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Sequential algorithm

60,S,F:=2,{E}, &;
D T:=@2,8S,
do (T #2) —
let g be some state suchthatq e T;
D, T:=Du{g}. T\ {gh
{ build out-transitions from q on all alphabet symbols }
for (i : X) —
{ find derivative of q with respect to i }
d:=i""q;
if d¢ (DUT)— T:=Tu{d}
| de(DUT)— skip

fi;
{ make a transition fromq todoni}
6(q,i):=d

rof;

if ce £L(q) > F:=Fu{q}
fl]' e ¢ L£(q) — skip
i

od;return (D,%,4, S, F)
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Selected CSP notation

a—P event a then process Q
a— Plb—Q athen P choice bthen Q
x:A— P(x) choice of x from set A then P(x)
Pl Q P in parallel with Q
Synchronize on common events in alphabets
ble on channel b output event e
b7x from channel b input to variable x
P£C*Q if C then process P else process Q
P;Q process P followed by process Q
POQ process P choice process Q
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The BRZ process

BRZ(T.D, F,s)

OUTER(T, D, F) | FANOUT || DERIV || UPDATE(6)

@ OUTER corresponds with outer loop.

@ DERIV caters for the computation of derivatives.

@ UPDATE caters for updating 4.

@ FANOUT distributes a regular expression to DERIV subprocesses.
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The OUTER process

OUTER(T, D, F)

q: T — outNode!q —
OUTER(T\q,Duq,FUQq) «e€ L(q) » OUTER(T\ q,Duq,F)
]
inNode?d —
OUTER(TuUd,D,F)«d¢ TuD*» OUTER(T,D,F)
]
SKIP

@ Some g € T is selected to build its outgoing transitions.
@ A (potentially) new node is received.
@ Updating of sets D, T, and F.
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The DERIVE process

@ Finds the derivatives of a regular expression in parallel.

.z DERIV

@ Each DERIV; process reads a regular expression and
communicates its derivative.

dOut;?re — computeDeriv.re — derivChan!(re, i, i rey — DERIV;
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FANOUT

@ Distributes a regular expression to the different DERIV; processes.

(outNode?re —||;.x (dOuti're — SKIP)); FANOUT
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The UPDATE process

@ Receives derivatives and updates 9.
@ Communicates the derivative back to OUTER.

UPDATE (9)

derivChan?(re,i,d) — inNode!d — UPDATE (6 U (re, i, d))
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Graphical representation

BRZ(T,D, F,9)
OUTER(T.D,F)  inNode |UPDATE(0) derivChan

FANOUT DERIV
dOuty DERIV,

outNode

dOuty DERIV,

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 9/16



Implementation

Used Go programming language.
golang.org

Go’s concurrency model resembles CSP.
Processes implemented as go-routines.
Language supports channels.
Synchronisation via channels.
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golang.org

@ Random regular expressions of various sizes (depths).
@ Two alphabet sizes: 4 and 85 symbols.

@ Go version 1.2.2
@ Machine

@ 2x dual-core Xeon 2.66 GHz
e 5GB RAM
e MacOS X 10.7.5
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Construction times for |X| = 4
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Construction times for || = 85

Time Sequential (ns)

1e+06 1e+08 1le+10

le+04

|zl=85

Time Concurrent (ns)

1e+06 1e+08 1le+10

le+04

|zl=85
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Scatterplots of paired construction times
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Tc=39.6ms+ 047 Ts for || =4
Tc=657ms+0.74- Ts for |X| = 85
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Speedup and efficiency

Speedup Efficiency
Depth | =4 |T| =85 x| =4 || =85

All 1.72 1.09 0.43 0.27
5 1.15 1.21 0.29 0.30
6 1.84 1.45 0.46 0.36
7 1.82 1.43 0.46 0.36
8 1.80 1.06 0.45 0.27
9 1.71 1.09 0.43 0.27
10 1.83 1.21 0.46 0.30

Speedup = T Efficiency = _ Speedup _

Tc #[processors]
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Conclusion

@ Presented a process-oriented decomposition of the construction
algorithm.

@ Presented the results of an experiment.
@ Obtained speedup
@ Efficiency low.

@ Next steps

o Try to improve efficiency.
@ Other FA algorithms such as minimisation.
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