A process-oriented implementation of Brzozowski's DFA construction algorithm

Tinus Strauss¹ Derrick G. Kourie² Bruce W. Watson² Loek Cleophas¹

¹FASTAR Research group University of Pretoria South Africa

²FASTAR Research group Stellenbosch University South Africa

The Prague Stringology Conference 2014

Sequential algorithm

```
\delta, S, F := \emptyset, \{E\}, \emptyset;
D. T := \varnothing. S:
do (T \neq \varnothing) \rightarrow
      let q be some state such that q \in T;
      D, T := D \cup \{q\}, T \setminus \{q\}:
      { build out-transitions from q on all alphabet symbols }
      for (i : \Sigma) \rightarrow
            { find derivative of q with respect to i }
            d := i^{-1}a:
            if d \notin (D \cup T) \rightarrow T := T \cup \{d\}
            d \in (D \cup T) \to \text{skip}
            fi:
            { make a transition from q to d on i }
            \delta(a,i) := d
      rof:
      if \varepsilon \in \mathcal{L}(q) \to F := F \cup \{q\}
      \mathbb{I} \varepsilon \notin \mathcal{L}(q) \to \mathsf{skip}
od: return (D, \Sigma, \delta, S, F)
```

Selected CSP notation

$egin{aligned} a & ightarrow P \ a & ightarrow P b ightarrow Q \ x : A ightarrow P(x) \ P \parallel Q \end{aligned}$
b! e b? x P ≮ C ≯ Q P; Q

 $P \sqcap \Omega$

event a then process Q a then P choice b then Qchoice of x from set A then P(x) P in parallel with QSynchronize on common events in alphabets on channel b output event efrom channel b input to variable xif C then process P else process Qprocess P followed by process Q

The BRZ process

$BRZ(T, D, F, \delta)$

$OUTER(T, D, F) \parallel FANOUT \parallel DERIV \parallel UPDATE(\delta)$

- OUTER corresponds with outer loop.
- DERIV caters for the computation of derivatives.
- UPDATE caters for updating δ .
- FANOUT distributes a regular expression to DERIV subprocesses.

The OUTER process

OUTER(T, D, F)

```
\begin{array}{l} q: T \rightarrow \textit{outNode}! q \rightarrow \\ \textit{OUTER}(T \setminus q, D \cup q, F \cup q) \ \not < \varepsilon \in \mathcal{L}(q) \ \not > \textit{OUTER}(T \setminus q, D \cup q, F) \\ \square \\ \textit{inNode}? d \rightarrow \\ \textit{OUTER}(T \cup d, D, F) \ \not < d \notin T \cup D \ \not > \textit{OUTER}(T, D, F) \end{array}
```

- SKIP
 - Some $q \in T$ is selected to build its outgoing transitions.
 - A (potentially) new node is received.
 - Updating of sets D, T, and F.

The DERIVE process

• Finds the derivatives of a regular expression in parallel.

DERIV

$$\parallel_{i:\Sigma} DERIV_i$$

 Each DERIV_i process reads a regular expression and communicates its derivative.

DERIV_i

 $dOut_i?re \rightarrow computeDeriv.re \rightarrow derivChan!\langle re, i, i^{-1}re \rangle \rightarrow DERIV_i$

FANOUT

ullet Distributes a regular expression to the different $DERIV_i$ processes.

FANOUT

(outNode?re $\rightarrow \parallel_{i:\Sigma}$ (dOut_i!re \rightarrow SKIP)); FANOUT

The UPDATE process

- Receives derivatives and updates δ .
- Communicates the derivative back to OUTER.

$UPDATE(\delta)$

 $derivChan?\langle re, i, d \rangle \rightarrow inNode!d \rightarrow UPDATE(\delta \cup \langle re, i, d \rangle)$

Graphical representation

Implementation

- Used Go programming language.
- golang.org
- Go's concurrency model resembles CSP.
- Processes implemented as go-routines.
- Language supports channels.
- Synchronisation via channels.

Experiments

- Random regular expressions of various sizes (depths).
- Two alphabet sizes: 4 and 85 symbols.
- Go version 1.2.2
- Machine
 - 2x dual-core Xeon 2.66 GHz
 - 5 GB RAM
 - Mac OS X 10.7.5

Construction times for $|\Sigma| = 4$

Construction times for $|\Sigma| = 85$

Scatterplots of paired construction times

$$T_c = 39.6 \, \text{ms} + 0.47 \cdot T_s \qquad \text{for } |\Sigma| = 4$$
 $T_c = 65.7 \, \text{ms} + 0.74 \cdot T_s \qquad \text{for } |\Sigma| = 85$

Speedup and efficiency

	Speedup		Efficiency	
Depth	$ \Sigma =4$	$ \Sigma =85$	$\left \Sigma\right =4$	$ \Sigma =85$
All	1.72	1.09	0.43	0.27
5	1.15	1.21	0.29	0.30
6	1.84	1.45	0.46	0.36
7	1.82	1.43	0.46	0.36
8	1.80	1.06	0.45	0.27
9	1.71	1.09	0.43	0.27
10	1.83	1.21	0.46	0.30

Speedup =
$$\frac{T_s}{T_c}$$

$$Efficiency = \frac{Speedup}{\#[processors]}$$

Conclusion

- Presented a process-oriented decomposition of the construction algorithm.
- Presented the results of an experiment.
- Obtained speedup
- Efficiency low.
- Next steps
 - Try to improve efficiency.
 - Other FA algorithms such as minimisation.