Dynamic Burrows-Wheeler Transform Prague Stringology Conference 2008

Mikaël Salson, Thierry Lecroq, Martine Léonard, Laurent Mouchard

LITIS and University of Rouen, France

1 September 2008

Burrows-Wheeler Transform (1994)

What is it?

- Permutation of a text, that allows better compression.
- Closeness to a widely-used index (suffix array).
- Recent interest in compressed indexing.

Question

• What happens to the transform if the text changes?

Notations

Cyclic shifts

A cyclic shift of a text T[0..n], of order i is denoted by $T^{[i]} = T[i..n-1]T[0..i]$.

The previous cyclic shift of $T^{[i]}$ is $T^{[i-1]}$.

From T = CTCTGC\$ to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		uı	nso	rtec	1 T	[i]	
0	С	Т	С	Т	G	С	\$
1	Т	C	Т	G	C	\$	C
2	C	Т	G	G C	\$	C	Т
3	Т	G	C	\$	C	Т	C
4	G	C	\$	C	Т	C	Т
5	C	T G C \$	C	Т	C	Т	G
6	\$	C	Т	C	Т	G	C

From T = CTCTGC\$ to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		Unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T G \$ C T C T C										
0	C	Т	C	Т	G	C	\$					
1	Т	C	Т	G	C	\$	C					
2	C	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	C	\$	C	Т	C	Т	G					
6	\$	C	Т	C	Т	G	C					

	F						L	
	↓	9	ort	ed	$T^{[i]}$]	\downarrow	
0	\$	С	Т	С	Т	G	С	6
1	C	\$	C	Т	C	Т	G	5
2	C	Т	C	Т	G	C	\$	0
3	C	Т	G	C	\$	C	Т	2
4	G	C	\$	C	Т	C	Т	4
5	Т	C	Т	G	C	\$	C	1
6	Т	G	Ċ	\$	C	G T C C C T	C	3

L: Burrows-Wheeler Transform of T [C G \$ T T C C]

From T = CTCTGC\$ to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		uı	ารดเ	rtec	1 T	[i]						
0	С	unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T C \$ C T C T G C \$ C T C T C \$ C T C T G C \$ C T C T C \$ C T C T G										
1	Т	C	Т	G	C	\$	C					
2	C	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	С	\$	C	Т	C	Т	G					
6	\$	C	Т	C	Т	G	C					

L: Burrows-Wheeler Transform of T [C G \$ T T C C]

From T = CTCTGC\$ to BWT, SA and ISA

		Unsorted T ^[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T											
0	С	Т	С	Т	G	С	\$						
1	Т	C	Т	G	C	\$	C						
2	С	Т	G	C	\$	C	Т						
3	Т	G	C	\$	C	Т	C						
4	G	C	\$	C	Т	C	Т						
5	С	\$	C	Т	C	Т	G						
6	\$	С	Т	С	Т	G	С						

	F						L	SA
	↓			ed	$T^{[i]}$]	\downarrow	1
0	\$	С	Т	С	Т	G	С	6
1	C	\$	C	Т	C	Т	G	5
2	С	Т	C	Т	G	C	\$	0
3	С	Т	G	C	\$	C	Т	2
4	G	C	\$	C	G \$ T	C	Т	4
5	Т	C	Т	G	C	\$	C	1
6	Т	G	C	\$		Т	C	3

Burrows-Wheeler Transform of T [C G \$ T T C C] SA: Suffix Array of T

```
[ 6 5 0 2 4 1 3 ]
```


From T = CTCTGC\$ to BWT, SA and ISA

		unsorted $\mathcal{T}^{[i]}$										
0	С	unsorted T[i] C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T G C										
1	Т	C	Т	G	C	\$	C					
2	С	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	C	\$	C	Т	C	Т	G					
6	\$	C	Т	C	Т	G	C					

	<i>F</i> ↓	9	sort	ed	T [i]	<i>L</i> ↓	<i>SA</i> ↓
0	\$	С	Т	C T	Т	G	C	6
1	C	\$	C	Т	C	Т	G	5
2	С	Т	C	Т	G \$ T	C	\$	0
3	C	Т	G	C	\$	C	Т	2
4	G	C	\$	C	Т	C	Т	4
5	Т	C	Т	G	C	\$	C	1
6	Т	G	C	\$	C	Т	C	3

SA: Suffix Array of T

$$L[i] = T[(SA[i] - 1) \bmod |T|]$$

From T = CTCTGC\$ to BWT, SA and ISA

		unsorted T ^[i] C T C T G C \$ T C T G C \$ C T G C \$ C T T G C \$ C T C G C \$ C T C T C \$ C T C T G S C T C T G										
0	С	Т	С	Т	G	С	\$					
1	Т	C	Т	G	C	\$	C					
2	С	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	C	\$	C	Т	C	Т	G					
6	\$	C	Т	C	Т	G	C					

	F	9	sort	ed	T [i]	L ↓	<i>SA</i>
0	\$	С	Т	C	Т	G	C	6
1	C	\$	•		•	Т	G	5
2	С	Т	C	Т	G \$ T	C	\$	0
3	C	Т	G	C	\$	C	Т	2
4	G	C	\$	C	Т	C	Т	4
5	Т	C	Т	G	C	\$	C	1
6	Т	G	C	\$	С	Т	C	3

SA: Suffix Array of T

Burrows-Wheeler Transform of
$$T$$
 [C G \$ T T C C] Suffix Array of T [6 5 0 2 4 1 3] Inverse Suffix Array of T [2 5 3 6 4 1 0]

$$L[i] = T[(SA[i] - 1) \bmod |T|]$$

From T = CTCTCC\$ to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		unsorted $\mathcal{T}^{[i]}$									
0	С	Т	C T G C \$	Т	G	С	\$				
1	Т	C	Т	G	C	\$	C				
2	C	Т	G	C	\$	C	Т				
3	Т	G	C	\$	C	Т	C				
4	G	C	\$	C	Т	C	Т				
5	C	\$	C	Т	C	Т	G				
6	\$	C	Т	C	Т	G	C				

L: Burrows-Wheeler Transform of T [C G \$ T T C C]

SA: Suffix Array of T

$$L[i] = T[(SA[i] - 1) \bmod |T|]$$

From T = CTCTGC to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		unsorted $\mathcal{T}^{[i]}$										
0	С	C T C T G C \$ T C T G C \$ C T C G C \$ C T C T C \$ C T C T										
1	Т	C	Т	G	C	\$	C					
2	С	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	C	\$	C	Т	C	Т	G					
6	\$	C	Т	С	Т	G	C					

L: Burrows-Wheeler Transform of $T \in [CG TTCC]$

SA: Suffix Array of T

$$L[i] = T[(SA[i] - 1) \bmod |T|]$$

From T = CTGGC\$ to BWT, SA and ISA

Burrows-Wheeler Transform and Suffix Array

		unsorted $\mathcal{T}^{[i]}$									
0	С	Т	C T G C \$	Т	G	С	\$				
1	Т	C	Т	G	C	\$	C				
2	С	Т	G	C	\$	C	Т				
3	Т	G	C	\$	C	Т	C				
4	G	C	\$	C	Т	C	Т				
5	C	\$	C		C	Т	G				
6	\$	C	Т	С	Т	G	C				

L: Burrows-Wheeler Transform of T [C G \$ T T C C]

SA: Suffix Array of T

$$L[i] = T[(SA[i] - 1) \bmod |T|]$$

What if Lonly have access to BWT? Can I recover T

Recovering ${\it T}$ is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if Lonly have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if Lonly have access to BWT? Can I recover T

Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if Lonly have access to BWT? Can I recover T

Recovering ${\it T}$ is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if Lonly have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

What if I only have access to BWT? Can I recover T

Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L
	↓	9		ed]	\downarrow
0	\$	C	Т	C	Т	G	C ^K
1	С	\$	C	Т	C	Т	G/)
2	С	Т	C	Т	G	C	\$4
3	С	Т	G	C	\$	C	T_{λ}
4	G	C	\$	C T T C C	Т	C	ΤŴ
5	Т	C	Т	G	C	\$	C∜
6	Т	G	C	\$	C	Т	C∜
			C	Γ	GC	^\$ ₌	= T

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L
	↓	9	sort	ed	$T^{[i]}$	l	\downarrow
0	\$	C	Т	C	Т	G	С
1	С	\$	C	C T T	C	Т	G
2	С	Т	C	Т	G	C	\$
3	C	Т	G	C	\$	C	Т
4	G	C	\$	C C G	Т	C	T,
5	Т	C	Т	G	C	\$	C)
6	Т	G	C	\$	C	Т	C√
			C	C	GC	٠\$ -	- T

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$]	\downarrow	LF
0	\$	C	Т	C	Т	G	C	1
1	С	\$	C	Т	C	Т	G√	
2	С	Т	C	Т	G	C	\$	
3	С	Т	G	C	\$	C	Т	
4	G	C	\$	C	Т	C	Т	
5	Т	C	Т	G	C	\$	C	
6	Т	G	C	\$	C	Т	* T T C C = T	
			CI	C	GC	٦\$ -	_ T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if Lonly have access to BWT? Can Lirecover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$	l	\downarrow	LF
0	\$	C	Т	C	Т	G	С	1
1	С	\$	C	Т	C	Т	G	4
2	С	Т	C	Т	G	C	\$ \	
3	С	Т	G	C	\$	C	T)	
4	G	C	\$	C	Т	C	T√	
5	Т	C	Т	G	C	\$	C	
6	Т	G	C	\$	T C G \$ T C C	Т	C	
			C	C	GC	`\$ =	= T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$	l	\downarrow	LF
0	\$	C	Т	C	Т	G	С	1
1	С	\$	C	Т	C	Т	G	4
2	С	Т	C	Т	G	C	\$	
3	С	Т	G	C	\$	C	Т	
4	G	C	\$	C	T C G \$ T C	C	T,	6
5	Т	C					C)	
6	Т	G	C	\$	С	Т	C√	
	'		C	C	GC	٠\$ -	_ T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if Lonly have access to BWT? Can Lirecover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$]	\downarrow	LF
0	\$	C	Т	C	Т	G	C	1
1	C	\$	C	Т	C	Т	G	4
2	С	Т	C	Т	G	C	\$	
3	С	Т	G	C	\$	C	T,	
4	G	C	\$	C	T C G \$ T	C	T^{\wedge}	6
5	Т	C	Т	G	C	\$	C	
6	Т	G	C	\$	C	Т	$c^{/}$	3
	'		C		$\Gamma C C$			

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$]	\downarrow	LF
0	\$	C	Т	C	Т	G	С	1
1	C	\$	C	Т	C	Т	G	4
2	С	Т	C	Т	G	C	\$	
3	С	Т	G	C	\$	C	T_{\setminus}	5
4	G	C	\$	C	Т	C	T)	6
5	Т	C	Т	G	C	\$	C√	
6	Т	G	C	\$	T C G \$ T C C	Т	C	3
	'		C	Γ	$\Gamma C C$	-¢ -	_ T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$	l	\downarrow	LF
0	\$	C	Т	C	Т	G	С	1
1	С	\$	C	Т	C	Т	G	4
2	С	Т	C	Т	T C G \$ T	C	\$ <	
3	C	Т	G	C	\$	C	Т	5
4	G	C	\$	C	Т	C	Т	6
5	Т	C	Т	G	C	\$	C^{\prime}	2
6	Т	G	C	\$	C	Т	C	3
	'		C				- T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in F from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T

Recovering T is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓				$T^{[i]}$		\downarrow	LF
0	\$	C	Т	C	Т	G	CK	1
1	C	\$	C	Т	C	Т	G)	4
2	С	Т	C	Т	C G \$ T C	C	\$	0
3	С	Т	G	C	\$	C	Т	5
4	G	C	\$	C	Т	C	Т	6
5	Т	C	Т	G	C	\$	C	2
6	Т	G	C	\$	C	Т	C	3
	'		C	C	$\Gamma C C$	Φ.	_ T	

Property

- in *L* from position 0 to the position of $T^{[i]}$ as
- in *F* from position 0 to the position of $T^{[i-1]}$.

What if I only have access to BWT? Can I recover T?

Recovering \mathcal{T} is easy if, given a position in the table, we can find the position of the previous cyclic shift.

Example

	F						L	
	↓	9	sort	ed	$T^{[i]}$	l	\downarrow	LF
0	\$	С	Т	С	Т	G	C	1
1	C	\$	C	Т	C	Т	G	4
2	C	Т	C	Т	G	C	\$	0
3	С	Т	G	C	\$	C	Т	5
4	G	C	\$	C	Т	C	Т	6
5	Т	C	Т	G	C	\$	C	2
6	Т	G	C	\$	T C G \$ T C C	Т	C	3
			C1	rc1	rgc	:	= <i>T</i>	

Property

Since cyclic shifts are sorted, $T^{[i]}[n] = T[i-1]$ appears as many times

- in L from position 0 to the position of T^[i] as
- in F from position 0 to the position of T^[i-1].

So. L can be used instead of T

L contains all the information that is needed for recovering the original T.

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

What is the impact of a single insertion of **G** at position $i=2^{\circ}$

	ι	Unsorted CS of T C T C T G C \$ T C T G C \$ C C T G C \$ C T G C \$ C T C G C \$ C T C T C \$ C T C T C										
0	С	Т	С	Т	G	С	\$					
1	Т	C	Т	G	C	\$	C					
2	C	Т	G	C	\$	C	Т					
3	Т	G	C	\$	C	Т	C					
4	G	C	\$	C	Т	C	Т					
5	C	\$	C	Т	C	Т	G					
6	\$	C	Т	C	Т	G	C					

		un	sort	ed	CS	of	T'	
0	С			С	Т	G		\$
1	Т	G	C	C T	G	C	\$	C
2	G	C	Т	G	C	\$	C	Т
3	С	Т	G	C	\$	C	Т	G
4	Т	G	C	\$ C	C	Т	G	C
5	G	C	\$	C	Т	G	C	Т
6	C	\$	C	Т	G	C	Т	G
7	\$	C	Т	G	C	Т	G	C

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 1: $T^{(j)}$ for all i > i + 1

Cyclic shifts where the inserted letter G appears after \$ and before L.

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

Stage 1: $T^{\prime [j]}$ for all i > i + 1

Cyclic shifts where the inserted letter G appears after \$ and before L.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 1: $T^{(j)}$ for all i > i+1

Cyclic shifts where the inserted letter G appears after \$ and before L.

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

Stage 1. T'[i] for all i > i + 1

Cyclic shifts where the inserted letter G appears after \$ and before L.

Impact on M: none

The respective ranking of these cyclic shifts is preserved.

F: no direct modification.

1: no direct modification

What are we observing?

- |F|L cyclic shifts 0 \$ C \$CTGCTGC \leftarrow
- 1 C G C\$CTGCTG ←
- 2 C \$ CTCTGC\$
- 3 C T CTGC\$CT
- 4 G T GC\$CTGCT ←
- 5 T C TCTGC\$C
- 6 T C TGC\$CTGC ←

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in *L*.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in *L*.

| F L | cyclic shifts 0 \$ C | \$CTGCTGC

```
0 $ C $CTGCTGC
1 C G C$CTGCTG
2 C $ CTCTGC$
3 C T CTGC$CT
4 G T GC$CTGCT
5 T C TCTGC$C
6 T C TGC$CTGC
```

How can we compute the position of the modification?

We are looking for the position of $T^{'[3]}$ (corresponding to $T^{[2]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in *L*.

How can we compute the position of the modification?

We are looking for the position of $T^{[3]}$ (corresponding to $T^{[2]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 2: $T'^{[i+1]}$

The cyclic shift where the inserted letter G appears in *L*.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$).

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

The cyclic shift where the inserted letter G appears in *L*.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in *L*.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in *L*.

Position of the previous cyclic

In what follows, we need the position of the previous cyclic shift $T^{[1]}$ (corresponding to $T'^{[1]}$).

 \rightarrow *LF*(3) = 5, we store 5 in *previous_cs*.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in L.

Impact on *M*: substitution

F: no direct modification.

L: substitution T (stored) \rightarrow G.

What are we observing?

F L cyclic shifts
0 \$ C \$CTGCTGC

. C G C\$CTGCTG

2 C \$ CTCTGC\$

4 G T GC\$CTGCT
5 T C TCTGC\$C

6 T C TGC\$CTGC

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

Stage 3. T'[i]

The cyclic shift where the inserted letter G appears in *F*.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in F.

```
L cyclic shifts
  $ C SCTGCTGC C G C$CTGCTG
2 C $ CTCTGC$
3 C G CTGC$CTG
4 G T GC$CTGCT
5 T C TCTGC$C
  T C TGC$CTGC
```

- We know the position of $T^{'[3]}$ (we have just modified it).
- Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$.
- That's what LF computes: the position of the previous cyclic shift!

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

The cyclic shift where the inserted letter G appears in F.

```
L cyclic shifts
  $ C SCTGCTGC C G C$CTGCTG
  C \hookrightarrow Second G in L
4 G T GC$CTGCT
  T C TCTGC$C
  T C TGC$CTGC
```

- We know the position of $T^{'[3]}$ (we have just modified it).
- Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$.
- That's what LF computes: the position of the previous cyclic shift!

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

The cyclic shift where the inserted letter G appears in F.

cyclic shifts \$ C \$CTGCTGC C G C\$CTGCTG C \$ CTCTGC\$ 3 C G CTGC\$CTG

4 G T GC\$CTGCT 5 G T GCTGC\$CT ← T C TCTGC\$C C | TGC\$CTGC

- We know the position of $T'^{[3]}$ (we have just modified it).
- Now, we need the position of the *new* cyclic shift $T'^{[2]} = GCTGC\$CT$.
- That's what LF computes: the position of the previous cyclic shift!

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

Stage 3. T/[i]

The cyclic shift where the inserted letter G appears in F.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 3. T'[i]

The cyclic shift where the inserted letter G appears in F.

Impact on M: insertion

A new row starting with the inserted letter G and ending with the stored T is inserted

F: inserted letter G.

L: (stored) T.

What are we observing?

	F	L	cyclic shifts \$CTGCTGC	
0	\$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	\$	CTCTGC\$	
3	C	G	CTGC\$CTG	
4	G	Т	GC\$CTGCT	
5	G	Т	GCTGC\$CT	\leftarrow
6	Т	С	TCTGC\$C	
7	Т	C	TGC\$CTGC	

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

$$T = \overset{\circ}{C}\overset{1}{T}\overset{2}{C}\overset{3}{T}\overset{4}{G}\overset{5}{C}\overset{6}{\$} \to T' = \overset{\circ}{C}\overset{1}{T}\overset{2}{G}\overset{3}{C}\overset{4}{T}\overset{5}{G}\overset{6}{C}\overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

How to reorder cyclic shifts?

- Reordering from right to left (from j = i 1 downto 0)
- Comparison between the actual position (value of previous_cs) and the position computed with LF.

What are we observing?

	_	,	1 11 116
	-	L	cyclic shifts
0	\$	C	\$CTGCTGC
1	C	G	C\$CTGCTG
2	C	\$	CTGCTGC\$
3	C	G	CTGC\$CTG
4	G	Т	GC\$CTGCT
5	G	Т	GCTGC\$CT
6	Т	С	TGCTGC\$C
7	Т	\mathcal{C}	TGC\$CTGC

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

```
4 G T GC$CTGCT
5 G T GCTGC$CT
6 T C TGCTGC$C T'^{[1]}
 T C TGC$CTGC
```

 $T^{\prime[1]}$ is at position *previous_cs* = 6. Is this the correct position for $T'^{[1]}$? LF can tell us!

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

What are we observing?

```
T'^{[1]} is at position previous\_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5).
```


$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.


```
T'^{[1]} is at position previous\_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5).
```


$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.


```
T'^{[1]} is at position previous\_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5).
```


$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.


```
T'^{[1]} is at position previous\_cs = 6. Is this the correct position for T'^{[1]}? LF can tell us! T'^{[2]} has just been inserted \rightarrow its location is correct. T'^{[2]} is at position 5, let's compute LF(5).
```


$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 4: $T^{(i)}$ for all i < i

Cyclic shifts where the inserted letter G appears after F and before \$.

Reordering $T'^{[1]}$

 $T'^{[1]}$ is at position 6 but should be at position 7.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Stage 4: $T^{(i)}$ for all i < i

Cyclic shifts where the inserted letter G appears after F and before \$.

What are we observing?

Reordering $T'^{[1]}$

 $T'^{[1]}$ is at position 6 but should be at position 7.

Before moving $T'^{[1]}$, we compute the actual position of $T'^{[0]}$ and store it in *previous_cs*.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

```
cyclic shifts
5 G T GCTGC$CT
  T C Second C in L. [1]
T C TGC$CTGC
```

 $T^{\prime[1]}$ is at position 6 but should be at position 7.

Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

```
cyclic shifts
     c $CTGCTGC
  C G C$CTGCTG
  C \longrightarrow Second C in F.
3 C G CTGC$CTG
4 G T GC$CTGCT
5 G T GCTGC$CT
6 T C TGCTGC$C T'^{[1]}
  T C TGC$CTGC
```

 $T^{\prime[1]}$ is at position 6 but should be at position 7.

Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

```
6 T C TGCTGC$C T'^{[1]}
 T C TGC$CTGC
```

 $T'^{[1]}$ is at position 6 but should be at position 7.

Before moving $T^{'[1]}$, we compute the actual position of $T^{'[0]}$ and store it in previous_cs.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

What are we observing?

Reordering $T^{\prime[1]}$

 $T'^{[1]}$ is at position 6 but should be at position 7.

Before moving $T'^{[1]}$, we compute the actual position of $T'^{[0]}$ and store it in *previous_cs*.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

T C TGCTGC\$C $T'^{[1]}$

Reordering $T'^{[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

Comparison of Comparison of

Reordering $T^{\prime[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

$$T = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{C}} \overset{3}{\mathsf{T}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \to T' = \overset{\circ}{\mathsf{C}} \overset{1}{\mathsf{T}} \overset{2}{\mathsf{G}} \overset{3}{\mathsf{G}} \overset{4}{\mathsf{G}} \overset{5}{\mathsf{G}} \overset{6}{\mathsf{G}} \overset{7}{\mathsf{G}}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

```
What are we observing?

| F L | cyclic shifts
0 $ C $CTGCTGC
1 C G C$CTGCTGC
2 C $ CTGCTGC$ T'[0]
3 C Third C in F.]
4 G T | GC$CTGCT
5 G T | GCTGC$CT
6 T C | TGC$CTGC
7 T C | Third C in L. ''[1]
```

Reordering $T^{\prime[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

Reordering $T'^{[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

 $T'^{[0]}$ should be at position 3.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

What are we observing?

Reordering $T'^{[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

 $T'^{[0]}$ should be at position 3.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

What are we observing?

Reordering $T'^{[0]}$

Now, let's compute the correct position of $T'^{[0]}$ using LF(7) (7 is the correct position of $T'^{[1]}$).

 $T'^{[0]}$ should be at position 3.

Position of $T'^{[0]}$ is correct \rightarrow all cyclic shifts are well ordered.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

Cyclic shifts where the inserted letter G appears after F and before \$.

Impact on M: reordering

Depending on the inserted letter, rows might locally rotate.

F: no modification.

L: possible local reorderings.

What are we observing?

	F	L	cyclic shifts	
0	\$	C	\$CTGCTGC	
1	C	G	C\$CTGCTG	
2	C	G	CTGC\$CTG	
3	C	\$	CTGCTGC\$	$T'^{[0]}$
4	G	Т	GC\$CTGCT	
5	G	Т	GCTGC\$CT	
6	Т	С	TGC\$CTGC	
7	Т	С	TGCTGC\$C	$T^{\prime [1]}$

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

What are we using? L ISA 0 C 2 1 G 2 \$ 3 T 6 4 T 5 C 6 C 0

Explanations

- L and a subsampling of ISA;
 - 2 rank_c(L, i)
- F and Count:
- 4 $LF(i) = \operatorname{rank}_{L[i]}(L, i) + \operatorname{Count}(L[i]) 1;$

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

L ISA $rank_c(L, i)$ G \$ T 6 T \$ 0 0 1 1 1 1 1 5 C 6 C 0

T 0 0 0 1 2 2 2

- L and a subsampling of ISA;
- 2 rank_c(L, i);

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

What are we using?

F L ISA								$rank_c(L, i)$								
0	\$	С	2					0	1	2	3	4	5	6		
1	C	G				9	5	0	0	1	1	1	1	1		
2	C	\$				(2	1	1	1	1	1	2	3		
3	C	Т	6			(3	0	1	1	1	1	1	1		
4	G	Т				-	Γ	0	0	0	1	2	2	2		
5	Т	C	0						(Coi	un'	t				
6	Т	C	0						\$	C	G	Т				
									0	1	4	5				

Explanations

- L and a subsampling of ISA;
- 2 rank_c(L, i);
- F and Count;
- ① $LF(i) = \operatorname{rank}_{Iii}(L, i) + \operatorname{Count}(L[i]) 1$

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

What are we using?

Explanations

- L and a subsampling of ISA;
- 2 rank_c(L, i);
- F and Count;
- 4 $LF(i)=rank_{L[i]}(L,i)+Count(L[i])-1;$

 $\operatorname{rank}_{L[i]}(L,i)$ returns the number of times, t, L[i] appears in L from position 0 to i.

Therefore, $\operatorname{rank}_{L[i]}(L, i) + \operatorname{Count}(L[i]) - 1$ returns the position of the t-th L[i] in F.

$$T = \overset{\circ}{C} \overset{1}{T} \overset{2}{C} \overset{3}{T} \overset{4}{G} \overset{5}{C} \overset{6}{\$} \to T' = \overset{\circ}{C} \overset{1}{T} \overset{2}{G} \overset{3}{C} \overset{4}{T} \overset{5}{G} \overset{6}{C} \overset{7}{\$}$$

What are we using?

	F	L	ISA	$\operatorname{rank}_c(L,i)$										
0	\$	С	2				0	1	2	3	4	5	6	
1	C	G				\$	0	0	1	1	1	1	1	
2	C	\$				C	1	1	1	1	1	2	3	
3	C	Т	6			G	0	1	1	1	1	1	1	
4	G	Т	6			Т	0	0	0	1	2	2	2	
5	Т	C	0					(Col	ın	t			
6	Т	C	0					\$	C	G	Т			
								n	1	1	5			

Explanations

- L and a subsampling of ISA;
- \mathbf{Q} rank_c(L, i);
- F and Count;
- 4 $LF(i)=\operatorname{rank}_{L[i]}(L,i)+\operatorname{Count}(L[i])-1;$

Note that $rank_c(L, i)$ gives L and Count gives F, so storing and maintaining these two functions is normally sufficient...

Note also that $rank_c(L, i)$ is stored in a more efficient way!

From Theory to Practice

The reordering step of our algorithm requires at most n iterations.

How our Algorithm Behaves in Practice?

- Is the reordering step too time-consuming?
- Is it quicker to update the BWT than recomputing it entirely?
- Is the algorithm slowed down because of the dynamic structures?

Experiments on Human Genome

Dynamic Burrows-Wheeler Transform

Experiments on a Fibonacci Word

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.

Complexity

O(n) iterations of the algorithm Reorder.

Worst-case scenario (A^n \$ \rightarrow A^n C\$).

The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$.

Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$.

Perspectives

- Dynamic FM-index (using SA, ISA subsamples)
- Dvnamic suffix arrav + LCP
- Dynamic suffix tree

submitted to JDA submitted to JDA

work in progress

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.

Complexity

O(n) iterations of the algorithm Reorder.

Worst-case scenario (A^n \$ $\rightarrow A^n$ C\$).

The operations (rank, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$.

Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$.

Perspectives

- Dynamic FM-index (using SA, ISA subsamples)
- Dynamic suffix array + LCP
- Dynamic suffix tree

ubmitted to JDA

submitted to JDA

work in progress

Conclusion

Generalization

We can handle insertions/deletions/substitutions of a factor as well.

Complexity

O(n) iterations of the algorithm Reorder.

Worst-case scenario ($A^n \longrightarrow A^n C$ \$).

The operations (*rank*, insertion, deletion) on the dynamic structure storing L are performed in at most $O(\log n(1 + \log \sigma / \log \log n))$.

Overall worst-case complexity: $O(n \log n(1 + \log \sigma / \log \log n))$.

Perspectives

Dynamic FM-index (using SA, ISA subsamples)

Dynamic suffix array + LCP

Dynamic suffix tree

submitted to JDA

submitted to JDA

work in progress

