PSC 2015

Faster Longest Common Extension on Compressed Strings and Applications

Shunsuke Inenaga Kyushu University, Japan

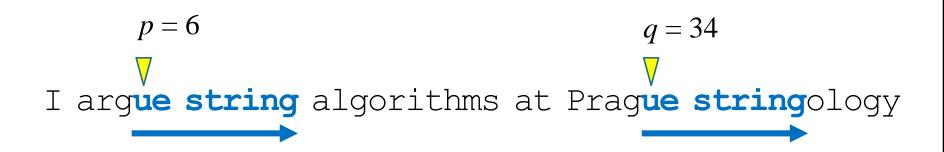
Joint work with Takaaki Nishimoto, Tomohiro I, Hideo Bannai, and Masayuki Takeda

Longest common extension (LCE) on string T is a task such that, given two positions p and q, compute the length of the longest common substring of T starting at positions p and q.

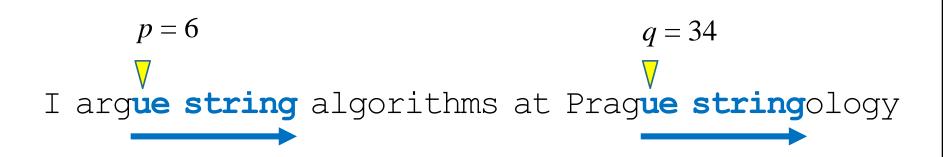
Longest common extension (LCE) on string T is a task such that, given two positions p and q, compute the length of the longest common substring of T starting at positions p and q.

p = 6 \bigtriangledown I argue string algorithms at Prague stringology

Longest common extension (LCE) on string T is a task such that, given two positions p and q, compute the length of the longest common substring of T starting at positions p and q.



Longest common extension (LCE) on string T is a task such that, given two positions p and q, compute the length of the longest common substring of T starting at positions p and q.



LCE(6, 34) = 9

Background & Motivation

- LCE has numerous applications, e.g., approximate pattern matching, computing palindromes, computing approximate repeats.
- ✓ A string *T* of length *u* can be preprocessed in O(u) time and space so that each LCE query can be answered in O(1) time [Demaine et al.].
- ✓ However, the O(u) complexity can be prohibitive for large-scaled text.
- ✓ To save preprocessing time and space, we consider LCE on grammar-compressed text.

Straight Line Program (SLP)

Definition

An SLP is a sequence of *n* productions $X_1 \rightarrow expr_1, X_2 \rightarrow expr_2, \dots, X_n \rightarrow expr_n$

•
$$expr_i = a$$
 $(a \in \Sigma)$

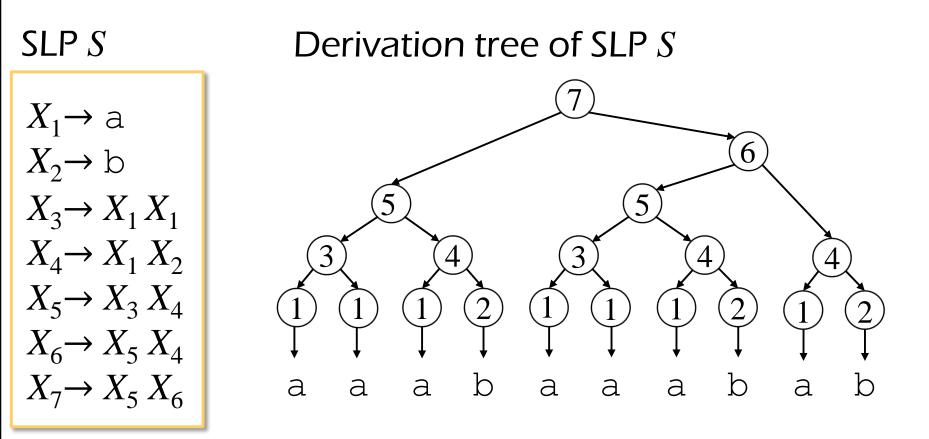
•
$$expr_i = X_l X_r$$
 $(l, r < i)$

- ✓ An SLP is a CFG in the Chomsky normal form which derives a single string.
- ✓ SLPs model outputs of grammar-based compression algorithms (e.g., Re-pair, LZ78, LZDF, OLCA, etc).

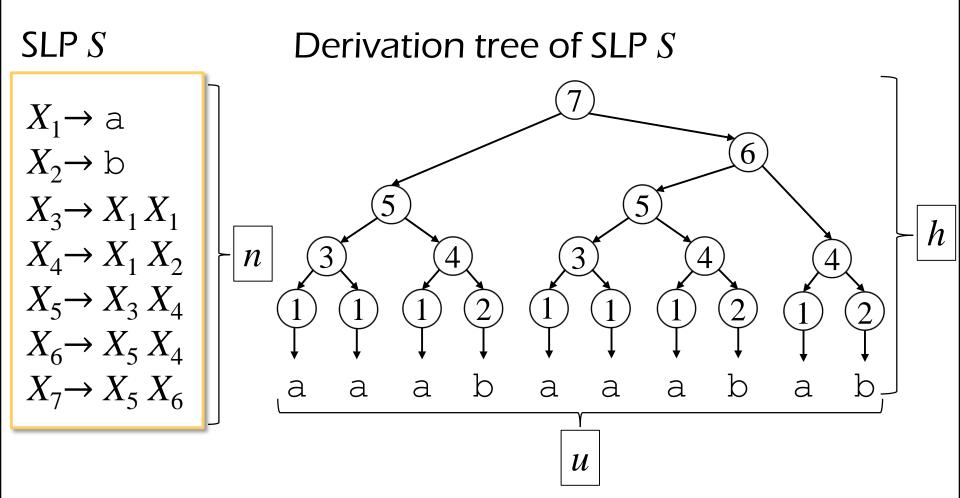
Straight Line Program (SLP)

n : size (# of productions) of a given SLP S *h* : height of the derivation tree of S *u* : length of the uncompressed string T
represented by SLP S

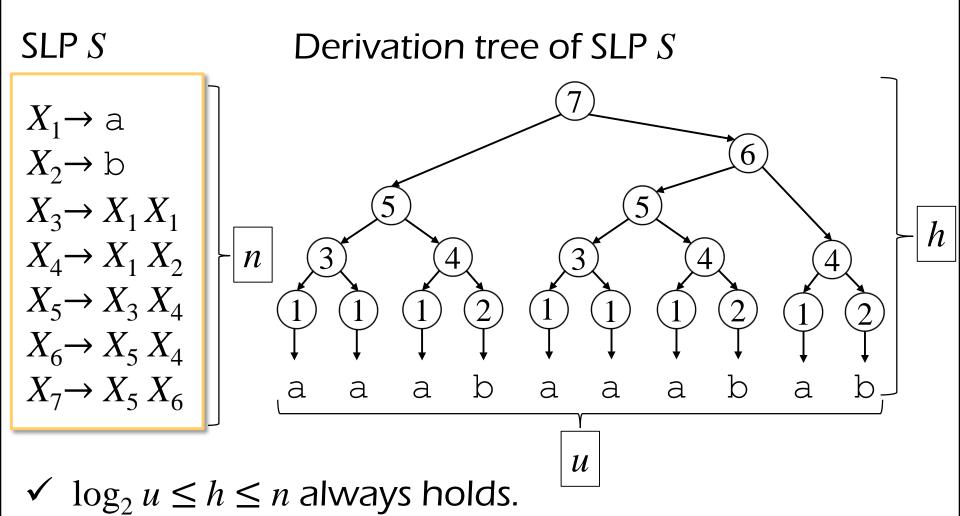
Example of SLP



Example of SLP

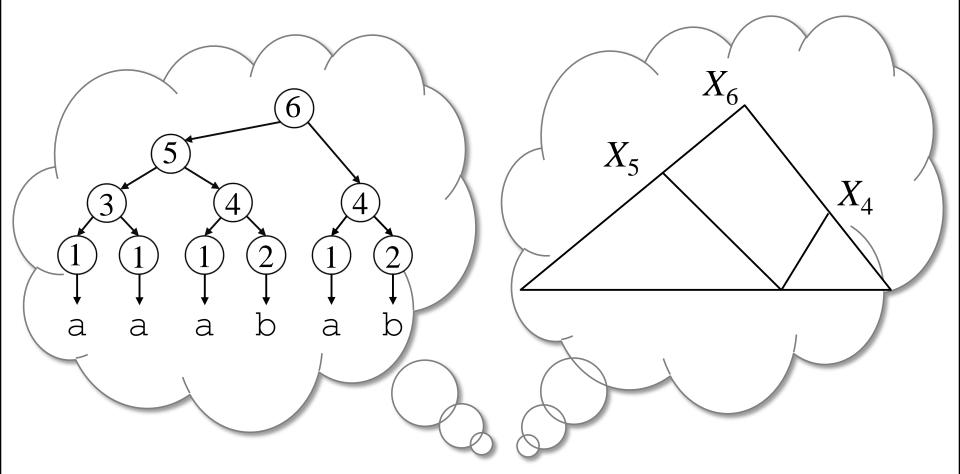


Example of SLP



u can be exponential in *n* (e.g. consider string *a^u*).
 Hence, *O*(poly(*n*)) solutions are of significance.

Important Remarks

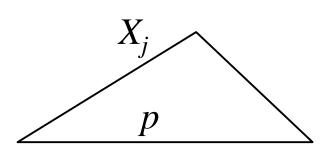


 Derivation trees are only imaginary (used only for explanations) and are <u>never constructed explicitly</u>.

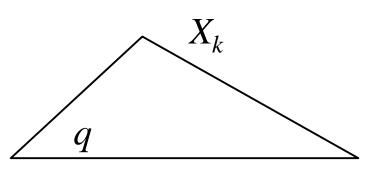
Longest Common Extension on SLP

Problem 1 (grammar compressed LCE)

Preprocess an input SLP $S = \{X_i \rightarrow expr_i\}_{i=1}^n$ so that subsequent longest common extension queries $\mathbf{LCE}(X_j, X_k, p, q)$ can be answered quickly.



abbabbabca

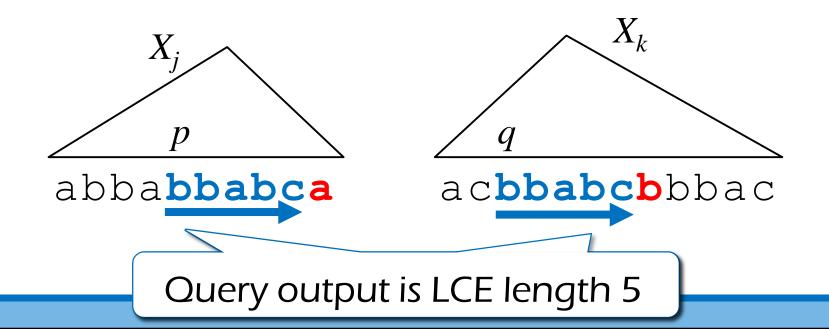


acbbabcbbbac

Longest Common Extension on SLP

Problem 1 (grammar compressed LCE)

Preprocess an input SLP $S = \{X_i \rightarrow expr_i\}_{i=1}^n$ so that subsequent longest common extension queries $\mathbf{LCE}(X_j, X_k, p, q)$ can be answered quickly.



What is the difficulty?

- ✓ We are not allowed to expand the SLP (compressed text), since this takes O(2ⁿ) time in the worst case.
- ✓ But we want to know the length of the longest common extension!

LCE algorithms on SLPs

Algorithms	Query time	Preprocessing time	Space
Folklore	O(hL)	O(n)	O(n)
(extended) Miyazaki et al. ′97	$O(hn^2)$	$O(n^4)$	$O(n^2)$
(extended) Lifshits ′07	$O(hn^2)$	$O(hn^2)$	$O(n^2)$
l et al. '15	$O(h \log u)$	$O(hn^2)$	$O(n^2)$
Bille et al. '15 (randomized)	$O(\log u + \log^2 L)$	N/A	O(n)

n: size of SLP

- *u*: length of uncompressed string *T*
- h: height of SLP derivation tree
- L: LCE length (output)
- *z*: size of LZ77 factorization of *T*

- $\log u \le h \le n$
- L = O(u)
- $\log^* u = o(\log u)$
- $z \le n$ (due to Rytter '03)

LCE algorithms on SLPs

-		
Query time	Preprocessing time	Space
O(hL)	O(n)	O(n)
$O(hn^2)$	$O(n^4)$	$O(n^2)$
$O(hn^2)$	$O(hn^2)$	$O(n^2)$
$O(h \log u)$	$O(hn^2)$	$O(n^2)$
$O(\log u + \log^2 L)$	N/A	O(n)
$O(\log u + \log^* u \log L)$	$O(n \log \log n \log^* u \log u)$	$O(n+z\log^* u \log u)$
	$O(hL)$ $O(hn^{2})$ $O(hn^{2})$ $O(h \log u)$ $O(\log u + \log^{2}L)$	$O(hL)$ $O(n)$ $O(hn^2)$ $O(n^4)$ $O(hn^2)$ $O(hn^2)$ $O(h \log u)$ $O(hn^2)$ $O(\log u + \log^2 L)$ N/A

n: size of SLP

u: length of uncompressed string *T*

- *h*: height of SLP derivation tree
- L: LCE length (output)
- z: size of LZ77 factorization of T

- $\log u \le h \le n$
- L = O(u)
- $\log^* u = o(\log u)$
- $z \le n$ (due to Rytter '03)

Logstar (iterated logarithm)

Definition

The **logstar** of a positive integer u, denoted $\log^* u$, is the number of times the logarithm function needs to be iteratively applied to u until the result becomes less than or equal to 1.

✓ The logstar is a <u>very slowly growing function</u>, e.g., $\log^* 2^{65536} = 5$.

LCE algorithms on SLPs

Algorithms	Query time	Preprocessing time	Space	
Folklore	O(hL)	O(n)	<i>O</i> (<i>n</i>)	
(extended) Miyazaki et al. '97	$O(hn^2)$	$O(n^4)$	$O(n^2)$	
(extended) Lifshits '07	$O(hn^2)$	$O(hn^2)$	$O(n^2)$	
l et al. '15	$O(h \log u)$	$O(hn^2)$	$O(n^2)$	
Bille et al. ′15 (randomized)	$O(\log u + \log^2 L)$	N/A	O(n)	
This work	$O(\log u + \log^* u \log L)$	$O(n \log \log n \log^* u \log u)$	$O(n+z\log^* u \log u)$	
<i>n</i> : size of SLP Fastest deterministic z: Subset of the set of the se				

Our strategy

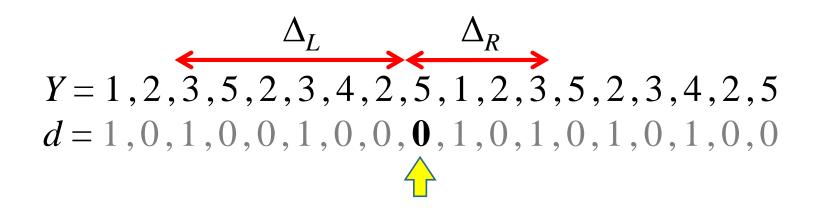
- ✓ All previous algorithms work on the SLP derivation trees of two query non-terminals.
- ✓ Our new algorithm does <u>NOT</u> work on the SLP derivation trees.
- ✓ Instead, we construct a different tree of logarithmic height, based on
 - Iocally consistent parsing
 - signature encoding.

Lemma 1 [Mehlhorn et al., Alstrup et al.]

For any integer string $Y \in \{1..m\}^*$ in which no adjacent elements are equal (i.e. $Y[i] \neq Y[i+1]$), there is a bit string d of length |Y| such that

- 1. no 1's appear consecutively;
- 2. at most three 0's appear consecutively;
- 3. each d[i] is determined locally, i.e., by $Y[i-\Delta_L...i-1]$ and $Y[i...i+\Delta_R]$, where $\Delta_L \leq \log^* m + 6$ and $\Delta_R \leq 4$;
- 4. *d* can be computed in O(|Y|) time.

Y = 1, 2, 3, 5, 2, 3, 4, 2, 5, 1, 2, 3, 5, 2, 3, 4, 2, 5d = 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0



 $\Delta_L \le \log^* m + 6$ $\Delta_R \le 4$

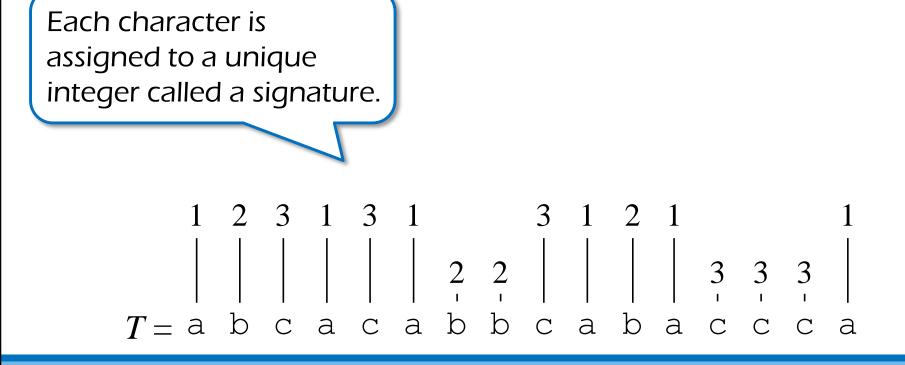
Y = [1, 2, 3, 5, 2, 3, 4, 2, 5, 1, 2, 3, 5, 2, 3, 4, 2, 5]d = 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0

✓ Using the bit string *d*, any integer string *Y* can be uniquely decomposed in linear time into blocks of length 2-4.

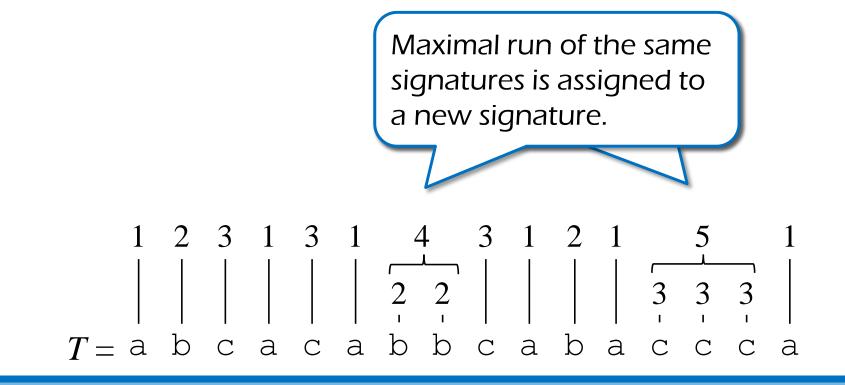
✓ Iteratively apply locally consistent parsing to input string T until a single integer is obtained.

T = a b c a c a b b c a b a c c c a

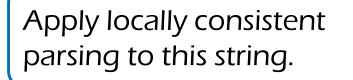
 ✓ Iteratively apply locally consistent parsing to input string *T* until a single integer is obtained.

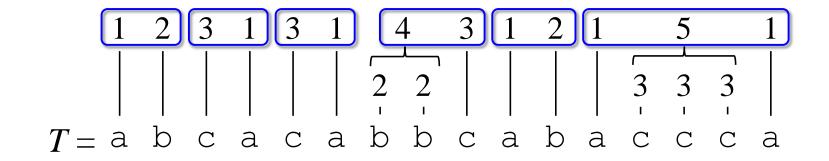


✓ Iteratively apply locally consistent parsing to input string T until a single integer is obtained.

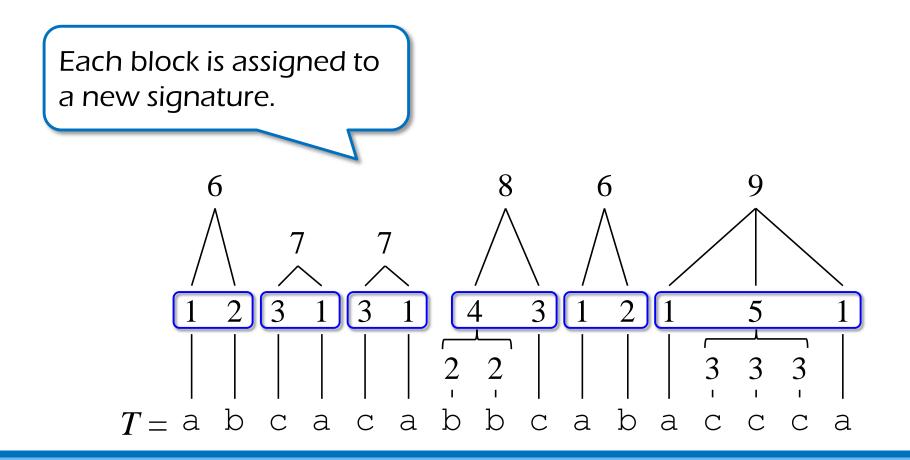


✓ Iteratively apply locally consistent parsing to input string T until a single integer is obtained.

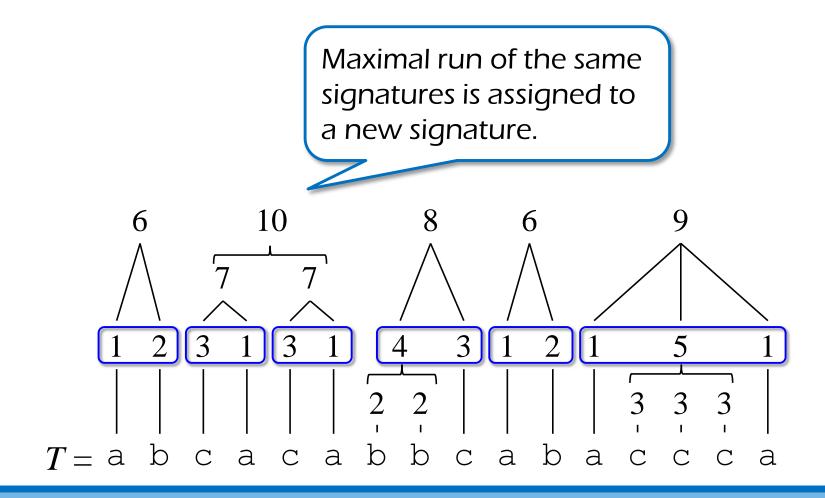




 ✓ Iteratively apply locally consistent parsing to input string *T* until a single integer is obtained.

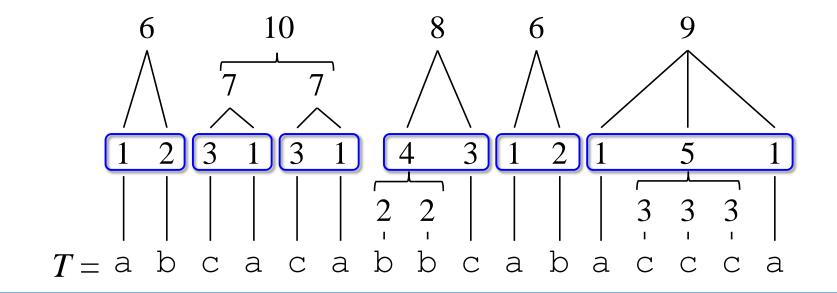


 ✓ Iteratively apply locally consistent parsing to input string *T* until a single integer is obtained.

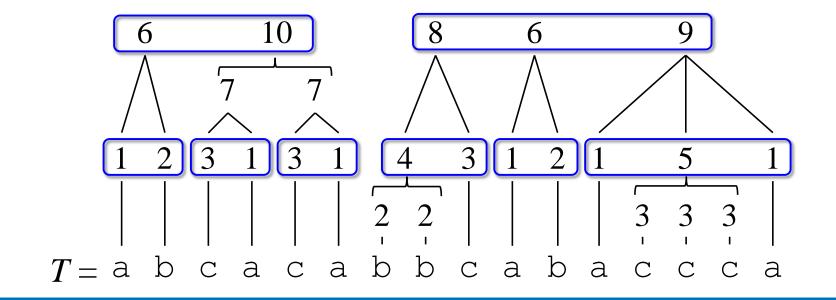


 Iteratively apply locally consistent parsing to input string T until a single integer is obtained.

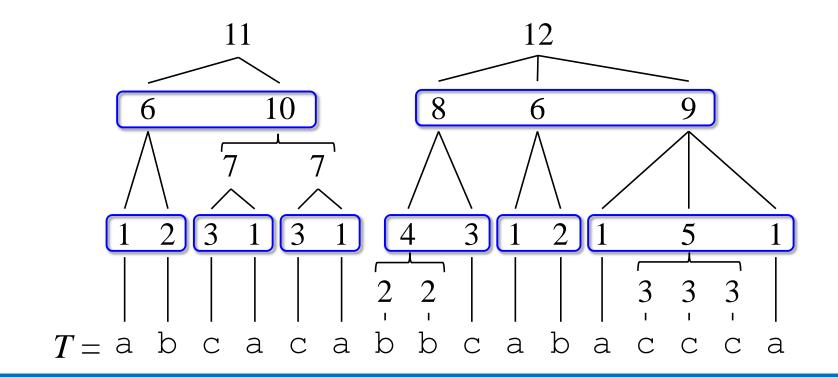
Apply locally consistent parsing to this string.



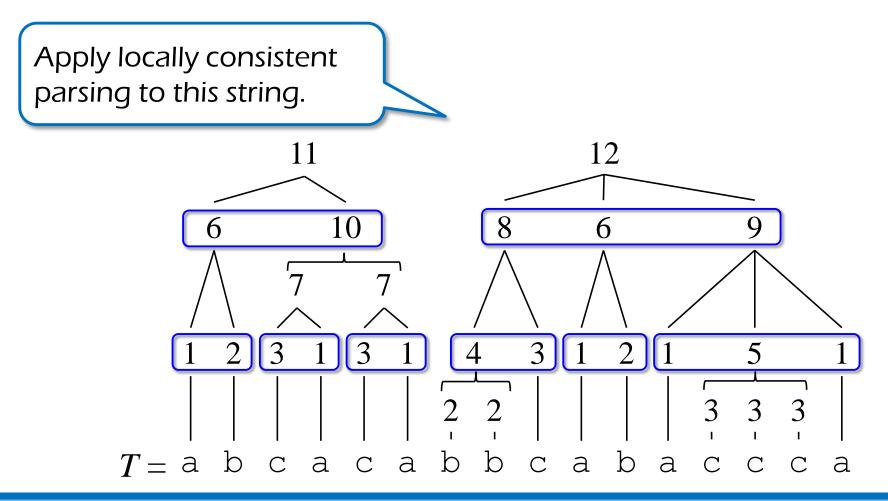
✓ Iteratively apply locally consistent parsing to input string T until a single integer is obtained.



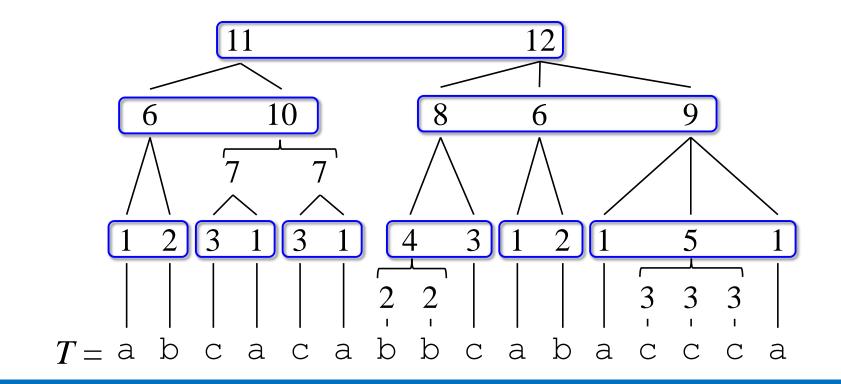
 ✓ Iteratively apply locally consistent parsing to input string *T* until a single integer is obtained.



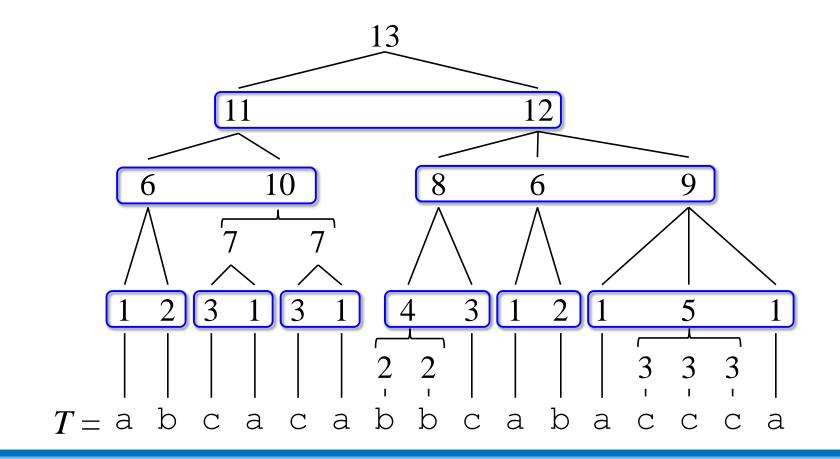
 Iteratively apply locally consistent parsing to input string T until a single integer is obtained.



 ✓ Iteratively apply locally consistent parsing to input string *T* until a single integer is obtained.

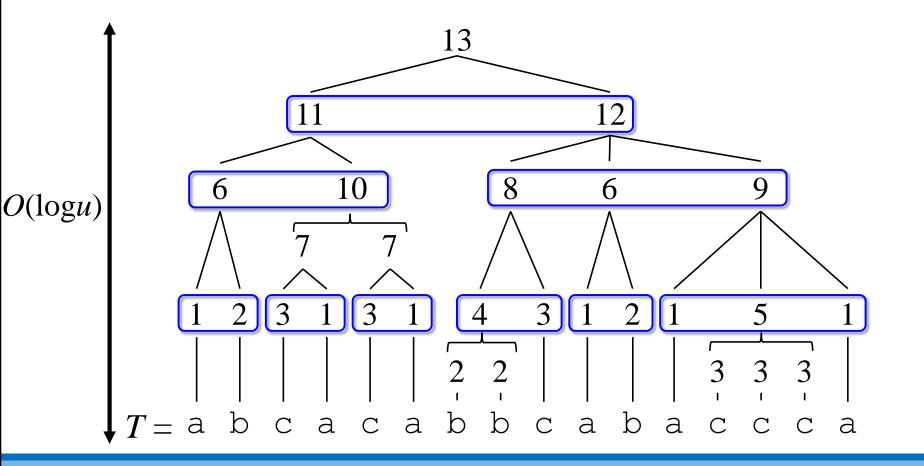


 ✓ Iteratively apply locally consistent parsing to input string T until a single integer is obtained.



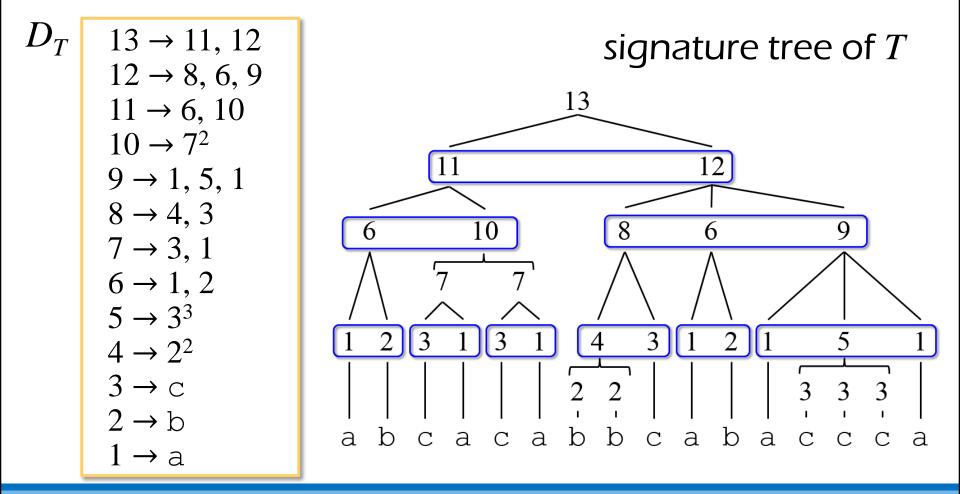
Signature encoding [Mehlhorn et al. '97]

✓ The height of this tree, called the signature tree, is $O(\log u)$, where u = |T|.



Signature encoding [Mehlhorn et al. '97]

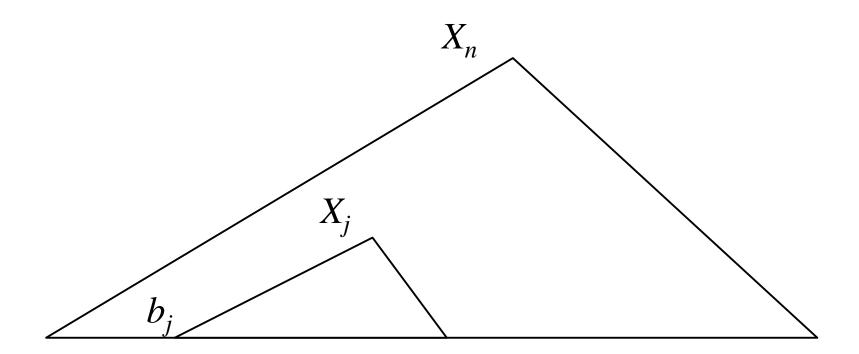
✓ The dictionary D_T of signatures is the **signature encoding** of input string *T*.



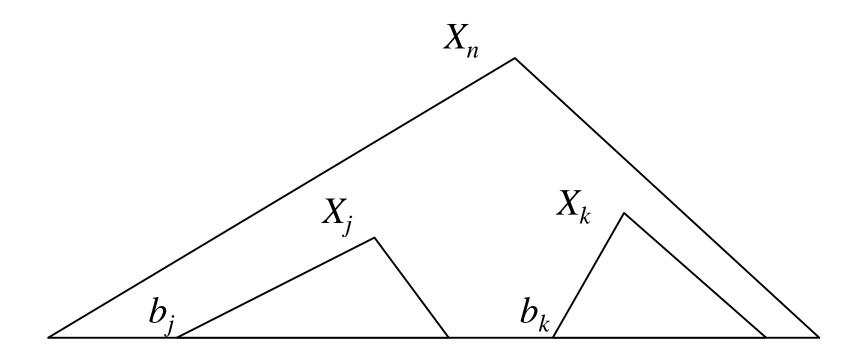
Lemma 2 (Faster LCE on SLP)

Given the signature encoding D_T of string Tof length u, we can compute $\mathbf{LCE}(X_j, X_k, p, q)$ for any variables X_j , X_k and positions p, q in $O(\log u + \log^* u \log L)$ time, where L is the answer to the query (LCE length).

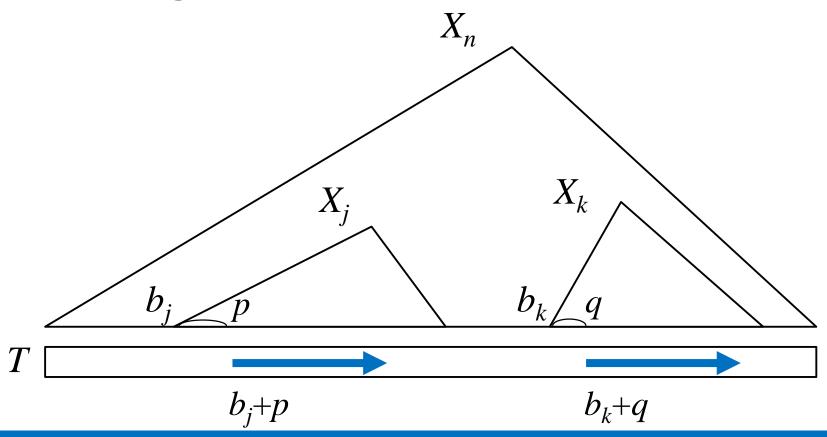
1. For every non-terminal X_j , we precompute and store its occurrence b_j in the derivation tree of X_n .



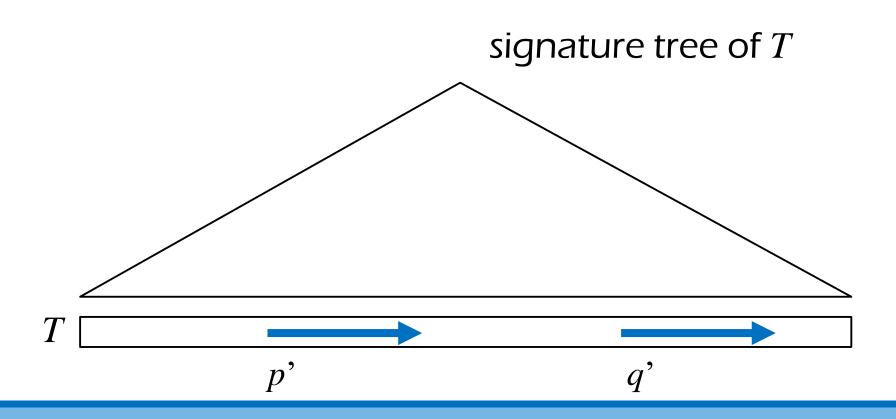
2. Given query variables X_j and X_k for LCE, we retrieve b_j and b_k .



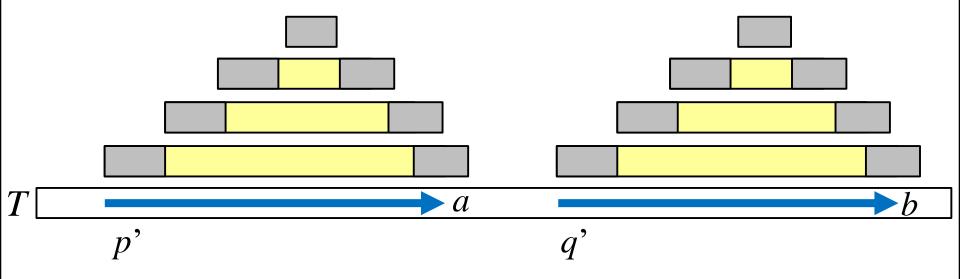
3. Since the last variable X_n derives string T, $LCE(X_j, X_k, p, q)$ reduces to $LCE(b_j+p, b_k+q)$ on string T.



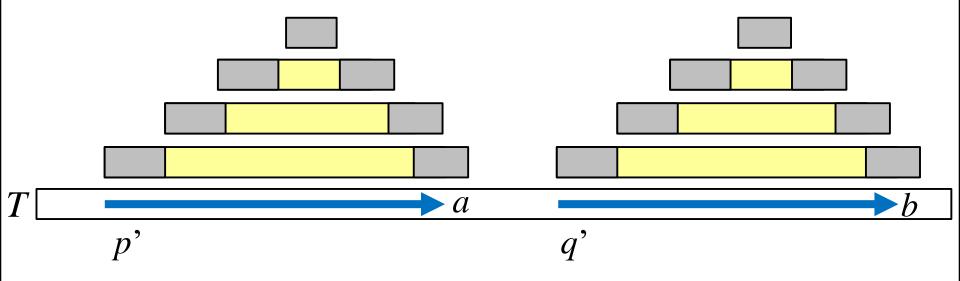
4. We turn attention to the <u>signature tree</u> of *T*, and compute LCE(p', q') there, where $p' = b_j + p$ and $q' = b_k + q$.

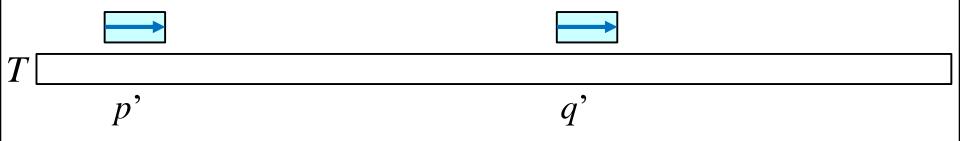


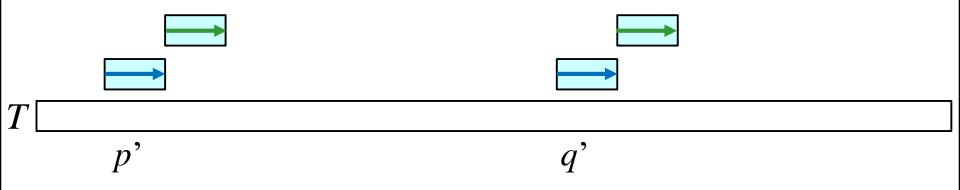
 By the property of signature encoding, at each level of the signature tree, there must be a <u>common sequence</u> of signatures for LCE(p', q') (yellow parts).

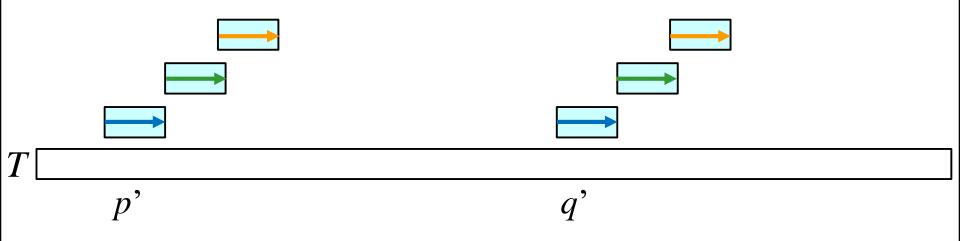


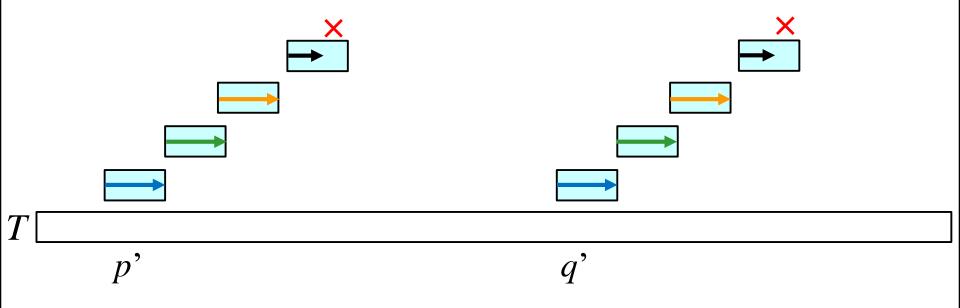
5. [Cont.] The left boundaries of length $\Delta_L + O(1)$ may or may not be equal depending on the left contexts at each level, while the right boundaries of length $\Delta_R + O(1)$ always have a mismatch.



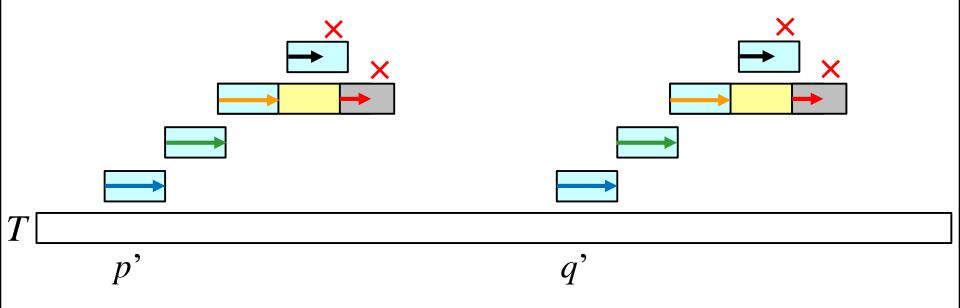




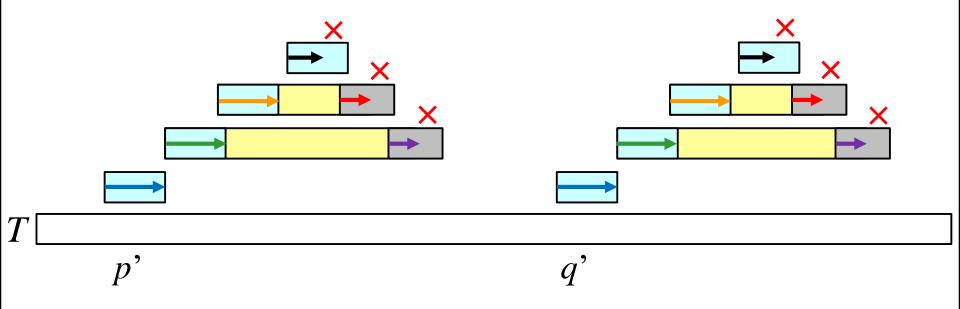




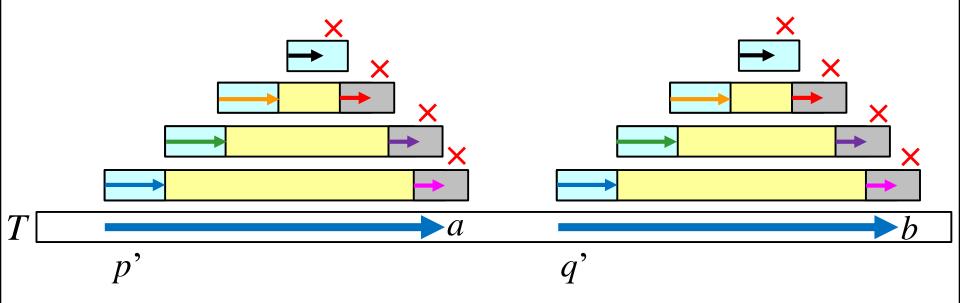
7. In a top-down manner, we compare the right boundary signatures of length $\Delta_R + O(1)$ until we find the first mismatch.



7. In a top-down manner, we compare the right boundary signatures of length $\Delta_R + O(1)$ until we find the first mismatch.



7. In a top-down manner, we compare the right boundary signatures of length $\Delta_R + O(1)$ until we find the first mismatch.



Analysis of LCE query time

- ✓ The paths from the root to the *p*'th and *q*'th leaves of the signature tree can be found in $O(\log u)$ time, since its height is $O(\log u)$.
- ✓ The total number of signatures to re-compute and to compare is $O(\log^* u \log L)$, since:
 - $\blacktriangleright \quad \Delta_L \leq \log^* u + 6 \text{ and } \Delta_R \leq 4, \text{ and}$
 - the first mismatch is found at the (logL)th level from the bottom.
- ✓ Therefore, LCE query can be answered in $O(\log u + \log^* u \log L)$ time.

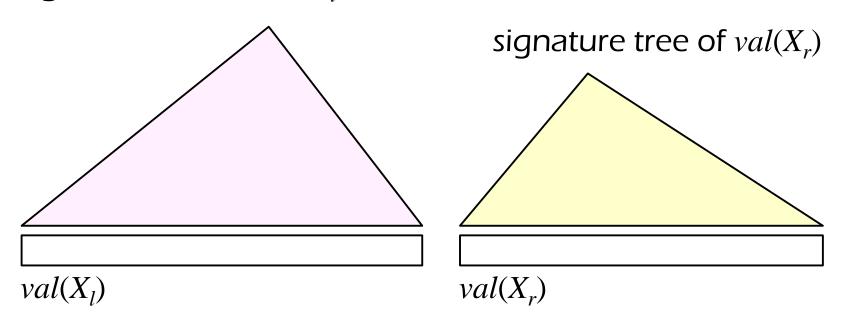
Lemma 3 (SLP to signature encoding)

Given an SLP $S = \{X_i \rightarrow expr_i\}_{i=1}^n$ of size nwhich derives a string T of length u, we can compute the signature encoding of Tin $O(n \log \log n \log^* u \log u)$ time.

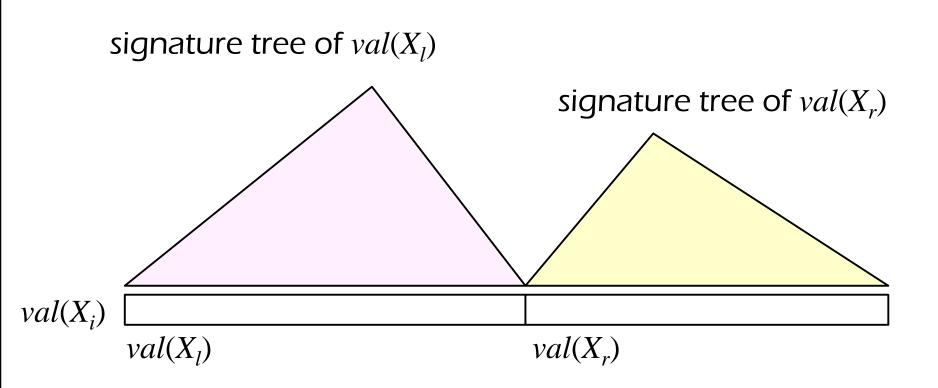
✓ In this talk I show a simpler $O(n \log n \log^* u \log u)$ -time construction.

✓ Assume that, for a production $X_i \rightarrow X_l X_r$, we have computed the signature encodings of the decompressed strings $val(X_l)$ and $val(X_r)$.

signature tree of $val(X_l)$

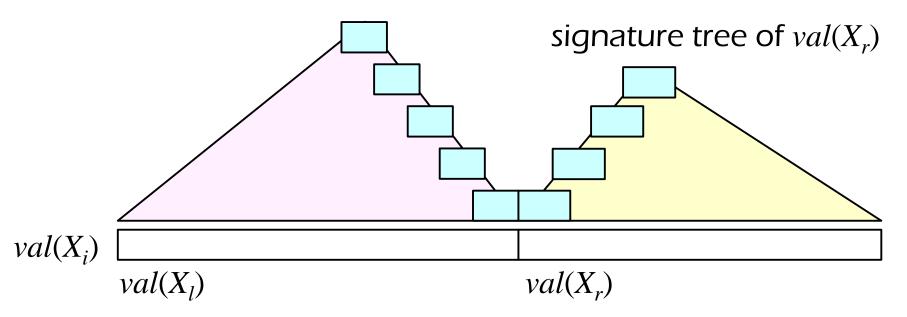


✓ By "concatenating" the signature trees of $val(X_l)$ and $val(X_r)$, we obtain the signature tree of $val(X_i)$.

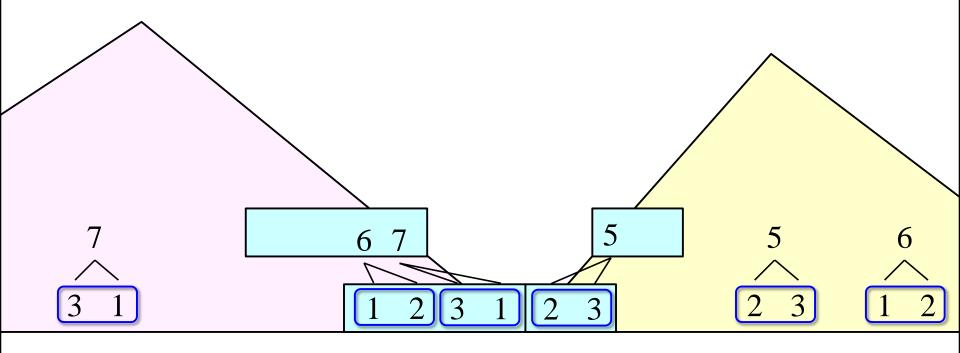


✓ In a bottom-up manner, we re-compute the boundary signatures of length Δ_R +O(1) and Δ_L +O(1) each, and concatenate the new signatures level-wise.

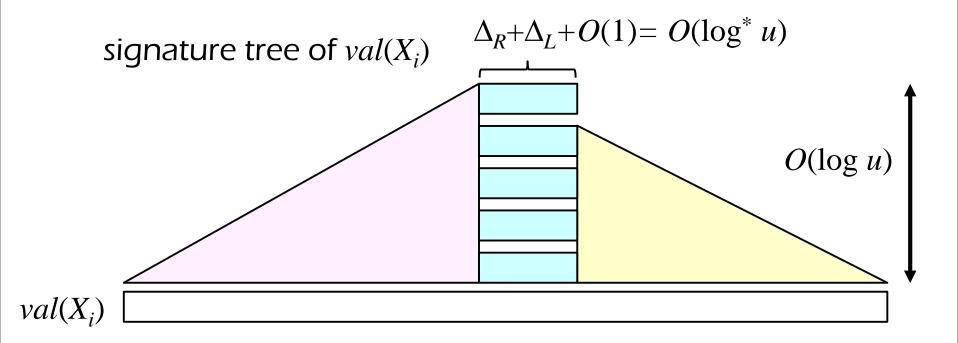
signature tree of $val(X_l)$



 If a block of re-computed signatures already exists somewhere else, then we assign the same signature to the block at the next level.
 This is done in O(log n) time each, using a BST.



✓ Since the height of each signature tree is $O(\log u)$, we can compute the signature encoding of $val(X_i)$ for each X_i in $O(\log n \log^* u \log u)$ time.



How much space?

Lemma 4 [Sahinalp & Vishkin, '95]

The number of signatures involved in the signature encoding of string *T* of length *u* is $O(z \log^* u \log u)$, where *z* is the number of factors in the Lempel-Ziv 77 factorization of *T*.

✓ In our data structure, we need an additive n term to store beginning positions of occurrences of all non-terminals in the derivation tree of X_n .

Main result

Theorem 1

For any SLP $S = {X_i \rightarrow expr_i}_{i=1}^n$ of size nwhich represents a string T of length u, there exists a data structure which

- > supports LCE in $O(\log u + \log^* u \log L)$ time;
- > requires $O(n + z \log^* u \log u)$ space;

> can be built in $O(n \log \log n \log^* u \log u)$ time, where L is the LCE length and z is the size of the LZ77 factorization of T.

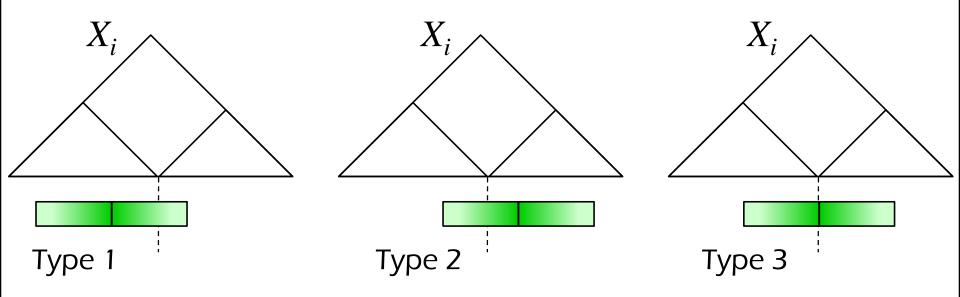
App 1: Finding palindromes

Problem 2 (finding palindromes on SLP)

Given an SLP $S = \{X_i \rightarrow expr_i\}_{i=1}^n$ representing a string T, compute a compact representation of all maximal palindromes in T.

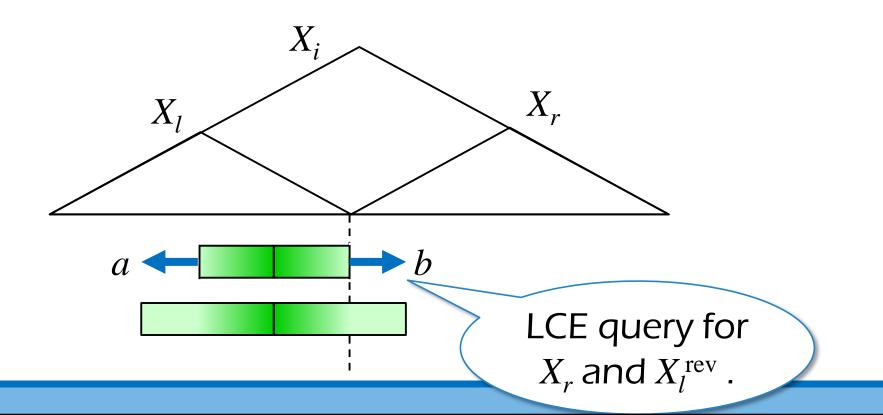
Stabbed Palindromes

✓ For each non-terminal X_i , there are 3 different types of "stabbed" maximal palindromes.



Computing Type 1 Palindromes

✓ Each Type 1 maximal palindrome of X_i can be computed by <u>extending the arms</u> of a suffix palindrome of X_l .



Suffix Palindromes

Lemma 5 [Apostolico et al., '95]

For any string of length k, the lengths of its suffix palindromes can be represented by $O(\log k)$ arithmetic progressions.

 We can extend the arms of the suffix palindromes belonging to the same arithmetic progression in a batch, using periodicity.

App 1: Finding Palindromes

Theorem 2

Given an SLP of size *n*, an $O(n \log u)$ -size representation of all maximal palindromes of string *T* can be computed in $O(n \log^* u \log^2 u)$ time.

With this representation, given an interval [i, j], we can decide whether the substring T[i..j] is a maximal palindrome or not in $O(\log u)$ time.

App 2: Comparing Suffixes on SLP

Problem 3 (lexicographical comparison of suffixes)

Preprocess an input SLP representing string *T* so that later, any suffixes of the string *T* can be lexicographically compared efficiently.

App 2: Comparing Suffixes on SLP

Theorem 3

We can preprocess an input SLP of size *n* representing string *T* of length *u* in $O(n \log \log n \log^* u \log u)$ time such that later, any suffixes of *T* can be lexicographically compared in $O(\log u + \log^* u \log L)$ time, where *L* is the length of the LCP of the suffixes.

 ✓ Since the height of the signature tree is O(log u), this theorem is immediate from our LCE data structure.

App 3: Lyndon factorization on SLP

Problem 4 (Lyndon factorization on SLP)

Given an SLP $S = \{X_i \rightarrow expr_i\}_{i=1}^n$ representing a string T, compute the factor boundaries of the Lyndon factorization of T.

Definition

A string is said to be a Lyndon word if it is lexicographically smaller than any of its proper cyclic shifts.

For example, "aaaab", "abc", "bcbcc" are Lyndon words.

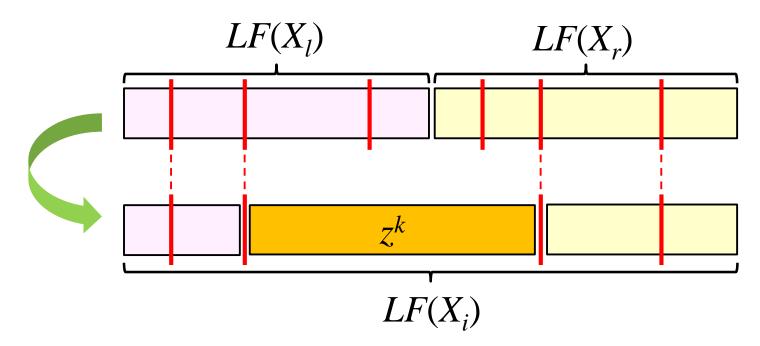
Lyndon factorization

Definition

The Lyndon factorization LF(T) of a string T is the factorization $u_1^{p_1}, \ldots, u_m^{p_m}$ of T such that u_1, \ldots, u_m is a sequence of Lyndon words in lexicographical descending order, and $p_i \ge 1$.

$$T = a b c | a b b | a b b | a b b | a a b c | a | a | a | a | u_4 | u_$$

Lyndon factorization on SLP



- ✓ I et al. showed an algorithm which computes $LF(X_i)$ with $X_i \rightarrow X_l X_r$ in the above manner.
- The beginning and ending positions of the median Lyndon factor z^k can be found by a binary search based on <u>lex-comparison of suffixes</u>.

App 3: Lyndon factorization on SLP

Theorem 4

Given an SLP of size *n* representing string *T* of length *u*, we can compute the factor boundaries of the Lyndon factorization of *T* in $O(n \log \log n \log^* u \log u)$ time and $O(n^2 + z \log^* u \log u)$ space.

Conclusions & further work

- We proposed a new LCE algorithm on SLPs with $O(\log u + \log^* u \log L)$ query time.
 - \checkmark This is the fastest deterministic solution to date.
 - More details can be found in our arxiv paper: "Dynamic index, LZ factorization, and LCE queries in compressed space".
- Lower bound?
- Other applications?