Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagram

Shuhei Denzumi¹, Koji Tsuda², ³, Shin-ichi Minato¹, ², and Hiroki Arimura¹

1) Hokkaido University
2) JST ERATO Minato Discrete Structure Manipulation System Project
3) AIST CBRC
Background

- Text index is an important data structure for sequence mining
 - Many text indices have been proposed
 - Most of their inputs are ordinary linear text

- Index for directed acyclic graph (DAG)
 - Regular expression without infinite repeat, genome with mutations
 - DAG can represent huge number of strings
 - Construct indices after expanding it is nonsense
 - We want to make indices directly from input DAGs
Complete Inverted Files

❖ Factor automata of automata [Mohri et al., 2007]
 ❖ Automata for all factors of strings represented by a given automata
 ❖ Determine whether a pattern occurs as a factor or not

❖ Complete Inverted Files
 ❖ find(p): Return TRUE if a pattern p occurs as a substring of the input
 ❖ freq(p): Frequency of p in the input
 ❖ locate(p): Positions of occurrences of p in the input

❖ General Compressed Suffix Array (GCSA) [Siren et al., 2011]
 ❖ Complete inverted file for DAG
 ❖ Very compact because of using succinct data structure
 ❖ Require special property for the input DAG
Sequence BDD (SeqBDD)

- Sequence Binary Decision Diagram [Loekito et al., 2009]
 - Acyclic graphs for finite sets of strings
 - One kind of binarized automata
 - Member of Binary Decision Diagram (BDD) family
 - BDD is a graph structure for Boolean functions

Characteristic

- Using hash tables
- Automatically share all equivalent subgraphs
- String set operations by simple recursive algorithms
 - Union, Intersection, Difference, …
 - Enumerate all prefixes, suffixes, substrings, and subsequences
 - Analyzing time/space complexity is difficult
Definition

- \(\Sigma \): alphabet (totally ordered by \(\prec \))
- Internal node: \(\{a, b, \ldots, z\} \), T/F - terminal node: \([T, F] \)
- 1/0 - edge: \(\longrightarrow / \longrightarrow \)
- SeqBDD: directed acyclic graph
- Internal node \(S \), \(\tau(S) \mapsto \langle S.\text{lab}, S.1, S.0 \rangle \)
 - \(S.\text{lab} \): label
 - \(S.1 \): 1-child
 - \(S.0 \): 0-child
- Ordering rule
 - \(N.\text{lab} \prec (N.0).\text{lab} \)

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams

by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Semantics

• A path from the root node to the True-terminal node correspond to a strings in the set that SeqBDD represent

• Example: SeqBDD for \{aa, aba, ba\}

• Each edge has different meaning
 • 1-edge means choosing the symbol
 • 0-edge means ignoring the symbol
 • Remember 0-ordering rule

• Comparison to automata
 • T-terminal is finite state
 • F-terminal is garbage state

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Index for text
DAWG

- We use end positions (In *ccababa*, *aba* occurs at 5 and 7)
- Directed Word Acyclic Graph (DAWG) [Blumer et al., 1987]
 - Complete inverted file for text
 - Each DAWG node has occurrence information

DAWG for a text ccababa

[Diagram of a DAWG for the text ccababa is shown, illustrating nodes and edges with labels for occurrences.]

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Consider integers as symbols in the alphabet
- We can deal with positions as a string
- If aba occurs at 5 and 7, the index include $aba5$ and $aba7$ as strings

Size complexity of DAG index is not analyzed
- Size of DAWG is linear
- However, size of occurrence information of DAG index is unknown
- We want to reduce the size

Use binary representation of integers
- SeqBDD can share equivalent subgraphs automatically
- Lists of raw integers are difficult to be shared
- We define a new alphabet $\Sigma_b = \Sigma \cup \{0, 1\}$, $\forall a \in \Sigma$, $a < 0 < 1$.

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams
by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Input text: $ccababa$
Example

Input text: *ccababa*

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams
by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Example: text index

Input text: ccababa
Example: integer part

Input text: ccababa

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams
by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Index for DAG
Definition of location

- Each node has unique node ID
 - Use node IDs as well as positions

- For a pattern p
 - There are some paths that represent p
 - Location of p is the end nodes of the paths
 - Frequency of p is the number of such end nodes

Example
- baa: 2 paths and 2 end nodes
- aa: 4 paths and 2 end nodes
Definition of location

- Each node has unique node ID
 - Use node IDs as well as positions

- For a pattern p
 - There are some paths that represent p
 - Location of p is the end nodes of the paths
 - Frequency of p is the number of such end nodes

Example
- baa: 2 paths and 2 end nodes
- aa: 4 paths and 2 end nodes
Construct DAG index

- Compute union of all nodes
 - All substrings in a DAG are the union of sets of strings that are represented by all nodes

- Append node ID
 - As well as ordinary text, we append binary string part to each node
Construct DAG index

- Compute union of all nodes
 - All substrings in a DAG are the union of sets of strings that are represented by all nodes

- Append node ID
 - As well as ordinary text, we append binary string part to each node before computing union
Example

Input:

Compact Complete Inverted Files for Texts and Directed Acyclic Graphs Based on Sequence Binary Decision Diagrams
by Shuhei Denzumi, Koji Tsuda, Shin-ichi Minato, and Hiroki Arimura, 2013-09-04 (WED), Prague Stringology Conference 2013
Experiment
Setting

Data sets
- SeqBDD for word bigrams from bible.txt
- SeqBDD for genome sequences truncated from original sequence every 150/500 symbols

Environment
- 3.1 GHz Intel Xeon CPU
- 1 TB DDR2 memory

On SAPPOROBDD package [unpublished]
- Each node use 50 ~ 55 bytes including space for hash tables
- Construct DAG index for given SeqBDDs
Construction time

- Looks $O(n \log n)$ time
- Roughly three seconds per 1 million input nodes

![Graph showing DAG index construction time vs. Input SDD size for different datasets (Ecoli150, Ecoli500, BibleAll).](image)
Index size

- Linear or $O(n \log n)$ order
- Three times larger than the input SeqBDDs

![Graph showing the relationship between Input SDD size and DAG index size for different datasets (Ecoli150, Ecoli500, BibleAll). The graph demonstrates a linear or $O(n \log n)$ growth pattern for the index size, with each dataset showing a clear linear trend.]
Conclusion

- Complete inverted files for directed acyclic graph
 - Manipulate occurrence information as strings
 - Use binary representation for integers
 - Construct on Sequence BDD environment
 - Share equivalent subgraphs

Result

- Time complexity of construction looks like $O(n \log n)$
- Space complexity of index is linear or O

Future work

- Use more precise definition of frequency and location
- Compare with other data structures
Thank you!