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Introduction

String matching: finding an exact pattern in a string

String comparison: finding similar patterns in two strings

Standard types of string comparison:

global: whole string vs whole string

local: substrings vs substrings

Main focus of this work:

semi-local: whole string vs substrings; prefixes vs suffixes

Closely related to approximate string matching: whole pattern string vs
substrings in text string
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Introduction
Overview

Standard approach to string comparison: dynamic programming

Our approach: the algebra of unit-Monge matrices, a.k.a. seaweed braids

Can be used either for dynamic programming, or for divide-and-conquer

Divide-and-conquer is better for:

comparing strings dynamically (truncation, concatenation)

comparing compressed srtrings (e.g. LZ-compression)

comparing strings in parallel

The “conquer” step is non-trivial — but not so much that it couldn’t have
been discovered much earlier!
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Introduction
Terminology and notation

The “squared paper” notation:

Integers {. . .− 2,−1, 0, 1, 2, . . .} x− = x − 1
2 x+ = x + 1

2

Half-integers
{
. . .− 3

2 ,−
1
2 ,

1
2 ,

3
2 ,

5
2 , . . .

}
=
{
. . . (−2)+, (−1)+, 0+, 1+, 2+

}
Planar dominance:

(i , j)� (i ′, j ′) iff i < i ′ and j < j ′ (the “above-left” relation)

(i , j) ≷ (i ′, j ′) iff i > i ′ and j < j ′ (the “below-left” relation)

where “above/below” follow matrix convention (not the Cartesian one!)
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Introduction
Terminology and notation

A permutation matrix is a 0/1 matrix with exactly one nonzero per row
and per column0 1 0

1 0 0
0 0 1


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Introduction
Terminology and notation

Given matrix D, its distribution matrix is made up of ≷-dominance sums:
DΣ(i , j) =

∑
ı̂>i ,̂<j D(i , j)

Given matrix E , its density matrix is made up of quadrangle differences:
E�(̂ı, ̂) = E (̂ı−, ̂+)− E (̂ı−, ̂−)− E (̂ı+, ̂+) + E (̂ı+, ̂−)

where DΣ, E over integers; D, E� over half-integers0 1 0
1 0 0
0 0 1

Σ

=


0 1 2 3
0 1 1 2
0 0 0 1
0 0 0 0




0 1 2 3
0 1 1 2
0 0 0 1
0 0 0 0


�

=

0 1 0
1 0 0
0 0 1


(DΣ)� = D for all D

Matrix E is simple, if (E�)Σ = E ; equivalently, if it has all zeros in the left
column and bottom row
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Introduction
Terminology and notation

Matrix E is Monge, if E� is nonnegative

Intuition: boundary-to-boundary distances in a (weighted) planar graph

G. Monge (1746–1818)

G (planar)

i

j

0

1 2 3

4

0

1 2 3

4
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Introduction
Terminology and notation

Matrix E is Monge, if E� is nonnegative

Intuition: boundary-to-boundary distances in a (weighted) planar graph

G. Monge (1746–1818)

i

j

0

1 2 3

4

0

1 2 3

4

blue + blue ≤ red + red
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Introduction
Terminology and notation

Matrix E is unit-Monge, if E� is a permutation matrix

Intuition: boundary-to-boundary distances in a grid-like graph

Simple unit-Monge matrix: PΣ, where P is a permutation matrix

PΣ sometimes called the rank function of P

Seaweed matrix: P used as an implicit representation of PΣ0 1 0
1 0 0
0 0 1

Σ

=
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Introduction
Implicit unit-Monge matrices

Efficient PΣ queries: range tree on nonzeros of P [Bentley: 1980]

binary search tree by i-coordinate

under every node, binary search tree by j-coordinate

•
•
•
•
−→ •

•
•
•
−→ •

•
•
•

↓

•
•
•
•
−→ •

•
•
•
−→ •

•
•
•

↓

•
•
•
•
−→ •

•
•
•
−→ •

•
•
•

Alexander Tiskin (Warwick) Approximate matching in GC-strings 12 / 75



Introduction
Implicit unit-Monge matrices

Efficient PΣ queries: (contd.)

Every node of the range tree represents a canonical range (rectangular
region), and stores its nonzero count

Overall, ≤ n log n canonical ranges are non-empty

A PΣ query is equivalent to ≷-dominance counting: how many nonzeros
are ≷-dominated by query point?

Answer: sum up nonzero counts in ≤ log2 n disjoint canonical ranges

Total size O(n log n), query time O(log2 n)

There are asymptotically more efficient (but less practical) data structures

Total size O(n), query time O
( log n

log log n

)
[JáJá+: 2004]

[Chan, Pǎtraşcu: 2010]
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Matrix distance multiplication
Seaweed braids

Distance algebra (a.k.a (min,+) or tropical algebra):

addition ⊕ given by min, multiplication � given by +

Matrix �-multiplication

A� B = C C (i , k) =
⊕

j

(
A(i , j)� B(j , k)

)
= minj

(
A(i , j) + B(j , k)

)
Intuition: gluing distances in a union of graphs

i

G ′

j

G ′′

k
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Matrix distance multiplication
Seaweed braids

Matrix classes closed under �-multiplication (for given n):

general (integer, real) matrices ∼ general weighted graphs

Monge matrices ∼ planar weighted graphs

simple unit-Monge matrices ∼ grid-like graphs

Implicit �-multiplication: define PA � PB = PC as PΣ
A � PΣ

B = PΣ
C

The seaweed monoid Tn:

simple unit-Monge matrices under �
equivalently, permutation (seaweed) matrices under �

Also known as the 0-Hecke monoid of the symmetric group H0(Sn)
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Matrix distance multiplication
Seaweed braids

PA � PB = PC can be seen as combing of seaweed braids

PA

�

PB

=

PC

PA

PB

= = PC
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Matrix distance multiplication
Seaweed braids

The seaweed monoid Tn:

n! elements (permutations of size n)

n − 1 generators g1, g2, . . . , gn−1 (elementary crossings)

Idempotence:
g 2
i = gi for all i =

Far commutativity:
gigj = gjgi j − i > 1 · · · = · · ·

Braid relations:
gigjgi = gjgigj j − i = 1 =
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Matrix distance multiplication
Seaweed braids

Identity: 1� x = x

1 =


• · · ·
· • · ·
· · • ·
· · · •

 =

Zero: 0� x = 0

0 =


· · · •
· · • ·
· • · ·
• · · ·

 =
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Matrix distance multiplication
Seaweed braids

Related structures:

positive braids: far comm; braid relations

braids: gig
−1
i = 1; far comm; braid relations

Coxeter’s presentation of Sn: g 2
i = 1; far comm; braid relations

locally free idempotent monoid: idem; far comm [Vershik+: 2000]

Generalisations:

general 0-Hecke monoids [Fomin, Greene: 1998; Buch+: 2008]

Coxeter monoids [Tsaranov: 1990; Richardson, Springer: 1990]

J -trivial monoids [Denton+: 2011]
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Matrix distance multiplication
Seaweed braids

Computation in the seaweed monoid: a confluent rewriting system can be
obtained by software (Semigroupe, GAP)

T3: 1, a = g1, b = g2; ab, ba; aba = 0

aa→ a bb → b bab → 0 aba→ 0

T4: 1, a = g1, b = g2, c = g3; ab, ac, ba, bc, cb, aba, abc, acb, bac,
bcb, cba, abac , abcb, acba, bacb, bcba, abacb, abcba, bacba; abacba = 0

aa→ a
bb → b

ca→ ac
cc → c

bab → aba
cbc → bcb

cbac → bcba
abacba→ 0

Easy to use, but not an efficient algorithm
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Matrix distance multiplication
Seaweed matrix multiplication

The implicit unit-Monge matrix �-multiplication problem

Given permutation matrices PA, PB , compute PC , such that
PΣ
A � PΣ

B = PΣ
C (equivalently, PA � PB = PC )

Matrix �-multiplication: running time

type time

general O(n3) standard

O
(n3(log log n)3

log2 n

)
[Chan: 2007]

Monge O(n2) via [Aggarwal+: 1987]

implicit unit-Monge O(n1.5) [T: 2006]
O(n log n) [T: 2010]
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Matrix distance multiplication
Seaweed matrix multiplication

PA

PB

PC

?
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Matrix distance multiplication
Seaweed matrix multiplication

PA,lo , PA,hi

PB,lo , PB,hi

PC ,lo + PC ,hi
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Matrix distance multiplication
Seaweed matrix multiplication

Implicit unit-Monge matrix �-multiplication: the algorithm

PΣ
C (i , k) = minj

(
PΣ
A (i , j) + PΣ

B (j , k)
)

Divide-and-conquer on the range of j : two subproblems of size n/2

PΣ
A,lo � PΣ

B,lo = PΣ
C ,lo PΣ

A,hi � PΣ
B,hi = PΣ

C ,hi

Conquer: tracing a balanced path from bottom-left to top-right PC

Path invariant: equal number of �-dominated nonzeros in PC ,hi and
�-dominating nonzeros in PC ,lo

All such nonzeros are “errors” in the output, must be removed

Must compensate by placing nonzeros on the path, time O(n)

Overall time O(n log n)
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Matrix distance multiplication
Bruhat order

Bruhat order

Permutation A is lower (“more sorted”) than permutation B in the Bruhat
order (A � B), if B  A by successive pairwise sorting (equivalently,
A B by anti-sorting) of arbitrary pairs

Permutation matrices: PA � PB , if PB  PA by successive 2× 2
submatrix sorting: ( 0 1

1 0 )→ ( 1 0
0 1 )

Plays an important role in group theory and algebraic geometry (inclusion
order of Schubert varieties)

Describes pivoting order in Gaussian elimination (LUP/Bruhat
decomposition)
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Matrix distance multiplication
Bruhat order

Bruhat comparability: running time

O(n2) [Ehresmann: 1934; Proctor: 1982; Grigoriev: 1982]
O(n log n) [T: 2013]

O
( n log n

log log n

)
[Gawrychowski: NEW]
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Matrix distance multiplication
Bruhat order

Ehresmann’s criterion (dot criterion, related to tableau criterion)

PA � PB iff PΣ
A ≤ PΣ

B elementwise1 0 0
0 0 1
0 1 0

Σ

=


0 1 2 3
0 0 1 2
0 0 1 1
0 0 0 0

 ≤


0 1 2 3
0 1 2 2
0 0 1 1
0 0 0 0

 =

0 0 1
1 0 0
0 1 0

Σ

1 0 0
0 0 1
0 1 0

Σ

=


0 1 2 3
0 0 1 2
0 0 1 1
0 0 0 0

 6≤


0 1 2 3
0 1 1 2
0 0 0 1
0 0 0 0

 =

0 1 0
1 0 0
0 0 1

Σ

Time O(n2)
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Matrix distance multiplication
Bruhat order

Seaweed criterion

PA � PB iff PR
A � PB = IdR , where PR = clockwise rotation of matrix P

Intuition: permutations represented by seaweed braids

PA � PB , iff

no pair of seaweeds is crossed in PA, while the “corresponding” pair is
uncrossed in PB

equivalently, no pair is uncrossed in PR
A , while the “corresponding”

pair is uncrossed in PB

equivalently, PR
A � PB = IdR

Time O(n log n) by seaweed matrix multiplication
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Matrix distance multiplication
Bruhat order1 0 0

0 0 1
0 1 0

 �
0 0 1

1 0 0
0 1 0


1 0 0

0 0 1
0 1 0

R

�

0 0 1
1 0 0
0 1 0

 =

0 1 0
0 0 1
1 0 0

�
0 0 1

1 0 0
0 1 0

 =

0 0 1
0 1 0
1 0 0
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Matrix distance multiplication
Bruhat order

Alternative solution: clever implementation of Ehresmann’s criterion
[Gawrychowski: 2013]

The online partial sums problem: maintain array X [1 : n], subject to

update(k,∆): X [k]← X [k] + ∆

prefixsum(k): return
∑

1≤i≤k X [i ]

Query time:

Θ(log n) in semigroup or group model

Θ
( log n

log log n

)
in RAM model on integers [Pǎtraşcu, Demaine: 2004]

Gives Bruhat comparability in time O
( n log n

log log n

)
in RAM model

Open problem: seaweed multiplication in time O
( n log n

log log n

)
?
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Semi-local string comparison
Semi-local LCS and edit distance

Consider strings (= sequences) over an alphabet of size σ

Contiguous substrings vs not necessarily contiguous subsequences

Special cases of substring: prefix, suffix

Notation: strings a, b of length m, n respectively

Assume where necessary: m ≤ n; m, n reasonably close

The longest common subsequence (LCS) score:

length of longest string that is a subsequence of both a and b

equivalently, alignment score, where score(match) = 1 and
score(mismatch) = 0

In biological terms, “loss-free alignment” (unlike efficient but “lossy”
BLAST)
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Semi-local string comparison
Semi-local LCS and edit distance

The LCS problem

Give the LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer: 1974]
O
(

mn
log2 n

)
σ = O(1) [Masek, Paterson: 1980]

[Crochemore+: 2003]

O
(mn(log log n)2

log2 n

)
[Paterson, Danč́ık: 1994]

[Bille, Farach-Colton: 2008]

Running time varies depending on the RAM model version

We assume word-RAM with word size log n (where it matters)

Alexander Tiskin (Warwick) Approximate matching in GC-strings 37 / 75



Semi-local string comparison
Semi-local LCS and edit distance

The LCS problem

Give the LCS score for a vs b

LCS: running time

O(mn) [Wagner, Fischer: 1974]
O
(

mn
log2 n

)
σ = O(1) [Masek, Paterson: 1980]

[Crochemore+: 2003]

O
(mn(log log n)2

log2 n

)
[Paterson, Danč́ık: 1994]
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Semi-local string comparison
Semi-local LCS and edit distance

LCS computation by dynamic programming

lcs(a, ∅) = 0

lcs(∅, b) = 0
lcs(aα, bβ) =

{
max(lcs(aα, b), lcs(a, bβ)) if α 6= β

lcs(a, b) + 1 if α = β

∗ D E F I N E

∗ 0

0 0 0 0 0 0

D 0

1 1 1 1 1 1

E 0

1 2 2 2 2 2

S 0

1 2 2 2 2 2

I 0

1 2 2 3 3 3

G 0

1 2 2 3 3 3

N 0

1 2 2 3 4 4

lcs(“DEFINE”, “DESIGN”) = 4

LCS(a, b) can be traced back through
the dynamic programming table at no
extra asymptotic time cost
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Semi-local string comparison
Semi-local LCS and edit distance

LCS on the alignment graph (directed, acyclic)

B

A

A

B

C

B

C

A

B A A B C A B C A B A C A blue = 0
red = 1

score(“BAABCBCA”, “BAABCABCABACA”) = len(“BAABCBCA”) = 8

LCS = highest-score path from top-left to bottom-right
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Semi-local string comparison
Semi-local LCS and edit distance

LCS: dynamic programming [WF: 1974]

Sweep cells in any �-compatible order

Cell update: time O(1)

Overall time O(mn)
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Semi-local string comparison
Semi-local LCS and edit distance

LCS: micro-block dynamic programming [MP: 1980; BF: 2008]

Sweep cells in micro-blocks, in any �-compatible order

Micro-block size:

t = O(log n) when σ = O(1)

t = O
( log n

log log n

)
otherwise

Micro-block interface:

O(t) characters, each O(log σ) bits, can be reduced to O(log t) bits

O(t) small integers, each O(1) bits

Micro-block update: time O(1), by precomputing all possible interfaces

Overall time O
(

mn
log2 n

)
when σ = O(1), O

(mn(log log n)2

log2 n

)
otherwise
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Semi-local string comparison
Semi-local LCS and edit distance

‘Begin at the beginning,’ the King said gravely, ‘and
go on till you come to the end: then stop.’

L. Carroll, Alice in Wonderland

Dynamic programming: begins at empty strings,
proceeds by appending characters, then stops

What about:

prepending/deleting characters (dynamic LCS)

concatenating strings (LCS on compressed
strings; parallel LCS)

taking substrings (= local alignment)
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Semi-local string comparison
Semi-local LCS and edit distance

Dynamic programming from both ends:
better by ×2, but still not good enough

Is dynamic programming strictly necessary to
solve sequence alignment problems?

Eppstein+, Efficient algorithms for sequence

analysis, 1991
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Semi-local string comparison
Semi-local LCS and edit distance

The semi-local LCS problem

Give the (implicit) matrix of O
(
(m + n)2

)
LCS scores:

string-substring LCS: string a vs every substring of b

prefix-suffix LCS: every prefix of a vs every suffix of b

suffix-prefix LCS: every suffix of a vs every prefix of b

substring-string LCS: every substring of a vs string b
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Semi-local string comparison
Semi-local LCS and edit distance

Semi-local LCS on the alignment graph

B

A

A

B

C

B

C

A

B A A B C A B C A B A C AC A B C A B A blue = 0
red = 1

score(“BAABCBCA”, “CABCABA”) = len(“ABCBA”) = 5

String-substring LCS: all highest-score top-to-bottom paths

Semi-local LCS: all highest-score boundary-to-boundary paths
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Semi-local string comparison
Score matrices and seaweed matrices

The score matrix H

0 1 2 3 4 5 6 6 7 8 8 8 8 8

-1 0 1 2 3 4 5 5 6 7 7 7 7 7

-2 -1 0 1 2 3 4 4 5 6 6 6 6 7

-3 -2 -1 0 1 2 3 3 4 5 5 6 6 7

-4 -3 -2 -1 0 1 2 2 3 4 4 5 5 6

-5 -4 -3 -2 -1 0 1 2 3 4 4 5 5 6

-6 -5 -4 -3 -2 -1 0 1 2 3 3 4 4 5

-7 -6 -5 -4 -3 -2 -1 0 1 2 2 3 3 4

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 3 4

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

5

a = “BAABCBCA”

b = “BAABCABCABACA”

H(i , j) = score(a, b〈i : j〉)
H(4, 11) = 5

H(i , j) = j − i if i > j
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Semi-local string comparison
Score matrices and seaweed matrices

Semi-local LCS: output representation and running time

size query time

O(n2) O(1) trivial

O(m1/2n) O(log n) string-substring [Alves+: 2003]
O(n) O(n) string-substring [Alves+: 2005]
O(n log n) O(log2 n) [T: 2006]

. . . or any 2D orthogonal range counting data structure

running time

O(mn2) naive
O(mn) string-substring [Schmidt: 1998; Alves+: 2005]
O(mn) [T: 2006]
O
(

mn
log0.5 n

)
[T: 2006]

O
(mn(log log n)2

log2 n

)
[T: 2007]
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Semi-local string comparison
Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

H(i , j): the number of matched characters for a vs substring b〈i : j〉
j − i − H(i , j): the number of unmatched characters

Properties of matrix j − i − H(i , j):

simple unit-Monge

therefore, = PΣ, where P = −H� is a permutation matrix

P is the seaweed matrix, giving an implicit representation of H

Range tree for P: memory O(n log n), query time O(log2 n)
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Semi-local string comparison
Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P
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5

a = “BAABCBCA”

b = “BAABCABCABACA”

H(i , j) = score(a, b〈i : j〉)
H(4, 11) = 5

H(i , j) = j − i if i > j

blue: difference in H is 0

red : difference in H is 1

green: P(i , j) = 1

H(i , j) = j − i − PΣ(i , j)
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-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

5

a = “BAABCBCA”

b = “BAABCABCABACA”

H(i , j) = score(a, b〈i : j〉)
H(4, 11) = 5

H(i , j) = j − i if i > j

blue: difference in H is 0

red : difference in H is 1

green: P(i , j) = 1

H(i , j) = j − i − PΣ(i , j)
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Score matrices and seaweed matrices

The score matrix H and the seaweed matrix P

0 1 2 3 4 5 6 6 7 8 8 8 8 8
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-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
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-12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1

-13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

5

a = “BAABCBCA”

b = “BAABCABCABACA”

H(4, 11) =
11− 4− PΣ(i , j) =
11− 4− 2 = 5
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Semi-local string comparison
Score matrices and seaweed matrices

The (combed) seaweed braid in the alignment graph

B

A

A

B

C

B

C

A

B A A B C A B C A B A C AC A B C A B A a = “BAABCBCA”

b = “BAABCABCABACA”

H(4, 11) =
11− 4− PΣ(i , j) =
11− 4− 2 = 5

P(i , j) = 1 corresponds to seaweed top i  bottom j

Also define seaweeds top  right, left  right, left  bottom

Represent implicitly semi-local LCS for each prefix of a vs b
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Semi-local string comparison
Score matrices and seaweed matrices

Seaweed braid: a highly symmetric object (element of H0(Sn))

Can be built by assembling subbraids: divide-and-conquer

Flexible approach to local alignment, compressed approximate matching,
parallel computation. . .
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Semi-local string comparison
Weighted alignment

The LCS problem is a special case of the weighted alignment score
problem with weighted matches (wM), mismatches (wX ) and gaps (wG)

LCS score: wM = 1, wX = wG = 0

Levenshtein score: wM = 2, wX = 1, wG = 0

Alignment score is rational, if wM , wX , wG are rational numbers

Edit distance: minimum cost to transform a into b by weighted character
edits (insertion, deletion, substitution)

Corresponds to weighted alignment score with wM = 0:

insertion/deletion cost −wG

substitution weight −wX
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Semi-local string comparison
Weighted alignment

Weighted alignment graph for a, b

B

A

A

B

C

B

C

A

B A A B C A B C A B A C AC A B C A B A blue = 0
red (solid) = 2

red (dotted) = 1

Levenshtein(“BAABCBCA”, “CABCABA”) = 11
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Semi-local string comparison
Weighted alignment

Reduction: ordinary alignment graph for blown-up a, b

$B

$A

$A

$B

$C

$B

$C

$A

$B $A $A $B $C $A $B $C $A $B $A $C $A$C$A$B$C$A$B$A blue = 0
red = 1 or 2

Levenshtein(“BAABCBCA”, “CABCABA”) =
lcs(“$B$A$A$B$C$B$C$A”, “$C$A$B$C$A$B$A”) = 11
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Semi-local string comparison
Weighted alignment

Reduction: rational-weighted semi-local alignment to semi-local LCS

$B

$A

$A

$B

$C

$B

$C

$A

$B $A $A $B $C $A $B $C $A $B $A $C $A$C$A$B$C$A$B$A

Let wM = 1, wX = µ
ν , wG = 0

Increase × ν2 in complexity (can be reduced to ν)
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1 Introduction

2 Matrix distance multiplication

3 Semi-local string comparison

4 Compressed string comparison

5 Conclusions and future work
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Compressed string comparison
Grammar compression

Notation: pattern p of length m; text t of length n

A GC-string (grammar-compressed string) t is a straight-line program
(context-free grammar) generating t = tn̄ by n̄ assignments of the form

tk = α, where α is an alphabet character

tk = uv , where each of u, v is an alphabet character, or ti for i < k

In general, n = O(2n̄)

Example: Fibonacci string “ABAABABAABAAB”

t1 = A t2 = t1B t3 = t2t1 t4 = t3t2 t5 = t4t3 t6 = t5t4
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Compressed string comparison
Grammar compression

Grammar-compression covers various compression types, e.g. LZ78, LZW
(not LZ77 directly)

Simplifying assumption: arithmetic up to n runs in O(1)

This assumption can be removed by careful index remapping
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Compressed string comparison
Extended substring-string LCS on GC-strings

LCS: running time (r = m + n, r̄ = m̄ + n̄)

p t

plain plain O(mn) [Wagner, Fischer: 1974]
O
(

mn
log2 m

)
[Masek, Paterson: 1980]

[Crochemore+: 2003]

plain GC O(m3n̄ + . . .) gen. CFG [Myers: 1995]
O(m1.5n̄) ext subs-s [T: 2008]
O(m log m · n̄) ext subs-s [T: 2010]

GC GC NP-hard [Lifshits: 2005]
O(r 1.2r̄ 1.4) R weights [Hermelin+: 2009]
O(r log r · r̄) [T: 2010]
O
(
r log(r/r̄) · r̄

)
[Hermelin+: 2010]

O
(
r log1/2(r/r̄) · r̄

)
[Gawrychowski: 2012]
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Compressed string comparison
Extended substring-string LCS on GC-strings

Extended substring-string LCS (plain pattern, GC text): the algorithm

For every k, compute by recursion the appropriate part of seaweed matrix
Pp,tk , using matrix �-multiplication: time O(m log m · n̄)

Overall time O(m log m · n̄)
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Compressed string comparison
Subsequence recognition on GC-strings

The global subsequence recognition problem

Does pattern p appear in text t as a subsequence?

Global subsequence recognition: running time

p t

plain plain O(n) greedy

plain GC O(mn̄) greedy

GC GC NP-hard [Lifshits: 2005]
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Compressed string comparison
Subsequence recognition on GC-strings

The local subsequence recognition problem

Find all minimally matching substrings of t with respect to p

Substring of t is matching, if p is a subsequence of t

Matching substring of t is minimally matching, if none of its proper
substrings are matching
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Compressed string comparison
Subsequence recognition on GC-strings

Local subsequence recognition: running time ( + output)

p t

plain plain O(mn) [Mannila+: 1995]
O
(

mn
log m

)
[Das+: 1997]

O(cm + n) [Boasson+: 2001]
O(m + nσ) [Troniček: 2001]

plain GC O(m2 log mn̄) [Cégielski+: 2006]
O(m1.5n̄) [T: 2008]
O(m log m · n̄) [T: 2010]
O(m · n̄) [Yamamoto+: 2011]

GC GC NP-hard [Lifshits: 2005]
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Compressed string comparison
Subsequence recognition on GC-strings

ı̂0+

O
ı̂1+

O
ı̂2+

O

M
̂0+

M
̂1+

M
̂2+

0
H

n′

H
n
H

b〈i : j〉 matching iff box [i : j ] not pierced left-to-right

Determined by �-chain of ≷-maximal seaweeds

b〈i : j〉 minimally matching iff (i , j) is in the interleaved skeleton �-chain
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Compressed string comparison
Subsequence recognition on GC-strings

̂0+ ̂1+ ̂2+n′ n m+n

−m

0

n′

ı̂0+

ı̂1+

ı̂2+
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Compressed string comparison
Subsequence recognition on GC-strings

Local subsequence recognition (plain pattern, GC text): the algorithm

For every k, compute by recursion the appropriate part of seaweed matrix
Pp,tk , using matrix �-multiplication: time O(m log m · n̄)

Given an assignment t = t ′t ′′, find by recursion

minimally matching substrings in t ′

minimally matching substrings in t ′′

Then, find �-chain of ≷-maximal seaweeds in time n̄ · O(m) = O(mn̄)

Its skeleton �-chain: minimally matching substrings in t overlapping t ′, t ′′

Overall time O(m log m · n̄) + O(mn̄) = O(m log m · n̄)
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Compressed string comparison
Threshold approximate matching

The threshold approximate matching problem

Find all matching substrings of t with respect to p, according to a
threshold k

Substring of t is matching, if the edit distance for p vs t is at most k

Alexander Tiskin (Warwick) Approximate matching in GC-strings 68 / 75



Compressed string comparison
Threshold approximate matching

Threshold approximate matching: running time ( + output)

p t

plain plain O(mn) [Sellers: 1980]
O(mk) [Landau, Vishkin: 1989]

O(m + n + nk4

m ) [Cole, Hariharan: 2002]

plain GC O(mn̄k2) [Kärkkäinen+: 2003]
O(mn̄k + n̄ log n) [LV: 1989] via [Bille+: 2010]
O(mn̄ + n̄k4 + n̄ log n) [CH: 2002] via [Bille+: 2010]
O(m log m · n̄) [T: NEW]

GC GC NP-hard [Lifshits: 2005]

(Also many specialised variants for LZ compression)
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Compressed string comparison
Threshold approximate matching

ı̂0+

O
ı̂1+

O
ı̂2+

O
ı̂3+

O
ı̂4+

O

M
̂0+

M
̂1+

M
̂2+

M
̂3+

M
̂4+

0
H

n′

H
n
H

Blow up: weighted alignment on strings p, t of size m, n equivalent to
LCS on strings p, t of size m = νm, n = νn
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Compressed string comparison
Threshold approximate matching

̂0+ ̂1+ ̂2+ ̂3+ ̂4+n′ n m+n

ı̂0+

ı̂1+

ı̂2+

ı̂3+

ı̂4+

−m

0

n′
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Compressed string comparison
Threshold approximate matching

Threshold approx matching (plain pattern, GC text): the algorithm

Algorithm structure similar to local subsequence recognition

�-chains replaced by m ×m submatrices

Extra ingredients:

the blow-up technique: reduction of edit distances to LCS scores

implicit matrix searching, replaces �-chain interleaving

Monge row minima: “SMAWK” O(m) [Aggarwal+: 1987]

Implicit unit-Monge row minima:

O(m log log m) [T: 2012]
O(m) [Gawrychowski: 2012]

Overall time O(m log m · n̄) + O(mn̄) = O(m log m · n̄)
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Conclusions and future work

A powerful alternative to dynamic programming

Implicit unit-Monge matrices:

the seaweed monoid, multiplication in time O(n log n)

Semi-local LCS problem:

isomorphic to seaweed monoid, generalises to rational scores

Approximate matching in GC-text in time O(m log m · n̄)

Other applications:

maximum clique in a circle graph in time O(n log2 n)

parallel LCS in time O
(
mn
p

)
, comm O

(
m+n
p1/2

)
per processor

identification of evolutionary-conserved regions in DNA
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Thank you
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