Analyzing Edit Distance on Trees
Tree Swap Distance is Intractable

Martin Berglund, mbe@cs.umu.se

Department of Computing Science
Natural and Formal Languages (NFL) Group

August 29, 2011
• Recall string correction problem (Damerau-Levenshtein)
• Recall tree correction problem (Selkow)
• Define a swap operation for trees and discuss the problem of integrating it in Selkow tree correction problems
• Show that swaps in tree correction is intractable in general through a three step reduction
• Edit distance on strings is well known. The operations
 • Delete a single symbol anywhere in a string (abc \Rightarrow ac)
 • Insert a single symbol anywhere in a string (abc \Rightarrow adbc)
 • (Replace a single symbol by another: ignored here)
make up Levenshtein distance
• Damerau-Levenshtein distance adds a swap operation (abc \Rightarrow bac or abc \Rightarrow acb)
• The distance from \(s \in \Sigma^* \) to \(s' \in \Sigma^* \) is the number of operations necessary to transform \(s \) into \(s' \), the decision problem becomes:

Damerau-Levenshtein String Correction Problem

Given \(s, s' \in \Sigma^* \) and \(k \in \mathbb{N} \), can \(s \) be turned into \(s' \) by performing at most \(k \) symbol deletions, insertions, and swaps?
Tree correction was defined by Selkow in ’77:

Tree Correction Problem

Given two trees t and t' and $k \in \mathbb{N}$, can t be turned into t' by performing at most k node deletions, and insertions?

Efficient algorithms available (Zhang-Shasha for example)
• Selkow tree correction only has deletions and insertions
• Swaps in trees are easy to define though:

\[
\begin{align*}
\text{a} & \quad \text{swap} & \quad \text{a} \\
\text{b} & \quad \text{f} & \Rightarrow & \quad \text{b} & \quad \text{f} & \Rightarrow & \quad \text{f} & \quad \text{b} \\
\text{c} & \quad \text{d} & \quad \text{e} & \Rightarrow & \quad \text{c} & \quad \text{e} & \quad \text{d} & \Rightarrow & \quad \text{c} & \quad \text{e} & \quad \text{d}
\end{align*}
\]

• Having swaps is also useful in all kinds of applications
• So why isn’t it done? The correction problem becomes NP-complete!
No swaps in tree edit distance?

Unordered tree inclusion (NP-complete)

Given two *unordered* trees t and t', can t' be obtained from t by a sequence of deletions?

- We can reduce to this to tree correction as follows
- Set budget $k = (1 + |t| - |t'|)|t|^2 - 1$
- Replace each node in both t and t' by a unary tree of height $|t|^2$, simulating a cost of $|t|^2$ for deletions/insertions
- Then the budget allows at most $|t| - |t'|$ deletions/insertions, so no insertions possible
- The left-over budget $|t|^2 - 1$ is enough to make any reordering using swaps
- In summary, only deletes can be used and t can be freely reordered, so tree correction with swaps is NP-complete
So, what to do about tree swaps?

- What now? Subtree movements is desirable in real applications
- Polynomial algorithms exist which weaken the swap (each tree may only participate in a constant number of swaps: Barnard et al., ’95)
- How about the other route, where swaps are allowed but the other operations are weakened?
- The simplest and most extreme approach: allowing only swaps is also NP-complete! Let’s look at why
Tree swap distance problem

Given two trees t and t' and $k \in \mathbb{N}$, can t be turned into t' by performing at most k swaps on t?

We demonstrate NP-completeness with a sequence of reductions:

- Extended string correction problem (only deletes/swaps)
- Swap assignment problem
- Tree swap distance problem
- Even swap assignment problem

The first is known to be strongly NP-complete, the rest are new.
Wagner generalized the string correction problem where each operation has a cost. Cases where \textit{inserts} has cost ∞ turns out strongly NP-complete:

Extended string correction problem, deletes/swaps only

Given $s, s' \in \Sigma^*$ and $k \in \mathbb{N}$ can s be transformed into s' by deleting symbols from s and then performing at most k swaps?

We reduce this to the intermediary problem:

Swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$ and $k \in \mathbb{N}$, is there a sequence of n swaps of adjacent rows in M such that $k \geq n + \sum \text{diag}(M)$?

Basically: swap rows to get a small diagonal
The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem \(s = aacb \), \(s' = abc \), and \(k = 1 \), this constructs the swap assignment problem:

\[
M = \begin{bmatrix}
0 & 6 & 6 & 1 \\
0 & 6 & 6 & 2 \\
6 & 6 & 0 & 3 \\
6 & 0 & 6 & 4 \\
\end{bmatrix}, \quad k' = 5
\]
The delete/swap correction \rightarrow swap assignment reduction

Take the delete/swap correction problem $s = aacb$, $s' = abc$, and $k = 1$, this constructs the swap assignment problem:

$$M = \begin{bmatrix}
0 & 6 & 6 & 1 \\
0 & 6 & 6 & 2 \\
6 & 6 & 0 & 3 \\
6 & 0 & 6 & 4
\end{bmatrix}, \quad k' = 5$$

$$aacb$$

$$abc$$
The delete/swap correction → swap assignment reduction

Take the delete/swap correction problem $s = aacb$, $s' = abc$, and $k = 1$, this constructs the swap assignment problem:

$$M = \begin{bmatrix}
0 & 6 & 6 & 1 \\
0 & 6 & 6 & 2 \\
6 & 6 & 0 & 3 \\
6 & 0 & 6 & 4 \\
\end{bmatrix}, \quad k' = 5$$

$$aacb$$
The delete/swap correction \rightarrow swap assignment reduction

Take the delete/swap correction problem $s = aacb$, $s' = abc$, and $k = 1$, this constructs the swap assignment problem:

$$M = \begin{bmatrix}
0 & 6 & 6 & 1 \\
0 & 6 & 6 & 2 \\
6 & 6 & 0 & 3 \\
6 & 0 & 6 & 4
\end{bmatrix}, \quad k' = 5$$

acb

\overline{acb}
Take the delete/swap correction problem \(s = aacb, s' = abc \), and \(k = 1 \), this constructs the swap assignment problem:

\[
M = \begin{bmatrix}
0 & 6 & 6 & 1 \\
0 & 6 & 6 & 2 \\
6 & 6 & 0 & 3 \\
6 & 0 & 6 & 4
\end{bmatrix}, \quad k' = 5
\]

\[
abc
\]

\[
\begin{bmatrix}
0 & 6 & 6 & 2 \\
6 & 0 & 6 & 4 \\
6 & 6 & 0 & 3 \\
0 & 6 & 6 & 1
\end{bmatrix}
\]

The general reduction shows swap assignment strongly NP-complete
A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

$$\begin{bmatrix}
 2 & 3 & 3 \\
 9 & 4 & 12 \\
 1 & 2 & 8 \\
\end{bmatrix}, \quad k = 11 \quad \Rightarrow \quad \begin{bmatrix}
 2 & 16 & 16 & 2 & 16 & 2 \\
 16 & 8 & 4 & 16 & 12 & 16 \\
 16 & 0 & 2 & 16 & 8 & 16 \\
 0 & 0 & 16 & 16 & 16 & 16 \\
 16 & 16 & 0 & 0 & 16 & 16 \\
 16 & 16 & 16 & 16 & 0 & 0 \\
\end{bmatrix}, \quad k' = 14$$
Swap assignment \rightarrow even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

$$
\begin{bmatrix}
2 & 3 & 3 \\
1 & 2 & 8 \\
9 & 4 & 12
\end{bmatrix}, \ k = 11 \ \Rightarrow \
\begin{bmatrix}
2 & 16 & 16 & 2 & 16 & 2 \\
16 & 0 & 2 & 16 & 8 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0
\end{bmatrix}, \ k' = 14
$$
Swap assignment → even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

\[
\begin{bmatrix}
1 & 2 & 8 \\
2 & 3 & 3 \\
9 & 4 & 12 \\
\end{bmatrix}, \ k = 11 \quad \Rightarrow \quad
\begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
2 & 16 & 16 & 2 & 16 & 2 \\
16 & 8 & 4 & 16 & 12 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0 \\
\end{bmatrix}, \ k' = 14
\]
Swap assignment \rightarrow even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

\[
\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3
\end{bmatrix}, \; k = 11 \Rightarrow \begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
2 & 16 & 16 & 2 & 16 & 2 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0
\end{bmatrix}, \; k' = 14
\]
A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}^{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

\[
\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3
\end{bmatrix}, \quad k = 11 \quad \Rightarrow \quad \begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
2 & 16 & 16 & 2 & 16 & 2 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0
\end{bmatrix}, \quad k' = 14
\]
A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

$$
\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3 \\
\end{bmatrix}, \ k = 11 \Rightarrow
\begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
2 & 16 & 16 & 2 & 16 & 2 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0 \\
\end{bmatrix}, \ k' = 14
$$
A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

\[
\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3
\end{bmatrix}, \quad k = 11 \quad \Rightarrow \quad \begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
2 & 16 & 16 & 2 & 16 & 2 \\
16 & 16 & 16 & 16 & 0 & 0
\end{bmatrix}, \quad k' = 14
\]
Swap assignment \rightarrow even swap assignment reduction

A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

$$\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3
\end{bmatrix}, \; k = 11 \; \Rightarrow \; \begin{bmatrix}
16 & 0 & 2 & 16 & 8 & 16 \\
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0 \\
2 & 16 & 16 & 2 & 16 & 2
\end{bmatrix}, \; k' = 14$$
A simple modification of swap assignment:

Even swap assignment problem

Given a square matrix $M \in \mathbb{N}_{d \times d}$, containing only even numbers, and $k \in \mathbb{N}$, can adjacent rows in M be swapped n times such that $k \geq n + \sum \text{diag}(M)$?

Reducing swap assignment to even swap assignment is done by rounding numbers down to be even and adding rows which simulate the odd costs:

\[
\begin{bmatrix}
1 & 2 & 8 \\
9 & 4 & 12 \\
2 & 3 & 3
\end{bmatrix}, \quad k = 11 \quad \Rightarrow \quad \begin{bmatrix}
0 & 0 & 16 & 16 & 16 & 16 \\
16 & 0 & 2 & 16 & 8 & 16 \\
16 & 8 & 4 & 16 & 12 & 16 \\
16 & 16 & 0 & 0 & 16 & 16 \\
16 & 16 & 16 & 16 & 0 & 0 \\
2 & 16 & 16 & 2 & 16 & 2
\end{bmatrix}, \quad k' = 14
\]
Even swap assignment problem → tree swap distance

This reduction requires us to represent a number as a tree:

\[
\begin{array}{c}
0 \Rightarrow \begin{array}{c}
\gamma \\
\gamma \\
1 0 0 0
\end{array} & 2 \Rightarrow \begin{array}{c}
\gamma \\
\gamma \\
0 1 0 0 0 0 1 0
\end{array} \\
6 \Rightarrow \begin{array}{c}
\gamma \\
\gamma \\
0 0 0 1 1 0 0 0
\end{array} & \bot \Rightarrow \begin{array}{c}
\gamma \\
\gamma \\
1 0 0 0 1 0 0 0
\end{array}
\end{array}
\]

Notice how the swap distance between each is equal to the numerical difference, and \(\bot \) is 3 swaps from all the others.
Take the even swap assignment problem

\[M = \begin{bmatrix} 6 & 0 \\ 2 & 2 \end{bmatrix}, \quad k = 3. \]

\(M \) is translated into the tree \(t \) and \(t' \) is constructed

The constructed budget for the tree swap problem is \(k' = 9 \)
Take the even swap assignment problem

\[
M = \begin{bmatrix}
2 & 2 \\
6 & 0 \\
\end{bmatrix}, \ k = 3.
\]

\(M\) is translated into the tree \(t\) and \(t'\) is constructed

\[
t = \alpha \left(\beta \left(\begin{array}{c}
2 \\
2 \\
\end{array} \right), \left(\begin{array}{c}
6 \\
0 \\
\end{array} \right) \right)
\]

\[
t' = \alpha \left(\beta \left(\begin{array}{c}
0 \\
\bot \\
\end{array} \right), \left(\begin{array}{c}
\bot \\
0 \\
\end{array} \right) \right)
\]

The constructed budget for the tree swap problem is \(k' = 9\)

With the one swap performed both problems are exactly solved

From the general reduction it follows that Tree swap distance problem is NP-complete
In summary we have seen:

- Tree edit distance, in the form of the tree correction problem, is both useful and well-known but only has deletion and insertion operators.
- Adding subtree movement operators to these makes the correction problem intractable.
- A correction problem using only swaps also turns out to be intractable in the case of trees.
- This suggests that different subtree movement operations should be considered (linear distance?)
- The fact that tree swap distance is NP-complete may be helpful for analyzing other problems, since it is simple to define.
In summary we have seen:

- Tree edit distance, in the form of the tree correction problem, is both useful and well-known but only has deletion and insertion operators.
- Adding subtree movement operators to these makes the correction problem intractable.
- A correction problem using only swaps also turns out to be intractable in the case of trees.
- This suggests that different subtree movement operations should be considered (linear distance?)
- The fact that tree swap distance is NP-complete may be helpful for analyzing other problems, since it is simple to define.

Thanks for listening.