On the Uniform Distribution of Strings

Sébastien Rebecchi and Jean-Michel Jolion

PSC 2008, Prague, Czech Republic September 2, 2008

Introduction

Introduction

How to describe the data?

- Structures:
 - + representational capabilities,
 - lack of mathematical tools;
- feature vectors:
 - + powerful statistical algorithms,
 - representational capabilities;
- \implies reconcile the two approaches;
- \implies need to define a statistical characterization of spaces of structures.

We introduce the uniform distribution of strings.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Notations

Notations

- A alphabet;
- |A| cardinal of A.

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

E ► < E ► E < つ < C PSC 2008 3 / 17

ヘロト ヘロト ヘヨト ヘヨト

Notations

Notations

- |X| length of the string X over A;
- A^n set of strings of length n over A;
- $A^{\leq n}$ set of strings of length at most *n* over *A*;
- X_i *i*-th letter of X.

イロト 不得 トイヨト イヨト 二日

Uniform distribution of strings

First approach: equiprobability.

• U over A^n = concatenation of n U over A

 $\mathsf{P}(X) = |A|^{-n};$

- generation in O(n);
- probability in O(1);
- preservation under concatenation:

 $(X \sim U \text{ over } A^n) \wedge (I \sim U \text{ over } A) \Longrightarrow XI \sim U \text{ over } A^{n+1}.$

S. Rebecchi and J.-M. Jolion (LIRIS)

PSC 2008 5 / 17

Uniform distribution of strings

Second approach: normalized measure.

- Let S be a set;
- $E \subseteq S$:

$$\mathsf{P}(E) = \mu(E)/\mu(S);$$

- examples:
 - $S \subset \mathbb{N}$, S finite, $\mu = \text{cardinality}$,
 - $S \subset \mathbb{R}$, S bounded, $\mu =$ Lebesgue measure.

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 6 / 17

イロト 不得 トイラト イラト 一日

 σ -algebra

 σ -algebra over S = set of subsets of S that is

- non empty;
- closed under complements;
- closed under countable unions.

If S is countable, then powerset(S) is the only σ -algebra over S containing all singletons $\{x\}, x \in S$.

イロト 不得 トイヨト イヨト 二日

Measure

Measure μ over $\sigma =$ function $\sigma \to \mathbb{R}^+ \cup \{\infty\}$ that is

- 0 for $\{\};$
- additive under countable disjoint unions.

 $\mu(\{x\}) =_{\text{notation}} \mu(x), \ \{x\} \in \sigma.$

Uniform distribution

Uniform distribution w.r.t. μ : $\forall E \in \sigma$:

 $\mathsf{P}(E) = \mu(E)/\mu(S).$

 $\mathsf{P}(\{x\}) =_{\text{notation}} \mathsf{P}(x), \ \{x\} \in \sigma.$

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 9 / 17

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

String measure

- $\lambda \notin A$ denotes the empty letter;
- we assume the measure μ_A over powerset $(A \cup \{\lambda\})$;
- for $n \in \mathbb{N}$, we define the measure μ^n over powerset $(A^{\leq n})$.

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 10 / 17

イロト 不得下 イヨト イヨト 二日

String measure

- String of length at most n over A = cannonical representation of a set of sequences composed of n elements of A ∪ {λ};
- example:
 - *A* = {*a*, *b*},
 - *n* = 3,
 - $ab "=" \{\lambda ab, a\lambda b, ab\lambda\}.$

String measure

 $\forall X \in A^{\leq n}$:

$$\mu^n(X) = \binom{n}{|X|} imes \prod_{i=1}^{|X|} \mu_A(X_i) imes \mu_A(\lambda)^{n-|X|}.$$

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 12 / 17

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Probability

Total measure:

$$\mu^n(A^{\leqslant n}) = \mu_A(A \cup \{\lambda\})^n.$$

 \implies Probability of a string in O(n).

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 13 / 17

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Preservation, generation

Preservation under concatenation:

 $(X \sim U \text{ w.r.t. } \mu^n) \land (I \sim U \text{ w.r.t. } \mu_A) \Longrightarrow XI \sim U \text{ w.r.t. } \mu^{n+1}.$

 \implies Generation of a string in O(n).

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

PSC 2008 14 / 17

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● の Q @

Generation

```
Input: n \in \mathbb{N}.
Output: A string uniform w.r.t. \mu^n.
begin
     P_A \leftarrow uniform distribution w.r.t. \mu_A: \forall l \in A \cup \{\lambda\}:
                                    \mathsf{P}_{A}(I) = \mu_{A}(I)/\mu_{A}(A \cup \{\lambda\});
     X \leftarrow empty string;
     for i \leftarrow 1 à n do
          l \leftarrow random choice according to P_A;
X \leftarrow Xl:
     end
     return X:
end
```

S. Rebecchi and J.-M. Jolion (LIRIS)

Unification

First approach = second approach with:

•
$$\mu_A(\lambda) = 0 \iff \mathsf{P}^n(A^{\leqslant n-1}) = 0 \text{ if } n > 0);$$

•
$$\mu_A(I) = \mu_A(m), \forall I, m \in A.$$

S. Rebecchi and J.-M. Jolion (LIRIS)

On the Uniform Distribution of Strings

<ロ> <四> <四> <三> <三</td>

Conclusion

Conclusion

- Uniform string = concatenation of uniform letters;
- simple but relevant measure;
- easy to extend to ordered trees;
- statistical test;
- how to *sum* for CLT?

イロト イボト イヨト イヨト