Graphs and Automata

Bořivoj Melichar

melichar@fit.cvut.cz
http://www.arbology.org

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University Thakurova 9, 160 00 Prague 6, Czech Republic

Prague Stringology Conference 2013

< 回 > < 三 > < 三 >

Bořivoj Melichar (CTU)

Graphs and Automata

◆ ■ ▶ ■ つへで PSC 2013 2 / 70

- 4 同 ト 4 ヨ ト 4 ヨ

Chomsky classification

Type of grammars	Type of automata
regular grammars	finite automata
context-free grammars	pushdown automata
context-sensitive grammars	linear bounded automata
unrestricted grammars	Turing machines

< □ > < □ > < □ > < □ > < □</p>

Linear notation

Statement:

Do traversing the structure and perform following operations...

Such statement leads to a linearisation of the structure in question. There is a possibility to divide such process into two parts:

- Creating a linear notation of the structure
- Processing the linear notation of the structure

Graphs and automata

Type of graphs	Type of automata	Discipline
"linear" graphs	finite automata	stringology
trees	pushdown automata	arbology
directed acyclic graphs	linear bounded automata	dagology
general graphs	Turing machines	?

<ロト </p>

Pattern matching

Example

String: t = a2 a2 a0 a1 a0 a1 a0

Pattern matching

Example

String: t = a2 a2 a0 a1 a0 a1 a0 - prefix notation

Pattern matching

(3)

Deterministic finite and pushdown automata

Bořivoj Melichar (CTU)

PSC 2013 7 / 70

Indexing

(ロ) (部) (目) (日) (日)

Indexing

Nondeterministic factor and subtree PDA

Bořivoj Melichar (CTU)

・ロト ・聞ト ・ヨト ・ヨト

Indexing

Deterministic factor and subtree PDA

Bořivoj Melichar (CTU)

◆ 注 → 注 PSC 2013 10 / 70

(ロ) (部) (目) (日) (日)

Directed acyclic graph and linear notation

Directed acyclic graph and linear notation

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 11 / 70

< ∃ >

Directed acyclic graph and linear notation

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 11 / 70

< ∃ >

References

Arbology www pages:

Available on: http://www.arbology.org, July 2009.

B. Melichar:

Arbology: Trees and pushdown automata, in Language and Automata Theory and Applications, A.-H. Dediu, H. Fernau, and C. Martín-Vide, eds., vol. 6031 of Lecture Notes in Computer Science, Springer-Verlag, Berlin/Heidelberg, 2010, pp. 32–49.

B. MELICHAR, J. HOLUB, AND T. POLCAR: *Text searching algorithms*.

Available on: http://www.stringology.org/athens/, Nov. 2005.

J. Žďárek:

Two-dimensional Pattern Matching Using Automata Approach, PhD thesis, Czech Technical University in Prague, 2010, Available on: http://www.stringology.org/papers/Zdarek-PhD_thesis-2010.pdf.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Stringology and Arbology

Every sequential algorithm must do some linearisation of a tree.

Parallel algorithm must do some linearisation of a tree "per partes".

Bořivoj Melichar (CTU)

Graphs and Automata

Linear notations of trees

It holds that subtrees in a linear notation are substrings of the tree in the linear notation. This implies analogous pushdown automata for all such linear notations.

- 3 - - 3 B

Tree – the simplest case

Rooted

Oriented

Ordered

Ranked

-

Prefix notation

Grammar for tree with nodes having rank 0, 1, 2:

(1)
$$S \rightarrow a_0$$

(2) $S \rightarrow a_1 S$

(3)
$$S \rightarrow a_2 S S$$

(Greibach normal form, simple LL(1) grammar, LR(0) grammar)

Example:
$$a_2 \ a_2 \ a_0 \ \underline{a_1 \ a_0} \ \underline{a_1 \ a_0}$$

Given a tree t and its prefix notation pref(t), all subtrees of t in prefix notation are substrings of pref(t).

Postfix notation

Grammar for tree with nodes having rank 0, 1, 2:

- (1) $S \rightarrow a_0$ (2) $S \rightarrow S a_1$
- (3) $S \rightarrow S S a_2$

(Reversed Greibach normal form, strong LR(1) grammar)

Example: $a_0 a_1 a_2 a_1 a_2 a_1 a_2$

Given a tree t and its postfix notation post(t), all subtrees of t in postfix notation are substrings of post(t).

A B K A B K

Well known principles

Scanning of tree

- Covering of tree
- Construction of tree
- Target program generation

recursive procedures

context-free parsing (top down, bottom up)

Pushdown automata

Stringology Basic tool: Finite automata

Arbology Basic tool: (Deterministic) Pushdown automata

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 19 / 70

(4) (5) (4) (5)

Pushdown automaton - notation

transition from state 1 to state 2

reading a, pop α , push β

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 20 / 70

Basic deterministic pushdown automaton for prefix notation of tree with nodes having rank 0, 1, 2:

$$\delta(q, a, S) = \{(q, \alpha) : S \to a\alpha \in P\}$$

Accept by empty pushdown store.

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 21 / 70

(3)

Basic deterministic pushdown automata for tree with nodes having rank 0, 1, 2, \dots , *n*:

Prefix notation:

$$\begin{array}{ccc} (i+1) & S \rightarrow a_i S^i \\ \text{where} \\ i=0,1,2,\ldots,n. \end{array} \qquad \longrightarrow 0 \qquad a_i | S \mapsto S^i \qquad \delta(0,a_i,S) = (0,S^i) \\ \end{array}$$

Postfix notation:

 $(i+1) \quad S \to S^{i}a_{i}$ where $i = 0, 1, 2, \dots, n.$ $0 \quad a_{i}|S^{i} \mapsto S \quad \delta(0, a_{i}, S^{i}) = (0, S)$ $S^{0} = \varepsilon$

Accept by empty pushdown store.

Bořivoj Melichar (CTU)

PSC 2013 22 / 70

Determinisation of pushdown automata

Not always possible: $L = \{w \ w^R \ \dashv : \ w \in \{a, b\}^+\}$

Determinisation is possible for:

- 1. Input-driven pushdown automata
- 2. Visibly pushdown automata
- 3. Height-deterministic pushdown automata

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 23 / 70

Determinisation of input-driven PDA

Input-driven PDA – pushdown store operations are determined by the input symbol.

Any nondeterministic input-driven PDA can be determinised similarly as in the case of finite automata – the states of the deterministic PDA correspond to subsets of states of the nondeterministic PDA (d-subsets).

Moreover, nondeterministic acyclic input–driven PDA – the contents of the pushdown store can be precomputed, and only transitions and states with possible pushdown operations are selected.

Tree pattern matching

2. Subtree and tree pattern pushdown automata – Indexing trees

< ∃ > <

Motivation

String suffix and factor automata. Properties:

- Accept all occurences of an input suffix and an input factor, respectively, in a text of size n.
- Search phase for all occurences of an input suffix or an input factor of size m in time O(m), and not depending on n.
- Solution Although the number of factors in the text is $\mathcal{O}(\mathbf{n}^2)$, the total size of the deterministic factor automaton is $\mathcal{O}(\mathbf{n})$.

Motivation

Arbology

Subtree and tree pattern pushdown automata – analogous to string suffix and factor automata.

Properties:

- Accept all occurences of an input subtree and of subtrees matching an input tree pattern, respectively, in a tree of size n.
- Search phase for all occurences of an input subtree or an input tree pattern of size m in time O(m), and not depending on n.
- Although the number of tree patterns matching the tree can be \$\mathcal{O}(2^n)\$, the total size of the deterministic tree pattern pushdown automaton is in specific cases \$\mathcal{O}(n)\$. This total size generally is an open question - we guess it is \$\mathcal{O}(n^2)\$.

Subtree PDA Example 1

- Ranked alphabet $A = \{a2, a1, a0\}$
- Tree t_1 prefix notation is $pref(t_1) =$ a2 a2 a0 a1 a0 a1 a0
- Different subtrees of t_1 in prefix notation are:
 - a2 a2 a0 a1 a0 a1 a0 🙆 a2 a0 a1 a0 🗿 a1 a0

All subtrees of tree t_1 and their prefix notation

3 ×

Transition diagram of deterministic PDA $M_p(t_1)$ accepting $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$ by empty pushdown store

Initial contents of pushdown store is S.

< ∃ > <

Trace of deterministic PDA $M_p(t_1)$ for input string $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

State	Pushdown Store	Input
0	S	a2 a2 a0 a1 a0 a1 a0
1	S S	a2 a0 a1 a0 a1 a0
2	S S S	a0 a1 a0 a1 a0
3	S S	a1 a0 a1 a0
4	S S	a0 a1 a0
5	S	a1 a0
6	S	<i>a</i> 0
7	ε	ε
accept		

accept by empty pushdown store
Nondeterministic subtree PDA $M_{nps}(t_1)$ for tree t_1 in prefix notation $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$ (input-driven PDA)

イロト イヨト イヨト イヨト

Deterministic subtree PDA $M_{dps}(t_1)$ for tree in prefix notation $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

Given a tree t with n nodes and its prefix notation pref(t), the total size of the deterministic subtree PDA $M_{dps}(t)$ is $\mathcal{O}(\mathbf{n})$. As for the case of the string factor automaton.

A B K A B K

Deterministic subtree PDA $M_{dps}(t_1)$ vs. deterministic string factor automaton

Deterministic subtree PDA $M_{dps}(t_1)$

A B K A B K

Deterministic subtree PDA $M_{dps}(t_1)$ vs. deterministic string factor automaton

Deterministic string factor automaton

Trace of deterministic subtree PDA $M_{dps}(t_1)$ for an input subtree *st* in prefix notation *pref*(*st*) = a_1a_0

State	PDS	Input					
{0}	S	a1 a0	Input subtree				
$\{4, 6\}$	S	<i>a</i> 0	<i>a</i> 1				
$\{5,7\}$	ε	ε	I				
accept			aO				
			< ロト < 昂 > < 臣 > < 臣 > ○ Q ()				

Tree pattern PDA List of some treetops of the tree

a2 S S a2 a2 S S S a2 a2 a0 S S a2 a2 a0 a1 S S a2 a2 a0 a1 a0 S a2 a2 a0 a1 a0 a1 S a2 a2 a0 a1 a0 a1 S a2 a2 a0 a1 a0 a1 a0 a2 S a1 S a2 S a1 a0 a2 a2 S S a1 S

(3)

Deterministic treetop PDA $M_{pt}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

$srms = \{3, 5, 7\}$ Set of the Right-Most States

4 B 🕨 4

Nondeterministic tree pattern PDA $M_{npg}(t_1)$ for $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

PSC 2013

40 / 70

Deterministic tree pattern PDA $M_{dpg}(t_1)$ for tree t_1 in prefix notation $pref(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

A B K A B K

Trace of deterministic PDA M_{dpg} for prefix notation of tree pattern $a_2 S a_1 S$

Bořivoj Melichar (CTU)

PSC 2013 42 / 70

Complexity

Given a tree t with n nodes and its prefix notation pref(t), the number of distinct tree templates matching the tree is less or equal 2^{n-1} .

The total size of the deterministic tree pattern PDA $M_{dpg}(t)$ is in specific cases $\mathcal{O}(\mathbf{n})$. The total size generally is an open question – we guess it is $\mathcal{O}(\mathbf{n}^2)$.

Example 2

tree t_2 , $pref(t_2) = am \ a0^m$ ama0 a0 a0 \cdots a0

Bořivoj Melichar (CTU)

PSC 2013 44 / 70

Example 3

PSC 2013 45 / 70

• 3 • 4 3

3. Repeats in Trees

Bořivoj Melichar (CTU)

Subtree repeats

Graphs and Automat

Nondeterministic subtree PDA $M_{nps}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a2 \ a0 \ a1a0$ (input-driven PDA)

Bořivoj Melichar (CTU)

PSC 2013 48 / 70

Deterministic subtree PDA $M_{dps}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a2 \ a0 \ a1a0$

イロト イヨト イヨト イヨト

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 50 / 70

Repetition table

Overlapping is not possible, which follows from the basic property of tree!

Tree pattern repeats

Bořivoj Melichar (CTU)

э PSC 2013 52 / 70

H 16

Deterministic treetop PDA $M_{pt}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

$srms = \{3, 5, 7\}$ Set of the Right-Most States

4 B 🕨 4

Nondeterministic tree pattern PDA $M_{npg}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$ (input-driven PDA)

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 54 / 70

Deterministic tree pattern PDA $M_{dpg}(t_1)$ for pref $(t_1) = a2 \ a2 \ a0 \ a1 \ a0 \ a1 \ a0$

• • = • • = •

Repetition table

d-subset	Subtree	List of repeats
357	<i>a</i> 0	(3, F), (5, G), (7, G)
57	a1 a0	(5, F), (7, G)
	a1 S	(5, F), (7, G)
	a2 <i>SS</i>	(5, F), (7, O)
	a2 S a1 S	(5, F), (7, O)
	a2 <i>S</i> a1 a0	(5, F), (7, O)

- F first
- G gap
- N neighbour
- O overlapping (inclusion)

< ∃ > < ∃

Complexity

$$\mathcal{O}(n+r)$$

- *n* the number of nodes of the tree
- r the total size of repeating parts (subtrees, templates) of the tree (the size of repetition table)

$$r = \sum_{p} (rp * nr)$$

r is the total size of all pathes from the initial state to states with multiple subsets.

- rp size of repeating part
- *nr* number of repeats (size of d-subsets)
- p pathes

4. Tree pattern matching

Bořivoj Melichar (CTU)

- 4 回 2 4 日 2 4 日

Types of patterns

- EXACT PATTERNS $P = a_{x_1}a_{x_2}\dots a_{x_n}$ EXAMPLE: $a_2a_1a_0a_0$
- PATTERNS HAVING SUBTREES (TREE TEMPLATES) $P = a_{x_1} \dots a_{x_{k_1}} S^{p_1} a_{x_{k_1+1}} \dots a_{x_{k_m}} S^{p_m} a_{x_{k_m+1}} \dots a_{x_n}$ EXAMPLE 1: $a_2 a_1 S a_0$ EXAMPLE 2: $a_3 S S a_2 S a_0$

(3)

Exact pattern

EXAMPLE:

<ロト < 団ト < 団ト < 団ト

Exact pattern

Non-Deterministic Searching Pushdown Automaton

 $P = a_2 a_1 a_0 a_0$

.

Exact pattern

DETERMINISTIC SEARCHING PUSHDOWN AUTOMATON

Bořivoj Melichar (CTU)

PSC 2013 62 / 70

A B A A B A

EXAMPLE

TEMPLATE IN POSTFIX NOTATION:

$$P = a_0 a_1 S a_2$$

< ≥ > < ≥ >

Non-Deterministic Searching Pushdown Automaton

Elimination of ε -transitions

USAGE OF NEW PUSHDOWN SYMBOLS...

....SIMULATING THE TWO CASES.

A B K A B K

Tree template $a_0 \varepsilon \mapsto S$ $a_1 S \mapsto S$ $a_2 SS \mapsto S$ $a_0 \varepsilon \mapsto S$		ATTERI	<u>N P =</u>	<u>a₀a₁Sa₂</u>	$a_2 SS_1\mapsto S$
$a_1 S \mapsto S$	1	an	a ₁	a	
	=	$\begin{array}{c c} 0 & 0 \varepsilon \mapsto S \\ 1 \varepsilon \mapsto S \end{array}$	$0 S \mapsto S$	$0 SS \mapsto S$	
	-	$1 \mapsto 3$	$0 S \mapsto S_1$	$4 33_1 \mapsto 3$	
	-	4			
				i	
		a ₀	aı		=
			$[0] S \mapsto S$	$[0] SS \mapsto S$ $[0] SX_1 \mapsto S$	
	[0]	$[0,1] arepsilon\mapsto S$	$[0] X_1 \mapsto S$	$[0] X_1S \mapsto S$	
			1 1 1	$[0,4] X_1X_1\mapsto S$	
			$[0] S \mapsto X_1$	$[0] SS\mapsto S$	_
	[0, 1]	$[0,1] \varepsilon\mapsto S$		$[0,4] SX_1 \mapsto S$	
			$[0] X_1 \mapsto X_1$	$[0] X_1S \mapsto S$ $[0] X_1S \mapsto S$	
				$[0] SS \mapsto S$	-
	[0, 4]		$[0] S \mapsto S$	$[0,4] SX_1 \mapsto S$	
[0,4]		$[0, 1] \in \rightarrow 3$	$[0] X_1\mapsto S$	$[0] X_1S\mapsto S$	
				$[0,4] X_1X_1\mapsto S$	

Bořivoj Melichar (CTU)

Graphs and Automata

PSC 2013 67 / 70

			a ₀		a ₁	a ₂
	[0]		$[0,1] arepsilon\mapsto \mathcal{S}$		$\begin{matrix} [0] S\mapsto S\\ [0] X_1\mapsto S \end{matrix}$	$ \begin{array}{c} [0] SS\mapsto S\\ [0,4] SX_1\mapsto S\\ [0] X_1S\mapsto S\\ [0,4] X_1X_1\mapsto S \end{array} $
	[0, 1]		$[0,1] arepsilon\mapsto S$		$[0] S \mapsto X_1$ $[0] X_1 \mapsto X_1$	$ \begin{array}{c} [0] SS\mapsto S\\ [0,4] SX_1\mapsto S\\ [0] X_1S\mapsto S\\ [0,4] X_1X_1\mapsto S \end{array} $
	[0, 4]	$,4] [0,1] \varepsilon\mapsto S$			$[0] S \mapsto S$ $[0] X_1 \mapsto S$	$ \begin{array}{c} [0] SS\mapsto S\\ [0,4] SX_1\mapsto S\\ [0] X_1S\mapsto S\\ [0,4] X_1X_1\mapsto S \end{array} $
			a0		a ₁	a2
[0]			$[0,1] arepsilon\mapsto S$		$[0] ?\mapsto S$	$[0] ?S \mapsto S$ $[0,4] ?X_1 \mapsto S$
[0, 1]			$[0,1] arepsilon\mapsto S$		$[0] ?\mapsto X_1$	$[0] ?S \mapsto S$ $[0,4] ?X_1 \mapsto S$
[0,4]			$[0,1] arepsilon\mapsto S$		$[0] ?\mapsto S$	$\begin{matrix} [0] ?S & \mapsto S \\ [0,4] ?X_1 & \mapsto S \end{matrix}$

SIMPLIFICATION

Bořivoj Melichar (CTU)

✓ ≣ ► ≡ ∽ ९ ०
PSC 2013 68 / 70

(ロ) (部) (目) (日) (日)
Tree template

PSC 2013 69 / 70

More information on web pages

http://www.arbology.org

イロト イポト イヨト イヨト