A process-oriented implementation of Brzozowski’s

DFA construction algorithm

Tinus Strauss! Derrick G. Kourie2 Bruce W. Watson?
Loek Cleophas'’

TFASTAR Research group
University of Pretoria
South Africa

2FASTAR Research group
Stellenbosch University
South Africa

The Prague Stringology Conference 2014

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014

Sequential algorithm

60,S,F:=2,{E}, &;
D T:=@2,8S,
do (T #2) —
let g be some state suchthatq e T;
D, T:=Du{g}. T\ {gh
{ build out-transitions from q on all alphabet symbols }
for (i : X) —
{ find derivative of q with respect to i }
d:=i""q;
if d¢ (DUT)— T:=Tu{d}
| de(DUT)— skip

fi;
{ make a transition fromq todoni}
6(q,i):=d

rof;

if ce £L(q) > F:=Fu{q}
fl]' e ¢ L£(q) — skip
i

od;return (D,%,4, S, F)

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014

Selected CSP notation

a—P event a then process Q
a— Plb—Q athen P choice bthen Q
x:A— P(x) choice of x from set A then P(x)
Pl Q P in parallel with Q
Synchronize on common events in alphabets
ble on channel b output event e
b7x from channel b input to variable x
P£C*Q if C then process P else process Q
P;Q process P followed by process Q
POQ process P choice process Q

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 3/16

The BRZ process

BRZ(T.D, F,s)

OUTER(T, D, F) | FANOUT || DERIV || UPDATE(6)

@ OUTER corresponds with outer loop.

@ DERIV caters for the computation of derivatives.

@ UPDATE caters for updating 4.

@ FANOUT distributes a regular expression to DERIV subprocesses.

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 4/16

The OUTER process

OUTER(T, D, F)

q: T — outNode!q —
OUTER(T\q,Duq,FUQq) «e€ L(q) » OUTER(T\ q,Duq,F)
]
inNode?d —
OUTER(TuUd,D,F)«d¢ TuD*» OUTER(T,D,F)
]
SKIP

@ Some g € T is selected to build its outgoing transitions.
@ A (potentially) new node is received.
@ Updating of sets D, T, and F.

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 5/16

The DERIVE process

@ Finds the derivatives of a regular expression in parallel.

.z DERIV

@ Each DERIV; process reads a regular expression and
communicates its derivative.

dOut;?re — computeDeriv.re — derivChan!(re, i, i rey — DERIV;

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 6/16

FANOUT

@ Distributes a regular expression to the different DERIV; processes.

(outNode?re —||;.x (dOuti're — SKIP)); FANOUT

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 7/16

The UPDATE process

@ Receives derivatives and updates 9.
@ Communicates the derivative back to OUTER.

UPDATE (9)

derivChan?(re,i,d) — inNode!d — UPDATE (6 U (re, i, d))

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 8/16

Graphical representation

BRZ(T,D, F,9)
OUTER(T.D,F) inNode |UPDATE(0) derivChan

FANOUT DERIV
dOuty DERIV,

outNode

dOuty DERIV,

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 9/16

Implementation

Used Go programming language.
golang.org

Go’s concurrency model resembles CSP.
Processes implemented as go-routines.
Language supports channels.
Synchronisation via channels.

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014

golang.org

@ Random regular expressions of various sizes (depths).
@ Two alphabet sizes: 4 and 85 symbols.

@ Go version 1.2.2
@ Machine

@ 2x dual-core Xeon 2.66 GHz
e 5GB RAM
e MacOS X 10.7.5

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 11/16

Construction times for |X| = 4

[=|= 4 [=]= 4
S S
7 T
3 N 3 J—

2
i

i
il

Time Sequential (ns)
1
N
Time Concurrent (ns)
1
1
L

1e+06
|

1
i
i

< <

=} =}

T T

@ @

~ T T T T T T ~ T T T T T T
5 6 7 8 9 10 5 6 7 8 9 10

Strauss, Kourie, Watson, Cleophas (UP, Process-oriented DFA construction PSC 2014 12/16

Construction times for || = 85

Time Sequential (ns)

1e+06 1e+08 1le+10

le+04

|zl=85

Time Concurrent (ns)

1e+06 1e+08 1le+10

le+04

|zl=85

Strauss, Kourie, Watson, Cleophas (UP,

Process-oriented DFA construction

PSC 2014

13/16

Scatterplots of paired construction times

[zl=4 [z|=85
fo23
o
%
=1 @
7
@
o
o
g g
+ o
-~ o -~ &
% < @
£ £
2 o =4
g 7 ¢ o
3 3 3 o
3 o 3 %
S 5 <
o g o
o o
E 3 E
£ & F o
?
o)
< &
@
S
o o
S S
T T
))
S T T T T T T S T T T T
0e+00 le+10 2e+10 3e+10 4e+10 5e+10 0e+00 2e+09 4e+09 6e+09 8e+09
Time Sequential (ns) Time Sequential(ns)

Tc=39.6ms+ 047 Ts for || =4
Tc=657ms+0.74- Ts for |X| = 85

Strauss, Kourie, Watson, Cleophas (UP, Process-oriented DFA construction PSC 2014 14/16

Speedup and efficiency

Speedup Efficiency
Depth | =4 |T| =85 x| =4 || =85

All 1.72 1.09 0.43 0.27
5 1.15 1.21 0.29 0.30
6 1.84 1.45 0.46 0.36
7 1.82 1.43 0.46 0.36
8 1.80 1.06 0.45 0.27
9 1.71 1.09 0.43 0.27
10 1.83 1.21 0.46 0.30

Speedup = T Efficiency = _ Speedup _

Tc #[processors]

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 15/16

Conclusion

@ Presented a process-oriented decomposition of the construction
algorithm.

@ Presented the results of an experiment.
@ Obtained speedup
@ Efficiency low.

@ Next steps

o Try to improve efficiency.
@ Other FA algorithms such as minimisation.

Strauss, Kourie, Watson, Cleophas (UP, SU) Process-oriented DFA construction PSC 2014 16/16

	Introduction
	Specification
	Sequential version
	CSP introduction
	Concurrent description

	Performance

