

Kerttu Pollari-Malmi Jussi Rautio Jorma Tarhio

Aalto University

Finland

Speeding up compressed

matching with SBNDM2

Introduction

Compressed matching problem: string matching in a
compressed text without decompression

Aim: faster searching

Introduction

Several efficient methods are based on
byte pair encoding (BPE).

We achieved faster searching with encoding of
different type.

Earlier, we have presented a search algorithm based on
Boyer-Moore-Horspool.

Now, we present a search algorithm based on SBNDM2.

Byte pair encoding (BPE)

BPE (Gage 94) replaces recursively the most common

byte pair by an unused character code.

 abcabc... d=ab|dcdc... e=dc,d=ab|ee...

Manber's BPE: bytes are classified either a start or end

byte of a pair to ensure locally unambiguous decoding.

BPE achieves moderate compression ratios on text:

45-75% (best methods achieve 20-30%)

BPX (Maruyama et al. 08) is a modification of BPE with better

comression ratio.

Our encoding method

Codeword for a character is a variable-length sequence

of k-bit base symbols.

 a b r a c a d a b r a

00 01 10 00 11 00 00 11 01 00 01 10 00

• Related to Huffman encoding

• de Moura et al. (00) use 8-bit symbols to encode words

The coding method is called Stopper Encoding and

denoted by SEk for k-bit base symbols.

Our encoding method (cont.)

Encoding and decoding are very fast.

Search algorithm:

• variation of SBNDM2 (new)

• variation of Boyer-More-Horspool (presented earlier)

Comparable compression ratio with fast BPE

but searching is faster

Semi-static coding scheme

Codewords are based on frequencies of characters in

the text.

Two passes

1. The frequencies of characters are gathered

2. Actual coding

The code table is a part of the compressed file.

Stoppers and continuers

Because the length of a codeword varies and SBNDM2

jumps forward, we need a mechanism to recognize

where is a border of subsequent codewords.

Stoppers and continuers (cont.)

Two classes of base symbols:

• The last base symbol of a codeword is a stopper.

• Other base symbols are continuers.

Example: u1u2u3u4u5

 continuers stopper

Stoppers and continuers (example)

codewords: 00, 01 00, 01 01 00

text: ...00 01 00...

Number of stoppers

The optimal number depends on the number of different

characters and their frequencies.

Computation is straightforward.

Example: 14 is optimal for the English Bible

with 16 (4-bit) base symbols.

Searching

The pattern is encoded in the same way as the text.

Search is based on bytes.

An occurrence of the pattern does not necessarily start

at the beginning of a byte. To avoid bit manipulation,

several patterns are searched at the same time.

SBNDM
Simple Backward Nondeterministic DAWG Matching

SBNDM is a simplification of BNDM. Both are bit-parallel

algorithms, which recognize factors of the pattern.

Text T = t1...tn, pattern P = p1...pm.

At an alignment of P: ti…ti+m-1, scan T from right to left

until the suffix tk…ti+m-1 is not a factor of P

or an occurrence of P is found (k = i).

Next alignment starts at tk+1.

SBNDM, example

 P = banana, T = antanabadbanana...

alignment: antanabadbanana

 a

 na

 ana

 not a factor: tana

next alignment: antanabadbanana

 not a factor: d

next alignment: antanabadbanana

SBNDM2 (modified)

 SBNDM can be made faster by reading two text

characters instead of one before checking anything.

 Occurrence vectors are precomputed for all 2-grams.

If the encoded pattern is 618e0 (in hexadecimal), we

search for both 61-8e and 18-e0 simultaneously by

searching the pattern 61-8e-18-e0.

Code splitting

The high bits of base symbols are concatenated

to one file and the low bits to another file:

 1110 0110 0011 = 110100 101011

Motivation:

dense accessing is faster than sparse accessing

Code splitting

 Low bits of the pattern are searched

in the low bits of the text

 For matches found in low bits

• verify with high bits

• check that the preceding base symbol is a stopper

Combining code splitting

with stopper encoding

 SEk,h: stopper encoding with k-bit base symbols and with

division to h high bits and k-h low bits

 SEk: stopper encoding without code splitting

 SE8,h: plain code splitting without compression

 We consider here two versions: SE4, SE8,4

Test data

Part of the fruitfly DNA (5 MB)

English Bible (extended to 5 MB)

Finnish Bible (extended to 5 MB)

Compression ratios

 Compression ratio = compressed size / original size

English Bible Finnish Bible DNA

BPX 28,0 % 32,6 % 27,8 %

BPE 51,0 % 52,1 % 34,0 %

SE4 58,8 % 58,2 % 50,0 %

Tested search algorithms

TBM: Tuned Boyer-Moore for uncompressed texts

SBNDM2: for uncompressed texts

BM-BPE: texts compressed by BPE by Shibata et al. (00)

KMP-BPX: texts compr. by rec. pairing by Maruyama et al. (08)

SBNDM2-SE4: SBNDM2 for SE4 encoded texts

SBNDM2-SE8,4: SBNDM2 for SE8,4 encoded texts

(code splitting, no compression)

BM-SE4: Boyer-Moore for SE4 encoded texts

BM-SE8,4: Boyer-Moore for SE8,4 encoded texts (cs, nc)

Results: DNA

Results: English text

Concluding remarks

Practical solutions for the compressed matching

problem

SBNDM2-SE4 is faster than other tested methods of

compressed matching in English and DNA texts for

pattern lengths > 5.

SBNDM2-SE4 is faster than SBNDM2 for pattern lengths

≥ 9 in English text, but slower for shorter patterns.

SE4 has similar compression ratio to the fast BPE.

