Minimization of acyclic DFAs

Johannes Bubenzer

University of Potsdam
Department of Linguistics

30. August 2011
Overview

- Definitions
- Minimality
- Revuz algorithm
- New algorithm
- Evaluation
Definitions

Deterministic Finite-State Automaton (DFA)
\(\mathcal{A} = \langle Q, q_0, F, \delta, \Sigma \rangle \)
- \(Q \) finite set of states
- \(\Sigma \) finite alphabet
- \(q_0 \in Q \) start state
- \(F \subseteq Q \) final states
- \(\delta : Q \times \Sigma \rightarrow Q \) transition function

Acyclic DFA (ADFA)
- DFA which contains no cycles.

Connected DFA
- All states can be reached from the start state
- All states are connected to a final state.
Definitions

Extended transition function δ^*: $(\forall q \in Q, a \in \Sigma, w \in \Sigma^*)$

$$\delta^*(q, \epsilon) = q$$
$$\delta^*(q, a \cdot w) = \delta^*(\delta(q, a), w)$$

Right-Language $\overrightarrow{L}(q), q \in Q$

- $\overrightarrow{L}(q) = \{w \mid \delta^*(q, w) \in F\}$

Language $\mathcal{L}(A)$

- $\mathcal{L}(A) = \overrightarrow{L}(q_0)$
Nerode Equivalence \sim of $q, p \in Q$

- $q \sim p \iff \overrightarrow{L}(q) = \overrightarrow{L}(p)$
- $[q]$ denotes equivalence class of q wrt. \sim.

Right-Language Signature τ of state $q \in Q$

- $\tau(p) = \langle q \in F, \langle a, p \rangle \mid \delta(q, a) = p \rangle \rangle$ $p, q \in Q, a \in \Sigma$
- $\tau(p) = \tau(q) \rightarrow p \sim q$

Note: I assume the transitions to be ordered on the alphabet symbol.
Minimal DFA (MDFA) A with $\mathcal{L}(A) = \mathcal{L}$:

- DFA with the minimal number of states accepting \mathcal{L}
- iff $\forall q, p \in Q : q \sim p \rightarrow q = p$

DFA Minimization:

- Create/Determine the MDFA for a given DFA
- Join all \sim-equivalent states into one. Adjust transitions.
Minimal State \(q \in Q \):
- All successor states are minimal
- No other equivalent state exists

Minimal Signature \(\tau_{\text{min}}(q) \):
- \(\tau(q) \) where all successors of \(q \) are minimal states.
- \(\tau_{\text{min}}(p) = \tau_{\text{min}}(q) \leftrightarrow p \sim q \)
Minimization

General Idea
- Determine the minimal signatures of some states
- Minimize those states (join the equal, adjust transitions)

ADFA case
- Signature of a state depends on its direct successors
- and we have no cycles
- \Rightarrow minimizing states requires minimizing their successors first
Revuz (1992) - Minimization of Acyclic Deterministic Automata in Linear Time:
- Process states layerwise
- Starting with final states with no outgoing transitions.

New approach:
- Preorder processing of states.
- All successors are (recursively) minimized before the actual state is
both are $O(n)$.
Start with final states:
- All states without outgoing transition have minimal signatures.
- They are all final, so they are all equivalent.
- Joining them yields one minimal state.

Proceed layerwise:
- All states that have only transitions into previously minimized layers have minimal signatures.
- Minimizing them leads to a new layer of minimal states.
- When the start state is reached all states are minimal
Informal algorithm:

- computes a height for each state (max. distance to a final state)
- process height-levels from low to high:
 - sort states of same height according to τ
 - sorting requires $O(n)$ wrt. $|\Sigma|$. (radix sort with tricks)
- merges states of same height and same τ
Disadvantages:

- Quite complicated to implement in practice
- Requires precomputation of heights.
- Requires partitioning of states according to height-levels.
- Requires external sorting phase.
Minimize a state q (recursive):

- Minimize all of its successors.
- If a state p with same $\tau(q)$ exists replace q by p.
- Otherwise q is a new representative of class $\tau(q)$.
- Terminates at states with no outgoing transitions.

- Requires a map of $\tau \rightarrow Q$ (Register).
- Requires a map of $Q \rightarrow Q$ mapping states to class representatives. (StateMap)
Algorithm

begin minimize(q)

 foreach trans ∈ q.transitions() do

 if ! StateMap [trans.destination] then

 minimize(trans.destination)

 trans.destination := StateMap [trans.destination]

 if Register [τ(q)] then

 StateMap [q] := Register [τ(q)]

 Q := Q − {q}

 else

 StateMap [q] := Register [τ(q)] := q

 end

end
Algorithm requires linear space

- StateMap contains $|Q|$ states at the end
- Register contains $|Q|$ states at most

Algorithm runs in linear time

- consists in just a pre-order traversal.

Reduced constant factors

- no height-precomputing, no state partitioning
- no sorting
Performed evaluation

- on random-sampled sets of strings (two different distributions)
- varying maximum string lengths
- varying alphabet sizes
- and on natural-language data sets
- compiled into a trie

Implemented new algorithm in a C++ finite-state library. Run against an existing (optimized) Revuz implementation.
Evaluation (uniform distribution)

- Max. string len. = 10, |Σ| = 5,
- % of max. running time
- Number of words: 0, 25, 50, 75, 100
- Max. string len. = 50, |Σ| = 5,
- Max. string len. = 50, |Σ| = 50,
Conclusion

- faster (in practice)
- simpler (to implement)
- incremental (can be stopped at any time)
Thank you!

Johannes Bubenzer

Minimization of acyclic DFAs