Dynamic Burrows-Wheeler Transform Prague Stringology Conference 2008 Mikaël Salson, Thierry Lecroq, Martine Léonard, Laurent Mouchard LITIS and University of Rouen, France 1 September 2008 ## Burrows-Wheeler Transform (1994) #### What is it? - Permutation of a text, that allows better compression. - Closeness to a widely-used index (suffix array). - Recent interest in compressed indexing. #### Question • What happens to the transform if the text changes? ### **Notations** ### Cyclic shifts A cyclic shift of a text T[0..n], of order i is denoted by $T^{[i]} = T[i..n-1]T[0..i]$. The previous cyclic shift of $T^{[i]}$ is $T^{[i-1]}$. ## From T = CTCTGC\$ to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | uı | nso | rtec | 1 T | [i] | | |---|----|----------|-----|--------|-----|-----|----| | 0 | С | Т | С | Т | G | С | \$ | | 1 | Т | C | Т | G | C | \$ | C | | 2 | C | Т | G | G
C | \$ | C | Т | | 3 | Т | G | C | \$ | C | Т | C | | 4 | G | C | \$ | C | Т | C | Т | | 5 | C | T G C \$ | C | Т | C | Т | G | | 6 | \$ | C | Т | C | Т | G | C | ## From T = CTCTGC\$ to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | Unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T G \$ C T C T C | | | | | | | | | | | |---|----|--|----|----|----|----|----|--|--|--|--|--| | 0 | C | Т | C | Т | G | C | \$ | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | C | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | | | | F | | | | | | L | | |---|----|----|-----|----|-----------|----------------------------|--------------|---| | | ↓ | 9 | ort | ed | $T^{[i]}$ |] | \downarrow | | | 0 | \$ | С | Т | С | Т | G | С | 6 | | 1 | C | \$ | C | Т | C | Т | G | 5 | | 2 | C | Т | C | Т | G | C | \$ | 0 | | 3 | C | Т | G | C | \$ | C | Т | 2 | | 4 | G | C | \$ | C | Т | C | Т | 4 | | 5 | Т | C | Т | G | C | \$ | C | 1 | | 6 | Т | G | Ċ | \$ | C | G
T
C
C
C
T | C | 3 | | | | | | | | | | | L: Burrows-Wheeler Transform of T [C G \$ T T C C] ## From T = CTCTGC\$ to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | uı | ารดเ | rtec | 1 T | [i] | | | | | | | |---|----|---|------|------|-----|-----|---|--|--|--|--|--| | 0 | С | unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T C \$ C T C T G C \$ C T C T C \$ C T C T G C \$ C T C T C \$ C T C T G | | | | | | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | C | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | С | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | | L: Burrows-Wheeler Transform of T [C G \$ T T C C] ## From T = CTCTGC\$ to BWT, SA and ISA | | | Unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T | | | | | | | | | | | | |---|----|---|----|----|----|----|----|--|--|--|--|--|--| | 0 | С | Т | С | Т | G | С | \$ | | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | | 2 | С | Т | G | C | \$ | C | Т | | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | | 5 | С | \$ | C | Т | C | Т | G | | | | | | | | 6 | \$ | С | Т | С | Т | G | С | | | | | | | | | F | | | | | | L | SA | |---|----|----|----|----|--------------|----|--------------|----| | | ↓ | | | ed | $T^{[i]}$ |] | \downarrow | 1 | | 0 | \$ | С | Т | С | Т | G | С | 6 | | 1 | C | \$ | C | Т | C | Т | G | 5 | | 2 | С | Т | C | Т | G | C | \$ | 0 | | 3 | С | Т | G | C | \$ | C | Т | 2 | | 4 | G | C | \$ | C | G
\$
T | C | Т | 4 | | 5 | Т | C | Т | G | C | \$ | C | 1 | | 6 | Т | G | C | \$ | | Т | C | 3 | Burrows-Wheeler Transform of T [C G \$ T T C C] SA: Suffix Array of T ``` [6 5 0 2 4 1 3] ``` ## From T = CTCTGC\$ to BWT, SA and ISA | | | unsorted $\mathcal{T}^{[i]}$ | | | | | | | | | | | |---|----|---|----|----|----|----|---|--|--|--|--|--| | 0 | С | unsorted T[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T | | | | | | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | С | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | | | | <i>F</i>
 ↓ | 9 | sort | ed | T [i |] | <i>L</i> ↓ | <i>SA</i>
↓ | |---|-----------------|----|------|--------|--------------|----|------------|----------------| | 0 | \$ | С | Т | C
T | Т | G | C | 6 | | 1 | C | \$ | C | Т | C | Т | G | 5 | | 2 | С | Т | C | Т | G
\$
T | C | \$ | 0 | | 3 | C | Т | G | C | \$ | C | Т | 2 | | 4 | G | C | \$ | C | Т | C | Т | 4 | | 5 | Т | C | Т | G | C | \$ | C | 1 | | 6 | Т | G | C | \$ | C | Т | C | 3 | SA: Suffix Array of T $$L[i] = T[(SA[i] - 1) \bmod |T|]$$ ## From T = CTCTGC\$ to BWT, SA and ISA | | | unsorted T ^[i] C T C T G C \$ T C T G C \$ C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T G S C T C T G | | | | | | | | | | | |---|----|---|----|----|----|----|----|--|--|--|--|--| | 0 | С | Т | С | Т | G | С | \$ | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | С | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | | | | F | 9 | sort | ed | T [i |] | L
↓ | <i>SA</i> | |---|----------|----|------|----|--------------|----|--------|-----------| | 0 | \$ | С | Т | C | Т | G | C | 6 | | 1 | C | \$ | • | | • | Т | G | 5 | | 2 | С | Т | C | Т | G
\$
T | C | \$ | 0 | | 3 | C | Т | G | C | \$ | C | Т | 2 | | 4 | G | C | \$ | C | Т | C | Т | 4 | | 5 | Т | C | Т | G | C | \$ | C | 1 | | 6 | Т | G | C | \$ | С | Т | C | 3 | SA: Suffix Array of T Burrows-Wheeler Transform of $$T$$ [C G \$ T T C C] Suffix Array of T [6 5 0 2 4 1 3] Inverse Suffix Array of T [2 5 3 6 4 1 0] $$L[i] = T[(SA[i] - 1) \bmod |T|]$$ ## From T = CTCTCC\$ to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | unsorted $\mathcal{T}^{[i]}$ | | | | | | | | | | |---|----|------------------------------|------------------------|----|----|----|----|--|--|--|--| | 0 | С | Т | C
T
G
C
\$ | Т | G | С | \$ | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | 2 | C | Т | G | C | \$ | C | Т | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | L: Burrows-Wheeler Transform of T [C G \$ T T C C] SA: Suffix Array of T $$L[i] = T[(SA[i] - 1) \bmod |T|]$$ ## From T = CTCTGC to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | unsorted $\mathcal{T}^{[i]}$ | | | | | | | | | | | |---|----|--|----|----|----|----|---|--|--|--|--|--| | 0 | С | C T C T G C \$ T C T G C \$ C T C G C \$ C T C T C \$ C T C T | | | | | | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | С | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | С | Т | G | C | | | | | | L: Burrows-Wheeler Transform of $T \in [CG TTCC]$ SA: Suffix Array of T $$L[i] = T[(SA[i] - 1) \bmod |T|]$$ ## From T = CTGGC\$ to BWT, SA and ISA #### Burrows-Wheeler Transform and Suffix Array | | | unsorted $\mathcal{T}^{[i]}$ | | | | | | | | | | |---|----|------------------------------|------------------------|----|----|----|----|--|--|--|--| | 0 | С | Т | C
T
G
C
\$ | Т | G | С | \$ | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | 2 | С | Т | G | C | \$ | C | Т | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | 5 | C | \$ | C | | C | Т | G | | | | | | 6 | \$ | C | Т | С | Т | G | C | | | | | L: Burrows-Wheeler Transform of T [C G \$ T T C C] SA: Suffix Array of T $$L[i] = T[(SA[i] - 1) \bmod |T|]$$ #### What if Lonly have access to BWT? Can I recover T Recovering ${\it T}$ is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if Lonly have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if Lonly have access to BWT? Can I recover T Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if Lonly have access to BWT? Can I recover T Recovering ${\it T}$ is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if Lonly have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### What if I only have access to BWT? Can I recover T Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | |---|----|----|----|-----------------------|----|------------------|----------------| | | ↓ | 9 | | ed | |] | \downarrow | | 0 | \$ | C | Т | C | Т | G | C ^K | | 1 | С | \$ | C | Т | C | Т | G/) | | 2 | С | Т | C | Т | G | C | \$4 | | 3 | С | Т | G | C | \$ | C | T_{λ} | | 4 | G | C | \$ | C
T
T
C
C | Т | C | ΤŴ | | 5 | Т | C | Т | G | C | \$ | C∜ | | 6 | Т | G | C | \$ | C | Т | C∜ | | | | | C | Γ | GC | ^\$ ₌ | = T | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | |---|----|----|------|-------------|-----------|-------|--------------| | | ↓ | 9 | sort | ed | $T^{[i]}$ | l | \downarrow | | 0 | \$ | C | Т | C | Т | G | С | | 1 | С | \$ | C | C
T
T | C | Т | G | | 2 | С | Т | C | Т | G | C | \$ | | 3 | C | Т | G | C | \$ | C | Т | | 4 | G | C | \$ | C
C
G | Т | C | T, | | 5 | Т | C | Т | G | C | \$ | C) | | 6 | Т | G | C | \$ | C | Т | C√ | | | | | C | C | GC | ٠\$ - | - T | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----|-----------|-------|---------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ |] | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | C | 1 | | 1 | С | \$ | C | Т | C | Т | G√ | | | 2 | С | Т | C | Т | G | C | \$ | | | 3 | С | Т | G | C | \$ | C | Т | | | 4 | G | C | \$ | C | Т | C | Т | | | 5 | Т | C | Т | G | C | \$ | C | | | 6 | Т | G | C | \$ | C | Т | * T T C C = T | | | | | | CI | C | GC | ٦\$ - | _ T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if Lonly have access to BWT? Can Lirecover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----|----------------|-------|--------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ | l | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | С | 1 | | 1 | С | \$ | C | Т | C | Т | G | 4 | | 2 | С | Т | C | Т | G | C | \$ \ | | | 3 | С | Т | G | C | \$ | C | T) | | | 4 | G | C | \$ | C | Т | C | T√ | | | 5 | Т | C | Т | G | C | \$ | C | | | 6 | Т | G | C | \$ | T C G \$ T C C | Т | C | | | | | | C | C | GC | `\$ = | = T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----|--------------|-------|--------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ | l | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | С | 1 | | 1 | С | \$ | C | Т | C | Т | G | 4 | | 2 | С | Т | C | Т | G | C | \$ | | | 3 | С | Т | G | C | \$ | C | Т | | | 4 | G | C | \$ | C | T C G \$ T C | C | T, | 6 | | 5 | Т | C | | | | | C) | | | 6 | Т | G | C | \$ | С | Т | C√ | | | | ' | | C | C | GC | ٠\$ - | _ T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if Lonly have access to BWT? Can Lirecover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----|------------------------|----|--------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ |] | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | C | 1 | | 1 | C | \$ | C | Т | C | Т | G | 4 | | 2 | С | Т | C | Т | G | C | \$ | | | 3 | С | Т | G | C | \$ | C | T, | | | 4 | G | C | \$ | C | T
C
G
\$
T | C | T^{\wedge} | 6 | | 5 | Т | C | Т | G | C | \$ | C | | | 6 | Т | G | C | \$ | C | Т | $c^{/}$ | 3 | | | ' | | C | | $\Gamma C C$ | | | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----------|----------------|------|-----------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ |] | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | С | 1 | | 1 | C | \$ | C | Т | C | Т | G | 4 | | 2 | С | Т | C | Т | G | C | \$ | | | 3 | С | Т | G | C | \$ | C | T_{\setminus} | 5 | | 4 | G | C | \$ | C | Т | C | T) | 6 | | 5 | Т | C | Т | G | C | \$ | C√ | | | 6 | Т | G | C | \$ | T C G \$ T C C | Т | C | 3 | | | ' | | C | Γ | $\Gamma C C$ | -¢ - | _ T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|----|------------------------|----|--------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ | l | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | С | 1 | | 1 | С | \$ | C | Т | C | Т | G | 4 | | 2 | С | Т | C | Т | T
C
G
\$
T | C | \$ < | | | 3 | C | Т | G | C | \$ | C | Т | 5 | | 4 | G | C | \$ | C | Т | C | Т | 6 | | 5 | Т | C | Т | G | C | \$ | C^{\prime} | 2 | | 6 | Т | G | C | \$ | C | Т | C | 3 | | | ' | | C | | | | - T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in F from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|----|----|------------------------|----|--------------|----| | | ↓ | | | | $T^{[i]}$ | | \downarrow | LF | | 0 | \$ | C | Т | C | Т | G | CK | 1 | | 1 | C | \$ | C | Т | C | Т | G) | 4 | | 2 | С | Т | C | Т | C
G
\$
T
C | C | \$ | 0 | | 3 | С | Т | G | C | \$ | C | Т | 5 | | 4 | G | C | \$ | C | Т | C | Т | 6 | | 5 | Т | C | Т | G | C | \$ | C | 2 | | 6 | Т | G | C | \$ | C | Т | C | 3 | | | ' | | C | C | $\Gamma C C$ | Φ. | _ T | | #### Property - in *L* from position 0 to the position of $T^{[i]}$ as - in *F* from position 0 to the position of $T^{[i-1]}$. #### What if I only have access to BWT? Can I recover T? Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift. #### Example | | F | | | | | | L | | |---|----|----|------|-----|----------------|----------|--------------|----| | | ↓ | 9 | sort | ed | $T^{[i]}$ | l | \downarrow | LF | | 0 | \$ | С | Т | С | Т | G | C | 1 | | 1 | C | \$ | C | Т | C | Т | G | 4 | | 2 | C | Т | C | Т | G | C | \$ | 0 | | 3 | С | Т | G | C | \$ | C | Т | 5 | | 4 | G | C | \$ | C | Т | C | Т | 6 | | 5 | Т | C | Т | G | C | \$ | C | 2 | | 6 | Т | G | C | \$ | T C G \$ T C C | Т | C | 3 | | | | | C1 | rc1 | rgc | : | = <i>T</i> | | #### **Property** Since cyclic shifts are sorted, $T^{[i]}[n] = T[i-1]$ appears as many times - in L from position 0 to the position of T^[i] as - in F from position 0 to the position of T^[i-1]. #### So. L can be used instead of T L contains all the information that is needed for recovering the original T. $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ ### What is the impact of a single insertion of **G** at position $i=2^{\circ}$ | | ι | Unsorted CS of T C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T C \$ C T C T C | | | | | | | | | | | |---|----|--|----|----|----|----|----|--|--|--|--|--| | 0 | С | Т | С | Т | G | С | \$ | | | | | | | 1 | Т | C | Т | G | C | \$ | C | | | | | | | 2 | C | Т | G | C | \$ | C | Т | | | | | | | 3 | Т | G | C | \$ | C | Т | C | | | | | | | 4 | G | C | \$ | C | Т | C | Т | | | | | | | 5 | C | \$ | C | Т | C | Т | G | | | | | | | 6 | \$ | C | Т | C | Т | G | C | | | | | | | | | un | sort | ed | CS | of | T' | | |---|----|----|------|---------|----|----|----|----| | 0 | С | | | С | Т | G | | \$ | | 1 | Т | G | C | C
T | G | C | \$ | C | | 2 | G | C | Т | G | C | \$ | C | Т | | 3 | С | Т | G | C | \$ | C | Т | G | | 4 | Т | G | C | \$
C | C | Т | G | C | | 5 | G | C | \$ | C | Т | G | C | Т | | 6 | C | \$ | C | Т | G | C | Т | G | | 7 | \$ | C | Т | G | C | Т | G | C | $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 1: $T^{(j)}$ for all i > i + 1 Cyclic shifts where the inserted letter G appears after \$ and before L. $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ ## Stage 1: $T^{\prime [j]}$ for all i > i + 1 Cyclic shifts where the inserted letter G appears after \$ and before L. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 1: $T^{(j)}$ for all i > i+1 Cyclic shifts where the inserted letter G appears after \$ and before L. $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ ### Stage 1. T'[i] for all i > i + 1 Cyclic shifts where the inserted letter G appears after \$ and before L. ### Impact on M: none The respective ranking of these cyclic shifts is preserved. F: no direct modification. 1: no direct modification ### What are we observing? - |F|L cyclic shifts 0 \$ C \$CTGCTGC \leftarrow - 1 C G C\$CTGCTG ← - 2 C \$ CTCTGC\$ - 3 C T CTGC\$CT - 4 G T GC\$CTGCT ← - 5 T C TCTGC\$C - 6 T C TGC\$CTGC ← $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in *L*. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in *L*. # | F L | cyclic shifts 0 \$ C | \$CTGCTGC ``` 0 $ C $CTGCTGC 1 C G C$CTGCTG 2 C $ CTCTGC$ 3 C T CTGC$CT 4 G T GC$CTGCT 5 T C TCTGC$C 6 T C TGC$CTGC ``` ## How can we compute the position of the modification? We are looking for the position of $T^{'[3]}$ (corresponding to $T^{[2]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in *L*. ## ## How can we compute the position of the modification? We are looking for the position of $T^{[3]}$ (corresponding to $T^{[2]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 2: $T'^{[i+1]}$ The cyclic shift where the inserted letter G appears in *L*. ## Position of the previous cyclic In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$). $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ The cyclic shift where the inserted letter G appears in *L*. ## Position of the previous cyclic In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in *L*. ## Position of the previous cyclic In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in *L*. ## ## Position of the previous cyclic In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$). \rightarrow *LF*(3) = 5, we store 5 in *previous_cs*. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in L. ## Impact on *M*: substitution F: no direct modification. L: substitution T (stored) \rightarrow G. # What are we observing? F L cyclic shifts 0 \$ C \$CTGCTGC . C G C\$CTGCTG 2 C \$ CTCTGC\$ 4 G T GC\$CTGCT 5 T C TCTGC\$C 6 T C TGC\$CTGC $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ ## Stage 3. T'[i] The cyclic shift where the inserted letter G appears in *F*. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in F. ``` L cyclic shifts $ C SCTGCTGC C G C$CTGCTG 2 C $ CTCTGC$ 3 C G CTGC$CTG 4 G T GC$CTGCT 5 T C TCTGC$C T C TGC$CTGC ``` - We know the position of $T^{'[3]}$ (we have just modified it). - Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$. - That's what LF computes: the position of the previous cyclic shift! $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ The cyclic shift where the inserted letter G appears in F. ``` L cyclic shifts $ C SCTGCTGC C G C$CTGCTG C \hookrightarrow Second G in L 4 G T GC$CTGCT T C TCTGC$C T C TGC$CTGC ``` - We know the position of $T^{'[3]}$ (we have just modified it). - Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$. - That's what LF computes: the position of the previous cyclic shift! $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ The cyclic shift where the inserted letter G appears in F. ## cyclic shifts \$ C \$CTGCTGC C G C\$CTGCTG C \$ CTCTGC\$ 3 C G CTGC\$CTG 4 G T GC\$CTGCT 5 G T GCTGC\$CT ← T C TCTGC\$C C | TGC\$CTGC - We know the position of $T'^{[3]}$ (we have just modified it). - Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$. - That's what LF computes: the position of the previous cyclic shift! $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ ## Stage 3. T/[i] The cyclic shift where the inserted letter G appears in F. # $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 3. T'[i] The cyclic shift where the inserted letter G appears in F. ## Impact on M: insertion A new row starting with the inserted letter G and ending with the stored T is inserted F: inserted letter G. L: (stored) T. ## What are we observing? | | F | L | cyclic shifts
\$CTGCTGC | | |---|----|----|----------------------------|--------------| | 0 | \$ | C | \$CTGCTGC | | | 1 | C | G | C\$CTGCTG | | | 2 | C | \$ | CTCTGC\$ | | | 3 | C | G | CTGC\$CTG | | | 4 | G | Т | GC\$CTGCT | | | 5 | G | Т | GCTGC\$CT | \leftarrow | | 6 | Т | С | TCTGC\$C | | | 7 | Т | C | TGC\$CTGC | | $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. # $$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. # $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## How to reorder cyclic shifts? - Reordering from right to left (from j = i 1 downto 0) - Comparison between the actual position (value of previous_cs) and the position computed with LF. ## What are we observing? | | _ | , | 1 11 116 | |---|----|---------------|---------------| | | - | L | cyclic shifts | | 0 | \$ | C | \$CTGCTGC | | 1 | C | G | C\$CTGCTG | | 2 | C | \$ | CTGCTGC\$ | | 3 | C | G | CTGC\$CTG | | 4 | G | Т | GC\$CTGCT | | 5 | G | Т | GCTGC\$CT | | 6 | Т | С | TGCTGC\$C | | 7 | Т | \mathcal{C} | TGC\$CTGC | $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ``` 4 G T GC$CTGCT 5 G T GCTGC$CT 6 T C TGCTGC$C T'^{[1]} T C TGC$CTGC ``` $T^{\prime[1]}$ is at position *previous_cs* = 6. Is this the correct position for $T'^{[1]}$? LF can tell us! $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## What are we observing? ``` T'^{[1]} is at position previous_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5). ``` $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. # ``` T'^{[1]} is at position previous_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5). ``` $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ``` T'^{[1]} is at position previous_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5). ``` $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ``` T'^{[1]} is at position previous_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5). ``` $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 4: $T^{(i)}$ for all i < i Cyclic shifts where the inserted letter G appears after F and before \$. ## Reordering $T'^{[1]}$ $T'^{[1]}$ is at position 6 but should be at position 7. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## Stage 4: $T^{(i)}$ for all i < i Cyclic shifts where the inserted letter G appears after F and before \$. ## What are we observing? ## Reordering $T'^{[1]}$ $T'^{[1]}$ is at position 6 but should be at position 7. Before moving $T'^{[1]}$, we compute the actual position of $T'^{[0]}$ and store it in *previous_cs*. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ``` cyclic shifts 5 G T GCTGC$CT T C Second C in L. [1] T C TGC$CTGC ``` $T^{\prime[1]}$ is at position 6 but should be at position 7. Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ``` cyclic shifts c $CTGCTGC C G C$CTGCTG C \longrightarrow Second C in F. 3 C G CTGC$CTG 4 G T GC$CTGCT 5 G T GCTGC$CT 6 T C TGCTGC$C T'^{[1]} T C TGC$CTGC ``` $T^{\prime[1]}$ is at position 6 but should be at position 7. Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ``` 6 T C TGCTGC$C T'^{[1]} T C TGC$CTGC ``` $T'^{[1]}$ is at position 6 but should be at position 7. Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## What are we observing? ## Reordering $T^{\prime[1]}$ $T'^{[1]}$ is at position 6 but should be at position 7. Before moving $T'^{[1]}$, we compute the actual position of $T'^{[0]}$ and store it in *previous_cs*. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. # T C TGCTGC\$C $T'^{[1]}$ ## Reordering $T'^{[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. # ## Comparison of ## Reordering $T^{\prime[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ``` What are we observing? | F L | cyclic shifts 0 $ C $CTGCTGC 1 C G C$CTGCTGC 2 C $ CTGCTGC$ T'[0] 3 C Third C in F.] 4 G T | GC$CTGCT 5 G T | GCTGC$CT 6 T C | TGC$CTGC 7 T C | Third C in L. ''[1] ``` ## Reordering $T^{\prime[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## ## Reordering $T'^{[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $T'^{[0]}$ should be at position 3. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## What are we observing? ## Reordering $T'^{[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $T'^{[0]}$ should be at position 3. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## What are we observing? ## Reordering $T'^{[0]}$ Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$). $T'^{[0]}$ should be at position 3. Position of $T'^{[0]}$ is correct \rightarrow all cyclic shifts are well ordered. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ Cyclic shifts where the inserted letter G appears after F and before \$. ## Impact on M: reordering Depending on the inserted letter, rows might locally rotate. F: no modification. L: possible local reorderings. ## What are we observing? | | F | L | cyclic shifts | | |---|----|----|---------------|------------------| | 0 | \$ | C | \$CTGCTGC | | | 1 | C | G | C\$CTGCTG | | | 2 | C | G | CTGC\$CTG | | | 3 | C | \$ | CTGCTGC\$ | $T'^{[0]}$ | | 4 | G | Т | GC\$CTGCT | | | 5 | G | Т | GCTGC\$CT | | | 6 | Т | С | TGC\$CTGC | | | 7 | Т | С | TGCTGC\$C | $T^{\prime [1]}$ | $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ # What are we using? L ISA 0 C 2 1 G 2 \$ 3 T 6 4 T 5 C 6 C 0 ## **Explanations** - L and a subsampling of ISA; - 2 rank_c(L, i) - F and Count: - 4 $LF(i) = \operatorname{rank}_{L[i]}(L, i) + \operatorname{Count}(L[i]) 1;$ $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ # L ISA $rank_c(L, i)$ G \$ T 6 T \$ 0 0 1 1 1 1 1 5 C 6 C 0 T 0 0 0 1 2 2 2 - L and a subsampling of ISA; - 2 rank_c(L, i); $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## What are we using? | F L ISA | | | | | | | | $rank_c(L, i)$ | | | | | | | | | |---------|----|----|---|--|--|---|---|----------------|----|-----|-----|---|---|---|--|--| | 0 | \$ | С | 2 | | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | | | 1 | C | G | | | | 9 | 5 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | | 2 | C | \$ | | | | (| 2 | 1 | 1 | 1 | 1 | 1 | 2 | 3 | | | | 3 | C | Т | 6 | | | (| 3 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | | 4 | G | Т | | | | - | Γ | 0 | 0 | 0 | 1 | 2 | 2 | 2 | | | | 5 | Т | C | 0 | | | | | | (| Coi | un' | t | | | | | | 6 | Т | C | 0 | | | | | | \$ | C | G | Т | | | | | | | | | | | | | | | 0 | 1 | 4 | 5 | | | | | ## Explanations - L and a subsampling of ISA; - 2 rank_c(L, i); - F and Count; - ① $LF(i) = \operatorname{rank}_{Iii}(L, i) + \operatorname{Count}(L[i]) 1$ $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## What are we using? ## Explanations - L and a subsampling of ISA; - 2 rank_c(L, i); - F and Count; - 4 $LF(i)=rank_{L[i]}(L,i)+Count(L[i])-1;$ $\operatorname{rank}_{L[i]}(L,i)$ returns the number of times, t, L[i] appears in L from position 0 to i. Therefore, $\operatorname{rank}_{L[i]}(L, i) + \operatorname{Count}(L[i]) - 1$ returns the position of the t-th L[i] in F. $$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$ ## What are we using? | | F | L | ISA | $\operatorname{rank}_c(L,i)$ | | | | | | | | | | | |---|----|----|-----|------------------------------|--|----|---|----|-----|----|---|---|---|--| | 0 | \$ | С | 2 | | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | | | 1 | C | G | | | | \$ | 0 | 0 | 1 | 1 | 1 | 1 | 1 | | | 2 | C | \$ | | | | C | 1 | 1 | 1 | 1 | 1 | 2 | 3 | | | 3 | C | Т | 6 | | | G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | | | 4 | G | Т | 6 | | | Т | 0 | 0 | 0 | 1 | 2 | 2 | 2 | | | 5 | Т | C | 0 | | | | | (| Col | ın | t | | | | | 6 | Т | C | 0 | | | | | \$ | C | G | Т | | | | | | | | | | | | | n | 1 | 1 | 5 | | | | ## Explanations - L and a subsampling of ISA; - \mathbf{Q} rank_c(L, i); - F and Count; - 4 $LF(i)=\operatorname{rank}_{L[i]}(L,i)+\operatorname{Count}(L[i])-1;$ Note that $rank_c(L, i)$ gives L and Count gives F, so storing and maintaining these two functions is normally sufficient... Note also that $rank_c(L, i)$ is stored in a more efficient way! ## From Theory to Practice The reordering step of our algorithm requires at most n iterations. ## How our Algorithm Behaves in Practice? - Is the reordering step too time-consuming? - Is it quicker to update the BWT than recomputing it entirely? - Is the algorithm slowed down because of the dynamic structures? # Experiments on Human Genome **Dynamic Burrows-Wheeler Transform** # Experiments on a Fibonacci Word ## Conclusion ## Generalization We can handle insertions/deletions/substitutions of a factor as well. ## Complexity O(n) iterations of the algorithm Reorder. Worst-case scenario (A^n \$ \rightarrow A^n C\$). The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$. Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$. ## Perspectives - Dynamic FM-index (using SA, ISA subsamples) - Dvnamic suffix arrav + LCP - Dynamic suffix tree submitted to JDA submitted to JDA work in progress ## Conclusion ## Generalization We can handle insertions/deletions/substitutions of a factor as well. ## Complexity O(n) iterations of the algorithm Reorder. Worst-case scenario (A^n \$ $\rightarrow A^n$ C\$). The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$. Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$. ## Perspectives - Dynamic FM-index (using SA, ISA subsamples) - Dynamic suffix array + LCP - Dynamic suffix tree ubmitted to JDA submitted to JDA work in progress ## Conclusion ## Generalization We can handle insertions/deletions/substitutions of a factor as well. ## Complexity O(n) iterations of the algorithm Reorder. Worst-case scenario ($A^n \longrightarrow A^n C$ \$). The operations (*rank*, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$. Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$. ## Perspectives Dynamic FM-index (using SA, ISA subsamples) Dynamic suffix array + LCP Dynamic suffix tree submitted to JDA submitted to JDA work in progress