An Efficient Algorithm for Approximate Pattern Matching with Swaps

Matteo Campanelli2 Domenico Cantone1 Simone Faro1 Emanuele Giaquinta1

Department of Mathematics and Computer Science, University of Catania, Italy

Scuola Superiore di Catania, University of Catania, Italy
Pattern Matching with Swaps

A *swap permutation* for a string P of length m is a permutation $\pi : \{0, \ldots, m-1\} \rightarrow \{0, \ldots, m-1\}$ such that:

(a) if $\pi(i) = j$ then $\pi(j) = i$ (characters at positions i and j are swapped);
(b) for all i, $\pi(i) \in \{i-1, i, i+1\}$ (only adjacent characters are swapped);
(c) if $\pi(i) \neq i$ then $P[\pi(i)] \neq P[i]$ (identical characters can not be swapped).
A *swap permutation* for a string P of length m is a permutation
\(\pi : \{0, ..., m - 1\} \rightarrow \{0, ..., m - 1\} \) such that:

(a) if $\pi(i) = j$ then $\pi(j) = i$ (characters at positions i and j are swapped);
(b) for all i, $\pi(i) \in \{i - 1, i, i + 1\}$ (only adjacent characters are swapped);
(c) if $\pi(i) \neq i$ then $P[\pi(i)] \neq P[i]$ (identical characters can not be swapped).

P has a swapped occurrence in T at location j with k swaps - $P \propto_k T_j$ - if a swap permutation π of P exists such that $\pi(P)$ matches T at location j and $k = |\{i : P[i] \neq P[\pi(i)]\}|/2$.
Pattern Matching with Swaps

\[
\begin{align*}
\text{fate} & \quad \pi(1) = 2, \pi(2) = 1, \pi(3) = 3, \pi(4) = 4 \\
\text{afte} & \quad \pi(1) = 2, \pi(2) = 1, \pi(3) = 3, \pi(4) = 4 \\
\text{afet} & \quad \pi(1) = 2, \pi(2) = 1, \pi(3) = 4, \pi(4) = 3 \\
\text{faet} & \quad \pi(1) = 1, \pi(2) = 2, \pi(3) = 4, \pi(4) = 3 \\
\text{ftae} & \quad \pi(1) = 1, \pi(2) = 3, \pi(3) = 2, \pi(4) = 4
\end{align*}
\]
Approximate Pattern Matching with Swaps problem:

- Alphabet Σ
- Pattern P
- Text T

Find all the pairs (j, k) such that P has a swapped occurrence in T at location j with k swaps
Previous work

- (Amir & Lewenstein & Porat, 2002): $O(n \log m \log \min(m, |\Sigma|))$
- (Cantone & Faro, 2009):
 - $O(mn)$ dynamic-programming algorithm
 - $O(\lceil (mn \log m)/w \rceil)$ bit-parallel algorithm; linear $O(n)$ if $m(\log(\lfloor m/2 \rfloor + 1) + 1) \leq w$
Approximate-BCS algorithm

- BDM-like algorithm:
 - right-to-left scans in windows of size m
 - window update by left-align with the longest prefix matched
- Find the longest prefix of the pattern which has a swapped occurrence in the current window and count the number of swap operations using dynamic-programming
The set S_j^h includes all the values i such that the h-substring of P ending at position i has a swapped occurrence ending at position j in T.

$$S_j^h = \{ h - 1 \leq i \leq m - 1 \mid P[i - h + 1 .. i] \propto T_j \}$$
\textbf{Approximate-BCS algorithm}

\[\mathcal{W}_j^h = \{ h \leq i < m-1 \mid P[i-h+2..i] \propto T_j \text{ and } P[i-h+1] = T[j-h] \} \]

- The set \(\mathcal{W}_j^h \) includes all the values \(i \) such that the \(h - 1 \) substring of \(P \) ending at position \(i \) has a swapped occurrence at position \(j \) in \(T \) and the first part of the swap between characters \(P[i-h] \) and \(P[i-h+1] \) is recognized
The sets S_j^h and W_j^h can be computed using the following recurrences:

- $S_j^{h+1} = \{ h - 1 \leq i \leq m - 1 \mid (i \in S_j^h \text{ and } P[i - h] = T[j - h]) \text{ or } (i \in W_j^h \text{ and } P[i - h] = T[j - h + 1]) \}$
- $W_j^{h+1} = \{ h \leq i \leq m - 1 \mid i \in S_j^h \text{ and } P[i - h] = T[j - h - 1] \}$

Base cases:
- $S_j^0 = \{ i \mid 0 \leq i < m \}$
- $W_j^0 = \{ 0 \leq i < m - 1 \mid P[i + 1] = T[j] \}$
Approximate-BCS algorithm

- If $h - 1 \in S^h_j$ there is a swapped occurrence of the prefix of P of length h
- The window is shifted by $m - l$, where $l = \max\{h : h - 1 \in S^h_j\}$
Approximate-BCS algorithm

- If $m - 1 \in S_j^m$ P has a swapped occurrence at position j in T

- $m - 1 \in S_j^m \iff m - 1 \in (S_j^h \cup W_j^h), 1 \leq h \leq m$

- Swap between characters $P[m - 1 - h]$ and $P[m - 1 - h + 1] \iff m - 1 \in S_j^{h+1} \land m - 1 \in W_j^h \land m - 1 \notin S_j^h$
$P = \text{ooze}, T = \text{ooez}$

$m - 1 \in W_j^1, m - 1 \notin S_j^1$

$m - 1 \notin W_j^2, m - 1 \in S_j^2$

$m - 1 \in W_j^3, m - 1 \in S_j^3$

$m - 1 \in W_j^4, m - 1 \in S_j^4$
Approximate-BCS algorithm

- The number of swaps for a match at position j is given by
 \[\left| \{ 1 \leq h < m : (m - 1) \in (S_{j+1}^h \setminus S_j^h) \} \right| \]

- The algorithm maintains a single counter per window

- At iteration h the counter is incremented if $m - 1 \in S_{j+1}^h \setminus S_j^h$
Approximate-BPBCS algorithm

- Simulation of Approximate-BCS using bit-parallelism
- S_j^h and W_j^h represented as vector of m bits
 - $S_j^h \rightarrow D_j^h$: the $i - h + 1$-th bit of D_j^h is set to 1 if $i \in S_j^h$
 - $W_j^h \rightarrow C_j^h$: the $i - h + 1$-th bit of C_j^h is set to 1 if $i \in W_j^h$
- Bit mask $M[c]$, i-th bit is set to 1 if $P[i] = c$, as in Shift-And
Approximate-BPBCS algorithm

(a) $S_{j}^{h+1} \leftarrow \{i : i \in S_{j}^{h} \text{ and } P[i - h] = T[j - h]\}$

(a') $D_{j}^{h+1} \leftarrow (D_{j}^{h} \ll 1) \& M[T[j - h]]$

(b) $S_{j}^{h+1} \leftarrow S_{j}^{h+1} \cup \{i : i \in W_{j}^{h} \text{ and } P[i - h] = T[j - h + 1]\}$

(b') $D_{j}^{h+1} \leftarrow D_{j}^{h+1} \mid ((C_{j}^{h} \ll 1) \& M[T[j - h + 1]])$
Approximate-BPBCS algorithm

(c) \(W_{j}^{h+1} \leftarrow \{ i : i \in S_{j}^{h} \text{ and } P[i - h] = T[j - h - 1] \} \)

(c') \(C_{j}^{h+1} \leftarrow (D_{j}^{h} \ll 1) \& M[T[j - h - 1]] \)

(d) \(m - 1 \in S_{j}^{h+1} \setminus S_{j}^{h} \)

(d') \(((D_{j}^{h+1} \& \sim (D_{j}^{h} \ll 1)) \& (1 \ll h)) \neq 0 \)
Complexity

- **APPROXIMATE-BCS**: $O(nm^2)$ worst case time complexity, $O(m)$ space complexity

- **APPROXIMATE-BPBCS**: $O(\lceil nm^2 / w \rceil)$ worst case time complexity, $O(\sigma \lceil m / w \rceil + \log(\lceil m / 2 \rceil + 1))$ space complexity
Experimental results

- Implementation in C, compiled with gcc, run on AMD Turion X2 2GHz
- Randσ problems, protein and genome sequences, natural language text
- Set of 100 patterns of fixed length $m \in \{4, 8, 12, 16, 20, 24, 28, 32\}$, randomly extracted from the text
- Comparison between the following algorithms:
 - Approximate-Cross-Sampling (ACS)
 - BP-Approximate-Cross-Sampling (BPACS)
 - Approximate-BCS (ABCS)
 - Approximate-BPBCS (BPABCS)
 - Iliopoulos-Rahman algorithm with a naive check of the swaps (IR&C)
 - BP-Backward-Cross-Sampling algorithm with a naive check of the swaps (BPBCS&C)
Experimental results

Running times for a Rand8 problem

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPACS</td>
<td>0.832</td>
<td>0.830</td>
<td>0.828</td>
<td>0.831</td>
<td>0.830</td>
<td>0.829</td>
<td>0.827</td>
<td>0.827</td>
</tr>
<tr>
<td>BPABCS</td>
<td>0.413</td>
<td>0.229</td>
<td>0.175</td>
<td>0.145</td>
<td>0.127</td>
<td>0.114</td>
<td>0.104</td>
<td>0.096</td>
</tr>
<tr>
<td>IR&C</td>
<td>0.282</td>
<td>0.279</td>
<td>0.279</td>
<td>0.277</td>
<td>0.280</td>
<td>0.279</td>
<td>0.283</td>
<td>0.285</td>
</tr>
<tr>
<td>BPBCS&C</td>
<td>0.388</td>
<td>0.249</td>
<td>0.193</td>
<td>0.157</td>
<td>0.141</td>
<td>0.121</td>
<td>0.111</td>
<td>0.101</td>
</tr>
</tbody>
</table>

Running times for a natural language text ($\sigma = 93$)

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>3.170</td>
<td>2.757</td>
<td>2.748</td>
<td>2.756</td>
<td>2.761</td>
<td>2.745</td>
<td>2.746</td>
<td>2.754</td>
</tr>
<tr>
<td>ABCS</td>
<td>6.175</td>
<td>4.054</td>
<td>3.164</td>
<td>2.705</td>
<td>2.306</td>
<td>2.288</td>
<td>2.042</td>
<td>1.866</td>
</tr>
<tr>
<td>BPACS</td>
<td>0.492</td>
<td>0.497</td>
<td>0.492</td>
<td>0.491</td>
<td>0.492</td>
<td>0.491</td>
<td>0.494</td>
<td>0.493</td>
</tr>
<tr>
<td>BPABCS</td>
<td>0.194</td>
<td>0.114</td>
<td>0.086</td>
<td>0.071</td>
<td>0.062</td>
<td>0.056</td>
<td>0.051</td>
<td>0.049</td>
</tr>
<tr>
<td>IR&C</td>
<td>0.171</td>
<td>0.165</td>
<td>0.164</td>
<td>0.168</td>
<td>0.165</td>
<td>0.165</td>
<td>0.165</td>
<td>0.167</td>
</tr>
<tr>
<td>BPBCS&C</td>
<td>0.164</td>
<td>0.126</td>
<td>0.094</td>
<td>0.076</td>
<td>0.070</td>
<td>0.059</td>
<td>0.056</td>
<td>0.055</td>
</tr>
</tbody>
</table>
Experimental results

Running times for a genome sequence ($\sigma = 4$)

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS</td>
<td>5.629</td>
<td>5.643</td>
<td>5.654</td>
<td>5.636</td>
<td>5.644</td>
<td>5.640</td>
<td>5.647</td>
<td>6.043</td>
</tr>
<tr>
<td>BPACS</td>
<td>0.950</td>
<td>0.914</td>
<td>0.917</td>
<td>0.766</td>
<td>0.874</td>
<td>0.934</td>
<td>0.935</td>
<td>0.843</td>
</tr>
<tr>
<td>BPABCS</td>
<td>0.647</td>
<td>0.318</td>
<td>0.266</td>
<td>0.232</td>
<td>0.195</td>
<td>0.174</td>
<td>0.160</td>
<td>0.147</td>
</tr>
<tr>
<td>IR&C</td>
<td>0.262</td>
<td>0.287</td>
<td>0.314</td>
<td>0.311</td>
<td>0.311</td>
<td>0.311</td>
<td>0.310</td>
<td>0.311</td>
</tr>
<tr>
<td>BPBCS&C</td>
<td>0.678</td>
<td>0.367</td>
<td>0.290</td>
<td>0.233</td>
<td>0.204</td>
<td>0.176</td>
<td>0.160</td>
<td>0.146</td>
</tr>
</tbody>
</table>

Running times for a protein sequence ($\sigma = 22$)

<table>
<thead>
<tr>
<th>m</th>
<th>4</th>
<th>8</th>
<th>12</th>
<th>16</th>
<th>20</th>
<th>24</th>
<th>28</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCS</td>
<td>7.045</td>
<td>4.557</td>
<td>3.734</td>
<td>3.162</td>
<td>2.806</td>
<td>2.661</td>
<td>2.600</td>
<td>2.351</td>
</tr>
<tr>
<td>BPACS</td>
<td>0.565</td>
<td>0.581</td>
<td>0.561</td>
<td>0.563</td>
<td>0.584</td>
<td>0.580</td>
<td>0.534</td>
<td>0.519</td>
</tr>
<tr>
<td>BPABCS</td>
<td>0.249</td>
<td>0.142</td>
<td>0.103</td>
<td>0.084</td>
<td>0.074</td>
<td>0.066</td>
<td>0.061</td>
<td>0.058</td>
</tr>
<tr>
<td>IR&C</td>
<td>0.388</td>
<td>0.390</td>
<td>0.391</td>
<td>0.389</td>
<td>0.391</td>
<td>0.391</td>
<td>0.396</td>
<td>0.389</td>
</tr>
<tr>
<td>BPBCS&C</td>
<td>0.241</td>
<td>0.145</td>
<td>0.107</td>
<td>0.087</td>
<td>0.075</td>
<td>0.068</td>
<td>0.062</td>
<td>0.058</td>
</tr>
</tbody>
</table>
Conclusions

- The **Approximate-BPBCS** algorithm is the fastest for $m \geq 8$
- The **Approximate-BPBCS** algorithm scales better than **BP-Approximate-Cross-Sampling**
 - **BP-Approximate-Cross-Sampling**: m counters, linear if $m(\log(\lfloor m/2 \rfloor + 1) + 1) \leq w$
 - **Approximate-BPBCS**: one counter, linear if $m \leq w$