> Parallel algorithms for degenerate and weighted sequences derived from high throughput sequencing technologies

> Costas S. Iliopoulos<sup>1,2</sup>, Mirka Miller<sup>1,3,4</sup> and Solon P. Pissis<sup>1</sup>

 <sup>1</sup> Dept. of Computer Science, King's College London
 <sup>2</sup> Digital Ecosystems & Business Intelligence Institute, Curtin University
 <sup>3</sup> School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW 2308, Australia
 <sup>4</sup> Dept. of Mathematics, University of West Bohemia, Pilsen, Czech Republic

September 2, 2009

## Overview

- Overview
- Abstract
- Introduction
- Preliminaries
- Problems definition
- Massive Exact Unique Pattern Matching in Parallel The Exact Algorithm

Massive Approximate Unique Pattern Matching in Parallel The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

#### Conclusion

イロト イポト イヨト イヨト

## Abstract

- High throughput sequencing technologies have opened new and exciting opportunities in the use of DNA sequences.
- ► We address the problem of **mapping millions** of **degenerate** and **weighted** sequences to **a reference genome** in parallel.
- We formally define and solve the Massive Exact and Approximate Unique Pattern Matching problem for degenerate and weighted sequences.

・ロン ・回 と ・ ヨ と ・ ヨ と

# Introduction

- High throughput sequencing technologies produce tens of millions of short reads of currently typical 25-50 bp in a single run.
- An important problem with these technologies is how to efficiently and accurately map these short reads to a reference genome.
- The limitations of the equipment used, or the natural polymorphisms that can be observed between individual samples can give rise to uncertain sequences.
- Sequences, where more than one base (A, C, G, T) are possible in certain positions, are called **degenerate**.

## Introduction

- Sequences, where the probability of every symbol's occurrence at every location is given, are called weighted.
- We address the problem of mapping millions of degenerate and weighted patterns to a reference genome in parallel...
- ...with respect to whether they occur exactly once in the genome or not, and...
- ...by taking into consideration **probability scores**.

・ロン ・回と ・ヨン・

# Preliminaries

- A **degenerate** string is a sequence  $s = s[1 \dots n]$ , where  $s[i] \subseteq \Sigma$  for each *i*, and  $\Sigma$  is a given alphabet.
- When a position of the string is degenerate, and it can match more than one element from the alphabet Σ, we say that this position has **non-solid** symbol.
- If in a position only one element of the alphabet Σ is present, we refer to this symbol as **solid**.
- A weighted string over an alphabet Σ is a sequence s = s[1...n] of sets of couples. In particular, each s[i] is a set ((q<sub>1</sub>, π<sub>i</sub>(q<sub>1</sub>)), (q<sub>2</sub>, π<sub>i</sub>(q<sub>2</sub>)), ..., (q<sub>|Σ|</sub>, π<sub>i</sub>(q<sub>|Σ|</sub>)), where π<sub>i</sub>(q<sub>j</sub>) is the occurrence probability of character q<sub>j</sub> at position i. For every position 1 ≤ i ≤ n, Σ<sup>|Σ|</sup><sub>j=1</sub> π<sub>i</sub>(q<sub>j</sub>) = 1.

## Preliminaries

#### Example

• a degenerate string 
$$s = A \begin{pmatrix} A \\ C \\ G \\ T \end{pmatrix} GT \begin{pmatrix} A \\ C \\ T \end{pmatrix} AC$$
  
• a weighted string  $s = C \begin{pmatrix} C & 0.2 \\ G & 0.2 \\ T & 0.6 \end{pmatrix} GT \begin{pmatrix} A & 0.1 \\ C & 0.1 \\ G & 0.2 \\ T & 0.6 \end{pmatrix} AC$ 

・ロト ・ 同ト ・ ヨト ・ ヨト

3

# Problems definition

## Problem 1.

Find whether the degenerate pattern  $p_i = p_i[1...\ell]$ , for all  $0 \le i < r$ , of length  $\ell_{min} \le \ell \le \ell_{max}$ , with at most  $\mu$  non-solid symbols, occurs with at most *k*-mismatches in t = t[1...n], exactly once.

#### Problem 2.

Find whether the weighted pattern  $p_i = p_i[1...\ell]$ , for all  $0 \le i < r$ , of length  $\ell_{min} \le \ell \le \ell_{max}$ , with at most  $\mu$  non-solid symbols, occurs with at most k-mismatches in t = t[1...n], exactly once, with probability at least c, if  $\sum_{i=1}^{\ell} \pi_i(q_i) \ge c$ .

(日) (同) (三) (三) (三)

# Problems definition

We mainly focus on the following classes of both problems:

- Class 1.  $\rho_i$  occurs in t once
- **Class 2.**  $\rho_i$  occurs, with at most 1-mismatch in *t*, once
- **Class 3.**  $\rho_i$  occurs, with at most 2-mismatches in *t*, once

We assume that the data is derived from high quality sequencing methods and therefore we will consider patterns with at most  $\mu = 3$  non-solid symbols.

・ロン ・回と ・ヨン ・ヨン

The Exact Algorithm

## Massive Exact Unique Pattern Matching in Parallel

- In order for the procedure to be efficient we will make use of word-level parallelism by compacting strings into single computer words that we call signatures.
- We get the signature σ(x) of a string x, by transforming it to its binary equivalent using 2-bits-per-base encoding of the DNA alphabet, and storing its decimal value into a computer word.

$$A 
ightarrow 00, \ C 
ightarrow 01, \ G 
ightarrow 10, \ T 
ightarrow 11$$

# **Example** $\sigma(ACGT) = 00011011_2 = 27_{10}$

イロト イポト イヨト イヨト

The Exact Algorithm

## The Exact Algorithm

We use a **data decomposition** approach to partition the text t with the sliding window mechanism into a set of substrings  $z_1, z_2, ..., z_{n-\ell+1}$ , where  $z_i = t[i \dots i + \ell - 1]$ , for all  $1 \le i \le n - \ell + 1$ .

An outline of the algorithm, for all  $\ell_{min} \leq \ell \leq \ell_{max}$ , is as follows.

- ► 1. We distribute z<sub>1</sub>, z<sub>2</sub>, ..., z<sub>n-ℓ+1</sub> evenly among the p available processors. We denote z<sub>first<sub>q</sub></sub>, ..., z<sub>last<sub>q</sub></sub> as the set of the allocated substrings of processor ρ<sub>q</sub>.
- ▶ 2. Each processor ρ<sub>q</sub> transforms each allocated substring z<sub>i</sub>, for all first<sub>q</sub> ≤ i ≤ last<sub>q</sub>, into a signature σ(z<sub>i</sub>), packs it in a couple (i, σ(z<sub>i</sub>)), and adds the couple to a local list Z<sub>q</sub>.

・ロト ・回 ト ・ヨト ・ヨー ・クタマ

The Exact Algorithm

## The Exact Algorithm

- ► 3. We sort the local lists Z<sub>q</sub> based on the signature's field, in parallel, using *Parallel Sorting by Regular Sampling* (PSRS), a practical parallel deterministic sorting algorithm.
- ▶ 4. Each processor  $\rho_q$  runs sequentially through its sorted list  $Z_q$  and checks whether the signatures in  $Z_q[x]$  and  $Z_q[x+1]$  are equal, for all  $0 \le x < |A_q| 1$ . If they are equal, then  $\rho_q$  adds  $Z_q[x]$  to a **new list**  $L_q$ . If not, then  $Z_q[x]$  is added to a **new list**  $L'_q$ .

The Exact Algorithm

## The Exact Algorithm

- ► 5. Each processor ρ<sub>q</sub>, for all 1 ≤ q < p, sends the first element in Z<sub>q</sub> to the neighbour processor ρ<sub>q-1</sub>. Then, each processor ρ<sub>q</sub>, for all 0 ≤ q q</sub>, to the signature of the element received from processor ρ<sub>q+1</sub>. If they are equal, then processor ρ<sub>q</sub> adds the element to the list L<sub>q</sub>, else it is added to the list L'<sub>q</sub>. (Boundary comparison)
- 6. Processor ρ<sub>0</sub> perform a gather operation to collect and combine L<sub>q</sub> and L'<sub>q</sub> to Λ<sub>ℓ</sub> and Λ'<sub>ℓ</sub>, respectively. Processor ρ<sub>0</sub> performs a one-to-all broadcast to send both lists Λ<sub>ℓ</sub> and Λ'<sub>ℓ</sub> to all other processors.

(ロ) (同) (E) (E) (E)

The Exact Algorithm

## The Exact Algorithm

- T. Each processor ρ<sub>q</sub> is allocated a fair amount of query patterns from the set p<sub>0</sub>, p<sub>1</sub>, ..., p<sub>r-1</sub>.
- ▶ 8. We extend the set of patterns  $\rho_0, \rho_1, ..., \rho_{r-1}$  to a new set  $\rho'_0, \rho'_1, ..., \rho'_{r'-1}$ , r < r', as follows.
  - 1. **Problem 1.** For each **degenerate** pattern  $\rho_i$  of length  $\ell$  with  $\lambda$  non-solid symbols, such that  $\lambda \leq \mu$ , we create  $\prod_{j=1}^{\ell} |\rho[j]|$  **new patterns**, each differing in  $\lambda$  **positions**.
  - 2. Problem 2. For each weighted pattern  $\rho_i$  of length  $\ell$  with  $\lambda$  non-solid symbols, such that  $\lambda \leq \mu$ , we create  $\prod_{j=1}^{\ell} |\rho[j]|$  new patterns, each differing in  $\lambda$  positions. We select each of those patterns, say  $s = s[1...\ell]$ , with  $s[1] = (q_1, \pi_1(q_1))$ ,  $s[2] = (q_2, \pi_2(q_2)),...,s[\ell] = (q_\ell, \pi_\ell(q_\ell))$ , that satisfy  $\prod_{j=1}^{\ell} \pi_j(q_j) \geq c$ , where c is a constant.

The Exact Algorithm

# The Exact Algorithm

#### Example

Problem 1. if ρ'<sub>i</sub> = A (A) C C (G) AC then we construct AAGTGAC, ACGTGAC, AAGTTAC, ACGTTAC
Problem 2. if ρ'<sub>i</sub> = C (A 0.05 G 0.95 CT (A 0.1 T 0.9) TC and c = 0.3 then we only construct CGCTTTC

Notice that, since  $\mu = 3$  and  $|\Sigma| = 4$ , the number of the new created patterns is treated as **constant**.

イロト イポト イヨト イヨト

The Exact Algorithm

## The Exact Algorithm

Assuming that the two sets of lists  $\Lambda_{\ell_{\min}},...,\Lambda_{\ell_{\max}}$  and  $\Lambda'_{\ell_{\min}},...,\Lambda'_{\ell_{\max}}$  are already created...

- ▶ 9. We transform each pattern \(\rho'\_i\), for all 0 ≤ i < r'\), into a signature.</p>
- ▶ 10. We can determine, by using a binary search, whether a pattern  $\rho'_i$  of length  $\ell$  occurs in t exactly once.
  - 1. If  $\sigma(\rho'_i) \in \Lambda'_{\ell}$ , then  $\rho'_i$  is a **unique pattern**, and the algorithm returns its matching position in *t*.
  - 2. If  $\sigma(\rho'_i) \in \Lambda_\ell$ , then  $\rho'_i$  occurs in t more than once.
  - 3. If  $\sigma(\rho'_i) \notin \Lambda_\ell$  and  $\sigma(\rho'_i) \notin \Lambda'_\ell$ , then  $\rho'_i$  does not occur in t.

The Exact Algorithm

The Exact Algorithm

- $\mathcal{O}(\lceil \ell_{max}/w \rceil (\frac{n}{p} \log \frac{n}{p} + \frac{r}{p} \log n))$  computation time
- $\mathcal{O}(n \log p + r)$  communication time

・ロト ・回ト ・ヨト ・ヨト

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## Massive Approximate Unique Pattern Matching in Parallel

- We make use of word-level parallelism, and apply a bit-vector algorithm for efficient approximate string matching with mismatches.
- The fixed-length approximate string matching with at most k-mismatches problem: given a text t of length n, a pattern ρ of length m and an integer l, find all substrings of ρ of length l that match any contiguous substring of t of length l with at most k-mismatches.
- If we assign *p*=*t*, we can extract all **unique** and **duplicate** substrings of length *ℓ* of *t* with **at most** *k*-mismatches.

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

《曰》《聞》《臣》《臣》 三臣

## Massive Approximate Unique Pattern Matching in Parallel

- The focus is on computing matrix *M*, which contains the number of mismatches of all substrings of pattern ρ of length *l* and any contiguous substring of the text *t* of length *l*.
- ▶ We maintain the **bit-vector**  $B[i,j] = b_{\ell}...b_1$ , where  $b_{\lambda} = 1, \ 1 \leq \lambda \leq \ell$ , if there is a mismatch of a contiguous substring of the text  $t[i \ell + 1...i]$  and  $t[j \ell + 1...j]$  in the  $\lambda^{th}$  position. Otherwise we set  $b_{\lambda} = 0$ .
- ► Given the restraint that the integer *l* is less than the length of the computer word *w*, then the bit-vector operations allow to update each entry of the matrix *B* in **constant time** (using "shift"-type of operation on the bit-vector).

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## Massive Approximate Unique Pattern Matching in Parallel



Table: Matrix *M* for t = p = GGGTCTA and U = 3.

Costas S. Iliopoulos, Mirka Miller and Solon P. Pissis

Parallel algorithms for degenerate and weighted sequences deriv

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

#### Massive Approximate Unique Pattern Matching in Parallel

|   |            |  | 0          | 1   | 2   | 3   | 4   | 5   | 6   | 7   |
|---|------------|--|------------|-----|-----|-----|-----|-----|-----|-----|
|   |            |  | $\epsilon$ | G   | G   | G   | Т   | С   | Т   | Α   |
|   |            |  |            |     |     |     |     |     |     |     |
| 0 | $\epsilon$ |  | 0          | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| 1 | G          |  | 1          | 0   | 0   | 0   | 1   | 1   | 1   | 1   |
| 2 | G          |  | 11         | 10  | 00  | 00  | 01  | 11  | 11  | 11  |
| 3 | G          |  | 111        | 110 | 100 | 000 | 001 | 011 | 111 | 111 |
| 4 | Τ          |  | 111        | 111 | 101 | 001 | 000 | 011 | 110 | 111 |
| 5 | С          |  | 111        | 111 | 111 | 011 | 011 | 000 | 111 | 101 |
| 6 | Т          |  | 111        | 111 | 111 | 111 | 110 | 111 | 000 | 111 |
| 7 | A          |  | 111        | 111 | 111 | 111 | 111 | 101 | 111 | 000 |

Table: Matrix B for t = p = GGGTCTA and  $\mathcal{U} = 3$ .

Costas S. Iliopoulos, Mirka Miller and Solon P. Pissis

Parallel algorithms for degenerate and weighted sequences deriv

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## Massive Approximate Unique Pattern Matching in Parallel

The **maintenance** of the **bit-vector** is done via **operations** defined as follows:

- 1. shiftc(x): shifts and truncates the leftmost bit of x.
- 2.  $\delta_H(x, y)$ : returns the minimum number of replacements required to transform x into y

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## The Bit-Vector-Mismatches Algorithm

#### **Bit-Vector-Mismatches**

 $\triangleright$ Input: t, n,  $\rho$ , m,  $\ell$  $\triangleright$ Output: B, M begin 1 2 ▷ Initialization  $B[0...m,0] \leftarrow \min(i,\ell)$  1's;  $B[0,0..n] \leftarrow 0$ 3 for  $i \leftarrow 1$  until m do 4 5 for  $i \leftarrow 1$  until n do  $B[i, j] \leftarrow shiftc(B[i-1, j-1]) \text{ OR } \delta_H(\rho[i], t[j])$ 6  $M[i, j] \leftarrow ones(B[i, j])$ 7 8 end

Figure: The BIT-VECTOR-MISMATCHES algorithm

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## The Approximate Algorithm

We use a **functional decomposition** approach, in which the initial focus is on the computation that is to be performed rather than on the data manipulated by the computation. We partition the problem of computing matrix B (and M) into a set of diagonal vectors  $\Delta_0, \Delta_1, ..., \Delta_{n+m}$ .

$$\Delta_{\nu}[x] = \begin{cases} B[\nu - x, x] : 0 \le x \le \nu, & \text{(a)} \\ B[m - x, \nu - m + x] : 0 \le x < m + 1, & \text{(b)} \\ B[m - x, \nu - m + x] : 0 \le x < n + m - \nu + 1, & \text{(c)} \\ & \text{(1)} \end{cases}$$

where,

(a) if 
$$0 \le \nu < m$$
, (b) if  $m \le \nu < n$ , (c) if  $n \le \nu < n + m + 1$ .

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

## The Approximate Algorithm

An outline of the algorithm, for all  $\ell_{min} \leq \ell \leq \ell_{max}$ , is as follows. In each diagonal  $\Delta_0, \Delta_1, ..., \Delta_{n+m}$ 

- ► 1. Each processor is allocated with |Δ<sub>ν</sub>|/p cells (without loss of generality) and computes each allocated cell using the BIT-VECTOR-MISMATCHES.
- ▶ 2. If M[i,j] = 0 and i = j, then substring t[i ℓ + 1...i] occurs in t at least once. We transform substring t[i ℓ + 1...i] into a signature σ(t[i ℓ + 1...i]), pack it in a couple (i ℓ + 1, σ(t[i ℓ + 1...i])), and add the couple to a new list Z<sub>q</sub>.

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## The Approximate Algorithm

If  $M[i,j] \leq k$  and  $i \neq j$ , then substrings  $t[i - \ell + 1 \dots i]$  and  $t[j - \ell + 1 \dots j]$  are considered to be duplicates with at most k-mismatches. We **transform** both substrings into the signatures  $\sigma(t[i - \ell + 1 \dots i])$  and  $\sigma(t[j - \ell + 1 \dots j])$ , pack them in couples  $(i - \ell + 1, \sigma(t[i - \ell + 1 \dots i]))$  and  $(j - \ell + 1, \sigma(t[j - \ell + 1 \dots j]))$ , and add the couples to the list  $Z_q$ .

 3. Processors communication involving point-to-point boundary cells swaps.

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

(ロ) (同) (E) (E) (E)

## The Approximate Algorithm

- ▶ 4. Assume that the diagonal supersteps Δ<sub>0</sub>, Δ<sub>1</sub>, ..., Δ<sub>n+m</sub> are executed. The local lists Z<sub>q</sub> are constructed, and so, we follow the steps 3-9 of the exact algorithm.
- 5. We can determine, by using a binary search, whether a pattern ρ'<sub>i</sub> of length ℓ occurs in t exactly once.
  - 1. If  $\sigma(\rho'_i) \in \Lambda'$ , then  $\rho'_i$  is a **unique pattern** with at most k-mismatches.
  - 2. If  $\sigma(\rho'_i) \in \Lambda_{\ell}$ , then  $\rho'_i$  occurs in t more than once with at most k-mismatches.
  - If σ(ρ'<sub>i</sub>) ∉ Λ<sub>ℓ</sub> and σ(ρ'<sub>i</sub>) ∉ Λ'<sub>ℓ</sub>, then we can check whether the k-mismatches occur inside ρ'<sub>i</sub>.

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

## The Approximate Algorithm

- 1. Class 2 and Class 3. We construct a new set of patterns  $x_j$ , for all  $0 \le j < |\Sigma|.\ell$ , differing from  $\rho'_i$  in one position, we compact each  $x_j$  into a signature  $\sigma(x_j)$ , and do the binary search in  $\Lambda'$  and  $\Lambda$ .
- 2. Class 3. We construct a new set of patterns  $y_j$ , for all  $0 \le j < |\Sigma|^2 . {\ell \choose 2}$ , differing from  $\rho'_i$  in two positions, we compact each  $y_j$  into a signature  $\sigma(y_j)$ , and do the binary search in  $\Lambda'$  and  $\Lambda$ .

In general, for the problem of k-mismatches, for each pattern  $\rho'_i$  of length  $\ell$  that does not occur in t, we construct k new sets of patterns, each containing  $|\Sigma|^{\lambda} \cdot {\ell \choose \lambda}$  patterns differing from  $\rho'_i$  in  $\lambda$  positions, for all  $1 \le \lambda \le k$ .

The Bit-Vector-Mismatches Algorithm The Approximate Algorithm

ヘロン 人間 とくほど くほとう

## The Approximate Algorithm

- $\mathcal{O}(\lceil \ell_{max}/w \rceil(\frac{n^2}{p} + \frac{\ell_{max}^2 r}{p} \log p))$  computation time
- $\mathcal{O}(n \log p + r)$  communication time

# Conclusion

- The new technologies produce a huge number of very short sequences and these sequences need to be classified, tagged and recognised as parts of a reference genome.
- The proposed algorithms can manipulate this data for degenerate and weighted sequences for Massive Exact and Approximate Unique Pattern Matching in Parallel.
- We have already implemented and tested the exact case, getting very promising results, comparable to more traditional mapping programs.
- Our immediate target is to implement the approximate case and explore the possibility of a faster algorithm.

# Conclusion

Biosciences and Computing are not just trying to bridge their gaps.

Most importantly, they remind us all, that **Science** is, mainly, **a social tool**, which therefore must be used for **humanistic purposes**.

Thank you!

イロト イポト イヨト イヨト

## Questions

#### Look and you shall find it; for what is unsought will go undetected.

#### Sophocles (496 BC - 406 BC)

イロン 不同と 不同と 不同と

Costas S. Iliopoulos, Mirka Miller and Solon P. Pissis Parallel algorithms for degenerate and weighted sequences deri