Weak Factor Automata: Comparing (Failure) Oracles and Storacles

Loek Cleophas, Derrick G. Kourie, and Bruce W. Watson

FASTAR Research Group, University of Pretoria and Stellenbosch University, South Africa

> {loek,derrick,bruce}@fastar.org http://www.fastar.org

Prague Stringology Conference, 2–4 September 2013

(Weak) factor automata

- Factor automaton (DAWG)
 - Accepts factors of keyword
 - Used for efficient backward pattern matching
 - Used as index
- Weak factor automata
 - ► (Small) over-approximation ... to save space
 - OK for pattern matching
 - May be OK for indexing

Contributions

- New weak factor automata constructions
 - Based on factor oracle and factor storacle
 - Using failure transitions
 - ► Failure factor oracle
 - Failure factor storacle
- Empirical size comparison
 - ▶ On generated strings of lengths 4-9
 - lacktriangle On English word list (lengths 4 28)

Factor oracle

- ► Small over-approximation—e.g. *bce*, *cace*
- ▶ m+1 states, m to 2m-1 transitions
- Acylic
- Homogeneous
- ightharpoonup O(m) construction (Allauzen, Crochemore & Raffinot 1999)
- ▶ $O(m^2)$ construction (Cleophas, Zwaan & Watson 2003/2005)
 - Conceptually simpler, some properties obvious

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i+1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: if $k \neq m$ then
- 8: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i+1 on symbol p_{i+1}

$$0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{c} 3 \xrightarrow{a} 4 \xrightarrow{c} 5 \xrightarrow{d} 6 \xrightarrow{a} 7 \xrightarrow{c} 8 \xrightarrow{e} 9$$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: if $k \neq m$ then
- 8: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: if $k \neq m$ then
- 8: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: if $k \neq m$ then
- 8: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: if $k \neq m$ then
- 8: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

Factor oracle

... etc. leads to

Factor storacle

- ▶ Modification to $O(m^2)$ FO construction
- ▶ shortest forward transition oracle
 - ... keeping it homogeneous
 - Accidental...
 - Example smaller than FO

- Not smaller than FO in general (Cleophas & Watson 2012) ... usually slightly larger
- ▶ Conjecture *m* to 3*m* transitions

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: while $k \neq m$ do
- 8: Let the first state from state j onward that has an incoming transition on p_{k+1} be state l (j < l <= k+1)
- 9: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} I$
- 10: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** *i* from 0 to m 1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 8: Let the first state from state j onward that has an incoming transition on p_{k+1} be state l (j < l <= k+1)
- 9: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} I$

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$
- 7: while $k \neq m$ do
- 8: Let the first state from state j onward that has an incoming transition on p_{k+1} be state l (j < l <= k+1)
- 9: Build a new transition $j \stackrel{p_{k+1}}{\rightarrow} I$
- 10: Let the longest path from state 0 that spells a prefix of $p_i...p_m$ end in state j and spell out $p_i...p_k$ $(i-1 \le k \le m)$

Factor storacle construction example

Recall factor oracle case:

Factor storacle case:

Factor storacle construction example

Recall factor oracle case:

Factor storacle case:

Failure transitions

- Allow failure transitions in addition to symbol ones
- Save space, but more transition use...
- Not new
 - Aho-Corasick
 - ► Generalized by *Crochemore & Hancart 1997*
- ▶ First general $DFA \rightarrow FDFA$ algorithm by Kourie et al. 2012
 - Intermediate lattice construction... keeping state set fixed
- Björklund et al. 2013
 - ► Complexity...
 - ... even if keeping state set fixed
 - ► Algorithm to reach $\frac{2}{3}$ of optimal savings
- ▶ Both ex post facto...

Our idea

- Introduce failure transitions during construction
- ▶ We call the resulting automata Failure Factor (St)Oracles
- Complexity as for non-failure cases
- ▶ Idea: instead of constructing $j \stackrel{a}{\rightarrow} k + 1$...
 - ... construct $j \stackrel{fail}{\rightarrow} k$, from which $k \stackrel{a}{\rightarrow} k + 1$ exists
- ▶ Potential problem...

Our idea

- Introduce failure transitions during construction
- ▶ We call the resulting automata Failure Factor (St)Oracles
- Complexity as for non-failure cases
- ▶ Idea: instead of constructing $j \stackrel{a}{\rightarrow} k + 1$ construct $i \stackrel{fail}{\rightarrow} k$, from which $k \stackrel{a}{\rightarrow} k + 1$ exists
- ▶ Potential problem...
- ▶ Using sequence of existing (failure, symbol) transitions may end up in j > k

Potential problem...

- ▶ Using sequence of existing (failure, symbol) transitions may end up in j > k
 - ... potential for backward failure transition
 - ... hence for cycle
 - ... hence for failure cycle
 - ... hence for divergent failure cycle
 - ... leading to live-lock in construction or use of automaton
- ▶ Solution: do not construct backward *failure* transition
 - ... instead create non-forward symbol transition
 - ... still potential for cycle (but manageable)


```
1: for i from 0 to m do
      Create a new final state i
 3: for i from 0 to m-1 do
       Create a new transition from i to i+1 on symbol p_{i+1}
 5: for i from 2 to m do
       Let the longest recognized prefix of p_i...p_m be recognized in
      state i' and spell out p_i...p_k (i-1 \le k \le m), and let the
       longest failure transition path from i' end in state i
      if k \neq m then
7:
         if k > i then
8:
            Build a new failure transition i \stackrel{fail}{\rightarrow} k
9:
10:
         else
            Build a new symbol transition i \stackrel{p_{k+1}}{\rightarrow} k + 1
11:
```


- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i+1 on symbol p_{i+1}

- 1: **for** *i* from 0 to *m* **do**
- 2: Create a new final state i
- 3: **for** i from 0 to m-1 **do**
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest recognized prefix of $p_i...p_m$ be recognized in state j' and spell out $p_i...p_k$ $(i-1 \le k \le m)$, and let the longest failure transition path from j' end in state j


```
1: for i from 0 to m do
      Create a new final state i
 3: for i from 0 to m-1 do
       Create a new transition from i to i+1 on symbol p_{i+1}
 5: for i from 2 to m do
       Let the longest recognized prefix of p_i...p_m be recognized in
      state i' and spell out p_i...p_k (i-1 \le k \le m), and let the
       longest failure transition path from i' end in state i
      if k \neq m then
7:
         if k > i then
8:
            Build a new failure transition i \stackrel{fail}{\rightarrow} k
9:
10:
         else
            Build a new symbol transition i \stackrel{p_{k+1}}{\rightarrow} k + 1
11:
```


- for *i* from 0 to *m* do
 Create a new final state *i* for *i* from 0 to *m* 1 do
- 4: Create a new transition from i to i + 1 on symbol p_{i+1}
- 5: **for** *i* from 2 to *m* **do**
- 6: Let the longest recognized prefix of $p_i...p_m$ be recognized in state j' and spell out $p_i...p_k$ $(i-1 \le k \le m)$, and let the longest failure transition path from j' end in state j
- 7: if $k \neq m$ then
- 8: if k > j then
- 9: Build a new failure transition $j \stackrel{fail}{\rightarrow} k$
- 10: else
- 11: Build a new symbol transition $j \stackrel{p_{k+1}}{\rightarrow} k + 1$

Failure factor storacle construction algorithm similar

$$0 \xrightarrow{a} 1 \xrightarrow{b} 2 \xrightarrow{c} 3 \xrightarrow{a} 4 \xrightarrow{c} 5 \xrightarrow{d} 6 \xrightarrow{a} 7 \xrightarrow{c} 8 \xrightarrow{e} 9$$

Suffix bcacdace

Suffix cacdace

Suffix acdace

Suffix acdace Suffix cdace

Suffix dace

Suffix ace

Suffix ace Suffix ce

Suffix ace Suffix ce Suffix e

Empirical results

Two data sets

- ▶ Generated strings: all strings of length $m \in [4, 9]$ over alphabet of size m
- ► English words

Generated strings—number of transitions

Generated strings—difference in #transitions of FO vs. ...

Empirical results on English words

English word list from http://www.sil.org/linguistics/wordlists/english.

... disregarding words p with |p| < 4

English words—number of transitions

English words—difference in #transitions of FO vs. FFO

Concluding remarks

- ► Failure versions save ca. 2-10% on #transitions ... possibly more on space
- Open questions
 - Upper bounds on number of transitions
 - Languages
 - Comparison to general super automata
 - Comparison to general FDFA construction algorithm
- Performance when using automata
 - ... recent work: FFO for DNA strings of lengths 4-2048
 - ▶ Savings of 8 10% for lengths 16 2048
 - ▶ Also rudimentary processing; runtime increases 34 − 88%

References

- ▶ Allauzen, Crochemore & Raffinot, Factor oracle: a new structure for pattern matching, SOFSEM 1999.
- Björklund, Björklund & Zechner, Compact representation of finite automata with failure transitions, Umea Univ. TR 2013/011.
- ► Cleophas & Watson, On Factor Storacles: an Alternative to Factor Oracles?, Festschrift for Bořivoj Melichar, 2012.
- Cleophas, Zwaan & Watson, Constructing Factor Oracles, PSC 2003 and JALC special issue 2005.
- ► Crochemore & Hancart, *Automata for matching patterns*, pp. 399–462 in Handbook of Formal Languages, 1997.
- ► Kourie, Watson, Cleophas & Venter, Failure Deterministic Finite Automata, PSC 2012.