On the Uniform Distribution of Strings

Sébastien Rebecchi and Jean-Michel Jolion

PSC 2008, Prague, Czech Republic
September 2, 2008
Introduction

How to describe the data?

- Structures:
 + representational capabilities,
 - lack of mathematical tools;

- feature vectors:
 + powerful statistical algorithms,
 - representational capabilities;

⇒ reconcile the two approaches;
⇒ need to define a statistical characterization of spaces of structures.

We introduce the uniform distribution of strings.
Notations

- A alphabet;
- $|A|$ cardinal of A.
Notations

- $|X|$ length of the string X over A;
- A^n set of strings of length n over A;
- $A^{\leq n}$ set of strings of length at most n over A;
- X_i i-th letter of X.
Uniform distribution of strings

First approach: equiprobability.

- U over $A^n = \text{concatenation of } n \ U \over A$
 \[P(X) = |A|^{-n}; \]
- generation in $O(n)$;
- probability in $O(1)$;
- preservation under concatenation:
 \[(X \sim U \over A^n) \land (I \sim U \over A) \implies Xl \sim U \over A^{n+1}. \]
Uniform distribution of strings

Second approach: normalized measure.

• Let S be a set;
• $E \subseteq S$:

 $P(E) = \frac{\mu(E)}{\mu(S)}$;

• examples:
 • $S \subseteq \mathbb{N}$, S finite, $\mu = \text{cardinality}$,
 • $S \subseteq \mathbb{R}$, S bounded, $\mu = \text{Lebesgue measure}$.
σ-algebra

σ-algebra over $S = \text{set of subsets of } S$ that is

- non empty;
- closed under complements;
- closed under countable unions.

If S is countable, then $\text{powerset}(S)$ is the only σ-algebra over S containing all singletons $\{x\}, x \in S$.
Uniform distribution of strings

Measure

Measure μ over $\sigma = \text{function } \sigma \rightarrow \mathbb{R}^+ \cup \{\infty\}$ that is

- 0 for $\{\}$;
- additive under countable disjoint unions.

$\mu(\{x\}) = \text{notation } \mu(x)$, $\{x\} \in \sigma$.
Uniform distribution w.r.t. μ: $\forall E \in \sigma$:

$$P(E) = \frac{\mu(E)}{\mu(S)}.$$

$P(\{x\}) = \text{notation } P(x), \{x\} \in \sigma.$
String measure

- \(\lambda \notin A \) denotes the empty letter;
- we assume the measure \(\mu_A \) over \(\text{powerset}(A \cup \{\lambda\}) \);
- for \(n \in \mathbb{N} \), we define the measure \(\mu^n \) over \(\text{powerset}(A^{\leq n}) \).
String measure

- String of length at most n over $A = \text{canonical representation of a set of sequences composed of } n \text{ elements of } A \cup \{\lambda\}$;

- example:
 - $A = \{a, b\}$,
 - $n = 3$,
 - $ab''='' \{\lambda ab, a\lambda b, ab\lambda\}$.
String measure

\(\forall X \in A^{\leq n}:
\)

\[
\mu^n(X) = \binom{n}{|X|} \times \prod_{i=1}^{|X|} \mu_A(X_i) \times \mu_A(\lambda)^{n-|X|}.
\]
Total measure:

$$\mu^n(A^{\leq n}) = \mu_A(A \cup \{\lambda\})^n.$$

⇒ Probability of a string in $O(n)$.

S. Rebecchi and J.-M. Jolion (LIRIS) On the Uniform Distribution of Strings PSC 2008 13 / 17
Preservation, generation

Preservation under concatenation:

\[(X \sim U \text{ w.r.t. } \mu^n) \land (l \sim U \text{ w.r.t. } \mu_A) \implies Xl \sim U \text{ w.r.t. } \mu^{n+1}.\]

\[\implies \text{Generation of a string in } O(n).\]
Generation

Input: $n \in \mathbb{N}$.

Output: A string uniform w.r.t. μ^n.

begin
\begin{align*}
P_A &\leftarrow \text{uniform distribution w.r.t. } \mu_A: \forall l \in A \cup \{\lambda\}: \\
P_A(l) &= \frac{\mu_A(l)}{\mu_A(A \cup \{\lambda\})};
\end{align*}

$X \leftarrow$ empty string;

for $i \leftarrow 1 \text{ à } n$ do
\begin{itemize}
 \item $l \leftarrow \text{random choice according to } P_A$;
 \item $X \leftarrow Xl$;
\end{itemize}
end

return X;
end
Uniform distribution of strings

Unification

First approach = second approach with:

- \(\mu_A(\lambda) = 0 \) \(\iff \) \(P^n(A \leq n-1) = 0 \) if \(n > 0 \);
- \(\mu_A(l) = \mu_A(m) \), \(\forall l, m \in A \).
Conclusion

- Uniform string = concatenation of uniform letters;
- simple but relevant measure;
- easy to extend to ordered trees;
- statistical test;
- how to sum for CLT?