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Introduction

DFA-based String Recognition: The problem

Given an automaton M(Q,V , δ,F , s0), where:
Q is the set of states;
V the alphabet;
δ the transition function;
F ⊆ Q the set of final states;
s0 the start state;
Such that L(M) is the language modelled by M with L(M) ⊆ V∗;
And s, an input string (s ∈ V∗)
Check whether s ∈ L(M)
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Introduction

Implementation:

Hardcoding:
Transition table embedded in the algorithm

Useful for automata of relatively small size (in the order of hundreds)
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Introduction

Implementation:

Table-driven:
Rows represent states and columns alphabet symbols

Performance determined by the pattern of accesses in the table

Efficient if rows are accessed contiguously

High probability of cache misses if random pattern of accesses
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Introduction

• Example of TD DFA-based Recognizer:

a b c d
0 1 3 -1 -1
1 2 -1 -1 -1
2 3 -1 -1 0
3 -1 -1 2 -1

The string s1 = aaaa is processed faster than the string s2 = bcdc
For s1 rows are access contiguously, hence high probability of cache hits
High probability of cache misses for s2

• Problem: explore various strategies aimed at lowering probability of
cache misses during acceptance testing
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Implementation Strategies

• Dynamic State Allocation (DSA)

A dynamically allocated state is created in memory for acceptance testing
Copy into a block of memory first encountered states
Subsequent reference to such state is made via the new piece of memory

• Example: accepting the string bcdc

a b c d
0 1 3 -1 -1
1 2 -1 -1 -1
2 3 -1 -1 0
3 -1 -1 2 -1

• Will result in:
a b c d

0 1 3 -1 -1
3 -1 -1 2 -1
2 3 -1 -1 0
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Implementation Strategies

• Dynamic State Allocation (DSA)

– More details are provided in PSC’05

– Relies on the use of a natural number D

∗ Determines the extent of the dynamic allocation of memory blocks

D = 0 ≡ no DSA strategy
D = |Q| ≡ the strategy is unbounded
D < |Q| ≡ the strategy is bounded
May require replacement policy when threshold is reached
· Direct mapping policy
· LRU policy
· Associative mapping
· No policy
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Implementation Strategies

• State pre-Ordering (SpO)

Very low percentage of visited states compared to the overall DFA size
Frequently visited states scattered throughout the transition table

◦ Reorganize δ such that frequently accessed states are grouped together
• Reduces the probability of cache misses
◦ Reorders the DFA’s original placement of states in the transition table

Relies on user’s input:
◦ A priori reasoning
◦ Empirical analysis of the history of states visits in prior runs
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Implementation Strategies

• State pre-Ordering (SpO)

A boolean argument P is passed to the function such that:
P = F ≡ SpO strategy not used
P = T ≡ preprocessing operation required for reordering
◦ Access to state i is done via an array p[0..n]

◦ The ith entry is the new row of i in the transition table

• Example: P = T, p[0..3] = {0, 3, 2, 1}
a b c d

0 1 3 -1 -1
1 2 -1 -1 -1
2 3 -1 -1 0
3 -1 -1 2 -1

• Before acceptance testing, the table is reordered into:
a b c d

0 1 3 -1 -1
1 -1 -1 2 -1
2 3 -1 -1 0
3 2 -1 -1 -1
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Implementation Strategies

• Allocated Virtual Caching (AVC)

Treats a portion of the memory that holds the transition table as a cache

The first V rows of the table acts as a virtual cache
◦ Virtually acts as the hardware cache memory (Replacement policies)

Hope to enhance cache’s spatial and temporal locality of reference
◦ Individual states are transferred into the cache as they are visited
◦ Virtual cache limited in size
◦ Reference to a state out of the cache when it is full requires replacement
◦ The cache initially is regarded as empty
◦ Use of a pointer to manage cache utilization
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Implementation Strategies

• Allocated Virtual Caching (AVC)

Example:
V = 1 (cache size);
c = {0, 1}(states initially in cache)
l = 0 (pointer);
i = {F,F,F,F } (cache indicator)
q = 0 (start state);
m = {0, 1, 2, 3} (current states’ position)
s = bcdc (string to be tested)

The table initially:
a b c d

0 1 3 -1 -1
1 2 -1 -1 -1
2 3 -1 -1 0
3 -1 -1 2 -1
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Implementation Strategies

• Allocated Virtual Caching (AVC)

We encounter the symbol b
l = 0 ≤ V
q = 0
cl = q = 0

a b c d
0 1 3 -1 -1
1 2 -1 -1 -1
2 3 -1 -1 0
3 -1 -1 2 -1

Acceptance testing:

l = l + 1 = 1

c = {0, 1}
i = {T,F,F,F }
m = {0, 1, 2, 3}
q = δ(q, b) = 3
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Implementation Strategies

• Allocated Virtual Caching (AVC)

We encounter the symbol c
l = 1 ≤ V
q = 3
cl = 1 6= q = 3

a b c d
0 1 3 -1 -1
3 -1 -1 2 -1
2 3 -1 -1 0
1 2 -1 -1 -1

Acceptance testing:

l = l + 1 = 2 > V (the cache is full)

c = {0, 3}
i = {T,F,F,T }
m = {0, 3, 2, 1}
q = δ(mq, c) = 2
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Implementation Strategies

• Allocated Virtual Caching (AVC)

We encounter the symbol d
l = 2 > V
q = 2
iq = F
The cache is full:
◦ Replacement policy to remove a state from the cache;
◦ Do acceptance testing without any further replacement
The other iterations are easy to follow
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Characterization of TD Recognizers

• Definition:

A string recognizer of a DFA is an algorithm that relies
on the DFA’s transition function to determine whether a
string is part of the language modelled by the DFA or not.
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Characterization of TD Recognizers

• Definition:

Given an input string s, an automaton M(Q,V , δ,F , s0),
the recognizer scans each symbol of s and returns a boolean B = {T,F }

The definition is somewhat general
No restriction on how the recognizer would be implemented
◦ Need to introduce the strategies previously described

We consider a recognizer as a function ρ that accepts as arguments s, δ
and the respective strategy variables, and returns a boolean:
◦ ρ is the denotational semantics of the recognizer
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Characterization of TD Recognizers

• Formalism:

Specification of ρ in functional terms
Assume T = Q× V (transition relation)

ρ : T × N× B× N× V∗ 9 B

ρ(δ,D, P, V, s) =

{
T if s ∈ L(M)
F if s /∈ L(M)

where:
0 ≤ D ≤ |Q| (DSA strategy);

P ∈ B (SpO strategy);
0 ≤ V < |Q| (AVC strategy).
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The various TD Algorithms

• Various instances:

DSA Strategy: The variable D ∈ {0, d, |Q|}; d < |Q|
SpO Strategy: The variable P ∈ {T,F }
AVC Strategy: The variable V ∈ {0, v}; v < |Q|

Resulting in 3× 2× 2 = 12 different algorithms

The algorithms:
Combination Active strategy Name
(0, F, 0) None (core TD) t
(d, F, 0) bounded DSA tb1

(n, F, 0) unbounded DSA tu1

(0, T, 0) SpO t2
(0, F, v) AVC t3
(0, T, v) SpO and AVC t23
(d, T, 0) bounded DSA and SpO tb12

(d, T, v) bounded DSA, SpO and AVC tb123

(d, F, v) bounded DSA and AVC tb13

(n, T, 0) unbounded DSA and SpO tu12

(n, T, v) unbounded DSA, SpO and AVC tu123

(n, F, v) unbounded DSA and AVC tu13



School of ComputingSchool of ComputingJJ J N I II 20/39JJ J N I II 20/39

The various TD Algorithms

• The core TD algorithm

Takes as input the transition function δ, the string s and returns a boolean

Algorithm 0.1(The core table-driven recognizer)

proc t(δ, s)
; q, j := 0, 0
do (j < s.len) ∧ (q ≥ 0) →

q, j := δ(q, sj), j + 1
od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The bounded TD-DSA Algorithm (tb1)

The strategy argument D < |Q|
◦ Unbounded counterpart was discussed in PSC’05
May involve state replacement
when reference is made to a state that has not yet been visited
provided the allocated dynamic space is full
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The various TD Algorithms
• The bounded TD-DSA Algorithm (tb1)

Algorithm 0.2(The bounded TD-DSA recognizer)

proc tb1(δ, D, A, Z, s)
; m[0..n), B, q, j, p := −1, A, 0, 0, 0
;do (j < s.len ∧ q ≥ 0) →

if (mq = −1) → { state not dynamically allocated}
if (p < D) →

; mq, dp := p, malloc(B, Z)
; dp,[0..a), p, B := δq,[0...a), p + 1, B + Z
; q := dp,sj

[] (p ≥ D) →
r := MOD(q, D){ remainder in the division of q by D}
; mq := r
; i := search(m, r)
; mi := −1
; dr,[0..a), q := δq,[0..a), dr,sj

f i
[] mq 6= −1 → skip{ state dynamically allocated}
f i
; q, j := dmq,sj , j + 1

od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The TD-SpO algorithm

Additional input: auxiliary array p[0..n]

pi is the new row of δ where ith row of δ should be moved

reorder(δ, p) recorders the DFA’s states according to p’s entries
Access to a state q is made indirectly via p:
i.e. q = δ(pp, sj)



School of ComputingSchool of ComputingJJ J N I II 24/39JJ J N I II 24/39

The various TD Algorithms

• The TD-SpO algorithm

Algorithm 0.3(The TD-SpO recognizer)

proc t2(δ, p, s)
; reorder(δ, p)
; q, j := 0, 0
do (j < s.len) ∧ (q ≥ 0) →

q, j := δ(pq, sj), j + 1
od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The TD-AVC algorithm

V : the size of the virtual cache
m[0..n]: holds current state position in δ
c[0..V ]: holds states currently in the virtual cache
i[0..n]: holds information indicting whether a state is in cache or not
l: cache line controller. l = 0 ⇒ cache is empty; l ≥ V ⇒ cache is full
if l ≤ V
Acceptance testing if the current state matches the current cache line
Otherwise, invoke swd(δ[mq], δ[mcl

]) before acceptance testing
if l > V
Use replacement policy before acceptance testing
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The various TD Algorithms
• The TD-AVC algorithm

Algorithm 0.4( Table-driven based on allocated virtual caching)

proc t3(δ, V, s)
; q, j, p, l := 0, 0, 0, 0
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
do (j < s.len) ∧ (q ≥ 0) →

if (iq 6= −1) → skip
[] (iq = −1) ∧ (l < V ) →

if q = cl → skip
[] q 6= cl →

p := cl

; swd(δ[mq], δ[mp])
; ip, cl := −1, q

f i
; iq, l := 0, l + 1

[] (iq = −1) ∧ (l ≥ V ) →
p := MOD(mq, V )
swd(δ[mq], δ[mcp ])
iq, icp , cp := 0,−1, q

f i
; q, j := δ(mq, sj), j + 1

od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The TD-SpO-AVC algorithm

Relies on both SpO and AVC
A naïve approach:
◦ Use reorder(δ, p) to reorder the automaton’s states (SpO)
◦ Perform acceptance testing using AVC approach
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The various TD Algorithms

• The TD-SpO-AVC algorithm

Algorithm 0.5(The TD-SpO-AVC algorithm)

proc t23(δ, p, V, s)
; reorder(δ, p)
; q, j, p, l := 0, 0, 0, 0
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
do (q < s.len) ∧ (q ≥ 0) →

tdavc(δ, p, m, c, i, l, V, j, q, s)
od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The bounded and unbounded TD-DSA-AVC algorithm

Combination of the AVC with either the bounded/unbounded DSA
A simple policy:
◦ The first k states of the DFA are cacheable with 0 < V < k < n
◦ The remaining n− k states are processed using bounded DSA
◦ Test whether the state is cacheable or not.
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The various TD Algorithms

• The bounded and unbounded TD-DSA-AVC algorithm

Algorithm 0.6(The unbounded TD-DSA-AVC algorithm)

proc tu13(δ, k, A, Z, s)
; q, j, p, l, B := 0, 0, 0, 0, A
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
;do (j < s.len ∧ q ≥ 0) →

if q < k → tdavc(δ,m, c, i, l, V, j, q, s)
[] q ≥ k → utddsa(δ, A, Z,B, q, j, s)
f i

od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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The various TD Algorithms

• The bounded and unbounded TD-SpO-DSA-AVC algorithm

– It is a combination of:

SpO strategy;
Bounden or Unbounded DSA strategy and
AVC strategy.

– A simple policy for the unbounded TD-SpO-DSA-AVC implementa-
tion:

∗ reorder the states in δ based on entries of an auxiliary array p[0..n]

∗ Apply the unbounded TD-DSA-AVC procedure discussed in the
previous slide

∗ Access to states information is done indirectly via p
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The various TD Algorithms

• The bounded and unbounded TD-SpO-DSA-AVC algorithm

Algorithm 0.7(The unbounded TD-SpO-DSA-AVC algorithm)

proc tu123(δ, p, s, c, k, d, A, Z)
; reorder(δ, p)
{ Initializations }
;do (q < s.len ∧ q ≥ 0) →

if q < k → tdavc(δ, p, m, c, i, l, V, j, q, s)
[] q ≥ k → utddsa(δ, p, A, Z, B, q, j, s)
f i

od
if q < 0 → {return F} [] q ≥ 0 → {return T} f i
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Experimental Results
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Experimental Results
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Experimental Results
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Conclusion and Future Work

• We have investigated various ways of improving the performance of
DFA-based string processors

– A 6-arguments function provided the denotational semantics of a
string recognizer

– Instantiations of the arguments resulted in 12 different table-driven
DFA-based string recognizers

– Some algorithms outperformed the core TD algorithm for strings
mae of long sequences

– Some algorithm were not of interest due to the replacement policy
used during acceptance testing

As a matter of future work:

– Need to explore in dept the replacement policy in used

– need to test the algorithm on real life data


