)|Σ|.

Now, if every pair of adjacent vertices has a letter in common, all non-isolate ver-
tices are assigned at least one letter. The isolate vertices are completely independent
however, so we need to adjust for the chance of them being assigned the empty set,
as this would result in a hollow string. Let I(G) be the number of isolated vertices
of G. By construction of the graph I(G) = max(2 · pmin − n, 0), where pmin is the
smallest non-zero period in P (and n if it has no non-zero period). Removing the
hollow strings we get

(

2|Σ| − 1

2|Σ|

)I(G)

·
∑

H⊆G

(−1)|E(H)|2(|V (G)|−|V (H)|)·|Σ|i(H)|Σ|

degenerate strings satisfying properties (a) and (b). This number contains all strings
that have the given period set P as a subset of their period set. Thus to get the precise
period, we must subtract bigger period sets using the inclusion-exclusion principle.

∑

P⊆Q∈Ωn

(−1)|Q|−|P |
(

2|Σ| − 1

2|Σ|

)I(GQ)

·
∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i(H)|Σ|

Here Ωn is the set of all period sets and differs between the weak and medium cases.

6.2 Strong period sets

For strong periodicity, we can use the same technique. However, now we want that
all positions with the same index modulo p have a letter in common. To model this,
we can use the hypergraph G = (V,E), where V = {0, . . . , n − 1} and E = {{j ∈
{0, . . . , n− 1} | j ≡ i mod p} | p ∈ P, i ∈ {1, . . . , p}}.

We want to assign symbols to vertices such that for each hyperedge there exists
a letter, which is in all symbols. Here things get more complex: if we want to use the
inclusion-exclusion principle, we need to count the number of ways the constraints
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on a certain set of hyperedges are violated. That is, for each such hyperedge and
each letter, we do not want to assign the letter to all its vertices. Equivalently, the
non-assigned vertices cover the hyperedges. Thus, if we define we define i′(H) to be
the number of vertex covers (also known as transversals) of H , then we can apply the
same formula.

∑

P⊆Q∈Ωs
n

(−1)|Q|−|P |
(

2|Σ| − 1

2|Σ|

)I(GQ)
∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i′(H)|Σ|

Remark: Since Ωm
n = Ωs

n for any n ≥ 1, and some degenerate strings have a different
medium and strong period sets, the population of a given period set should differ in
medium and strong case. This is not the case for partial strings.

6.3 Total autocorrelations

To find the population of a total autocorrelation, we can use the same technique. Here,
we choose the graph to be (V,E), where V = {0, . . . , n− 1} and E = Ew ∪Em ∪Es,
where Ew, Em and Es are the (hyper)edge sets corresponding to the weak, medium
and strong period sets as defined above. The formula follows analogously.

∑

P⊆Q∈Ψn

(−1)|Q|−|P |
(

2|Σ| − 1

2|Σ|

)I(GQ)
∑

H⊆GQ

(−1)|E(H)|2(|V (GQ)|−|V (H)|)·|Σ|i′(H)|Σ|

Remark: Note that these formulas are costly to compute. However, if we want
to compute multiple populations, we can obtain slight speed ups using dynamic pro-
gramming and memoization. For example, we can compute the number of independent
sets i(H), in terms of the number of independent sets of its subgraphs.

7 Future Work

In future work, we would like to explore how the concept of periodicity translates
from degenerate strings to different families of languages. In particular, we would like
to generalize our definitions to apply to any language, i.e., any set of strings. We want
to investigate which combinatorial results carry over to this more general setting, and
if not, which additional conditions must be met.

Moreover, we are interested in studying the algorithmic aspects of the periodicity
of languages. One question would be the complexity of determining period sets of
degenerate strings; while naïve algorithms are already close to optimal, as shown
by the lower bound proven in [14], there might be room for improvement in certain
cases, such as the restriction of the alphabet size. A second area of interest is the
application of periodicity to matching algorithms on degenerate strings. Similarly
to how periodicity is applied to the Knuth-Morris-Pratt algorithm for matching in
classical strings, it may be possible to carry over the same concepts to degenerate
string matching using our defined terminology for periodicity.
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A More about lattices

In this appendix, we prove that Ωw
n , Ω

m
n and Ωs

n lattices under set intersection and
set union, and hence satisfy the Jordan-Dedekind condition. Before we start, we first
review some important concepts. We start by recalling the definition of meet and join
in terms of posets (partially ordered sets).

Definition (Meet and join). Given a poset (A,≤) and x, y ∈ A. We say m is the
meet (greatest lower bound or infimum) of x and y denoted by x ∧ y, if m satisfies
the following conditions.
1. m ∈ A
2. m ≤ x and m ≤ y
3. For all w ∈ A, if w ≤ x and w ≤ y, then w ≤ m.
We say j is the join (least upper bound or supremum) of x and y denoted by x∨ y, if
j satisfies the following conditions.
1. j ∈ A
2. x ≤ j and y ≤ j
3. For all w ∈ A, if x ≤ w and y ≤ w, then j ≤ w.

Definition (Lattice). Poset (A,≤) is a lattice if and only if all x, y ∈ A have both
a meet and join.

Let Ωw
n , Ωm

n and Ωs
n denote the families of weak, medium and strong period sets.

In this section, we show that Ωw
n , Ω

m
n and Ωs

n are all lattices partially ordered by
inclusion.

Theorem 16. (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are lattices with respect to the inclusion

order.
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Proof. To show that these posets are lattices, we need to show that their meet and join
operations are well-defined. Specifically, since we order their elements with respect to
inclusion, we need to show that Ωw

n , Ω
m
n and Ωs

n are closed under intersection and
union (conditions 2 and 3 are trivially met).
Weak Let U, V ∈ Ωw

n be two weak period sets. Then 0 ∈ U ⊆ {0, . . . , n − 1}
and 0 ∈ V ⊆ {0, . . . , n − 1}. It follows that 0 ∈ U ∪ V ⊆ {0, . . . , n − 1} and
0 ∈ U ∩ V ⊆ {0, . . . , n − 1}. Thus U ∪ V ∈ Ωw

n and U ∩ V ∈ Ωw
n . We conclude

that (Ωw
n ,⊆) is a lattice.

Medium Let U, V ∈ Ωm
n be two medium period sets. Equivalently, U and V are two

subsets of {0, . . . , n− 1} containing 0 and closed under multiplication. It follows
that U ∩ V and U ∪ V also contain 0 and are closed under multiplication. Thus
U ∪ V ∈ Ωm

n and U ∩ V ∈ Ωm
n . We conclude that (Ωm

n ,⊆) is a lattice.
Strong Since Ωs = Ωm, the poset of strong period sets (Ωs

n,⊆) also form a lattice
under ordering by inclusion.

We conclude that (Ωw
n ,⊆), (Ωm

n ,⊆) and (Ωs
n,⊆) are all lattices with respect to the

inclusion order.


