Pattern Matching on Weighted Strings

Jakub Radoszewski

University of Warsaw, Poland

Prague Stringology Conference 2019

Pattern Matching on Weighted Strings

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Weighted Strings

- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Strings (solid strings):

a c a b b b

Strings (solid strings):

a c a b b b Partial words (strings with don't care symbols): a \diamond a b \diamond b

Strings (solid strings):

Partial

	a	С	а	b	b	b
words	(strings	s with	don't	care sym	bols):	
	a	\diamond	a	b	\diamond	b
	a	С	a	b	b	b
	a	a	a	b	a	b
	a	b	a	b	С	b

÷

Strings (solid strings):

	a	С	a	b	b	b
Partial word	ls (strir	ngs with	don't d	care syn	nbols):	
	a	\diamond	a	b	\diamond	b
	a	С	a	Ъ	b	b
	a	a	a	b	a	b
	a	b	a	b	С	b
Indetermina	te strin	gs:				
	a	b c	а	b	a b	b

Strings (solid strings):

	а	С	a	b	b	b
Partial words	s (strii	ngs with	don't d	care syn	nbols):	
	a	\diamond	a	b	\diamond	b
	a	С	a	b	b	b
	a	а	a	Ъ	a	b
	a	b	a	b	с	b
Indeterminat	e strir	ngs:				
	a	b c	a	b	a b	b
	a	С	a	Ъ	b	b
	a	С	a	Ъ	a	b
	a	b	a	Ъ	b	b
	a	h	а	b	а	b

Pattern Matching on Weighted Strings

Weighted Strings (Position Probability Matrices):

a
$${}^{b 0.2}_{c 0.8}$$
 a b ${}^{a 0.6}_{b 0.4}$ b

Weighted Strings (Position Probability Matrices):

a	b 0.2 c 0.8	а	b	a 0.6 b 0.4	b	probability
a	С	a	b	b	b	0.32
a	С	a	b	a	b	0.48
a	b	a	b	b	b	0.08
a	b	a	b	a	b	0.12

Weighted Strings (Position Probability Matrices):

a 1 b 0 c 0	a 0 b 0.2 c 0.8	a 1 b 0 c 0	a 0 b 1 c 0	a 0.6 b 0.4 c 0	a 0 b 1 c 0	probability
a	C	a	b	b	b	0.32
a	С	a	b	a	b	0.48
a	b	a	b	b	b	0.08
a	b	a	b	a	b	0.12

Weighted Strings (Position Probability Matrices):

a 1 b 0 c 0	a 0 b 0.2 c 0.8	a 1 b 0 c 0	a 0 b 1 c 0	a 0.6 b 0.4 c 0	a 0 b 1 c 0	probability
a	C	a	b	b	b	0.32
a	С	a	b	a	b	0.48
a	b	a	b	b	b	0.08
a	b	a	b	a	b	0.12

Profiles (Position Weight Matrices):

a 7	a 3	a 0	a 0	a 6	a 1
ъ0	ъ2	b 1	b 5	b 4	ъ9
c 1	с 8	с О	с О	с3	с О

Weighted Strings (Position Probability Matrices):

a 1 b 0 c 0	a 0 b 0.2 c 0.8	a 1 b 0 c 0	a 0 b 1 c 0	a 0.6 b 0.4 c 0	a 0 b 1 c 0	probability
a	C	a	b	b	b	0.32
a	С	a	b	a	b	0.48
a	b	a	b	b	b	0.08
a	b	a	b	a	b	0.12

Profiles (Position Weight Matrices):

a 7 b 0 c 1	a 3 b 2 c 8	a () b 1 c ()	a () b 5 c ()	a 6 b 4 c 3	a 1 b 9 c 0	score
a	С	a	b	b	b	33
a	С	a	Ъ	a	b	35
a	Ъ	a	Ъ	b	b	27
a	b	a	Ъ	a	b	29

Bioinformatics

• introduced in:

Stormo, Schneider, Gold, and Ehrenfeucht (1982). "Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli". *Nucleic Acids Research* **10** (9): 2997–3011.

• one of the standard representations of motifs

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons

Bioinformatics

• introduced in:

Stormo, Schneider, Gold, and Ehrenfeucht (1982). "Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli". *Nucleic Acids Research* **10** (9): 2997–3011.

• one of the standard representations of motifs

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons

• Single Nucleotide Polymorphisms, errors in genome sequencing...

Bioinformatics

• introduced in:

Stormo, Schneider, Gold, and Ehrenfeucht (1982). "Use of the 'Perceptron' algorithm to distinguish translational initiation sites in E. coli". *Nucleic Acids Research* **10** (9): 2997–3011.

• one of the standard representations of motifs

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons

- Single Nucleotide Polymorphisms, errors in genome sequencing...
- $|\Sigma| = 4$ for DNA sequences
- $|\Sigma| = 20$ for protein sequences

Pattern Matching on Weighted Strings

Noisy sensor data, Probabilistic databases
 Measurement and sampling errors, resource limitations

- Noisy sensor data, Probabilistic databases
 Measurement and sampling errors, resource limitations
- Privacy preserving

Artificial uncertainty can be introduced to sanitize data but keep its utility

- Noisy sensor data, Probabilistic databases
 Measurement and sampling errors, resource limitations
- Privacy preserving

Artificial uncertainty can be introduced to sanitize data but keep its utility

• Missing parts of data

Unknown parameters assumed to take any legal value equally likely

- Score function and probability distribution are defined on all solid strings of matching length
- Typically, only high values are considered significant

- Score function and probability distribution are defined on all solid strings of matching length
- Typically, only high values are considered significant

Definition

A string S matches a weighed string X if $\mathcal{P}(S, X) \geq \frac{1}{z}$ for a given threshold $\frac{1}{z}$. By $\mathcal{M}_z(X)$ we denote the set of all strings that match X for threshold z.

- Score function and probability distribution are defined on all solid strings of matching length
- Typically, only high values are considered significant

Definition

A string S matches a weighed string X if $\mathcal{P}(S, X) \geq \frac{1}{z}$ for a given threshold $\frac{1}{z}$. By $\mathcal{M}_z(X)$ we denote the set of all strings that match X for threshold z.

- Score function and probability distribution are defined on all solid strings of matching length
- Typically, only high values are considered significant

Definition

A string S matches a weighed string X if $\mathcal{P}(S, X) \geq \frac{1}{z}$ for a given threshold $\frac{1}{z}$. By $\mathcal{M}_z(X)$ we denote the set of all strings that match X for threshold z.

Fact 1

 $|\mathcal{M}_z(X)| \leq z.$

Proof. For every $S \in \mathcal{M}_z(X)$, we have $\mathcal{P}(S, X) \geq \frac{1}{z}$. Moreover, $\sum_{S \in \mathcal{M}_z(X)} \mathcal{P}(S, X) \leq 1$.

- Score function and probability distribution are defined on all solid strings of matching length
- Typically, only high values are considered significant

Definition

A string S matches a weighed string X if $\mathcal{P}(S, X) \geq \frac{1}{z}$ for a given threshold $\frac{1}{z}$. By $\mathcal{M}_z(X)$ we denote the set of all strings that match X for threshold z.

Fact 1

 $|\mathcal{M}_z(X)| \leq z.$

Proof. For every $S \in \mathcal{M}_z(X)$, we have $\mathcal{P}(S, X) \geq \frac{1}{z}$. Moreover, $\sum_{S \in \mathcal{M}_z(X)} \mathcal{P}(S, X) \leq 1$.

• z can be used as a parameter for designing algorithms

Pattern Matching on Weighted Strings

Plan of Presentation

- Weighted Strings
- **@** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

All positions *i* in *T* where $\mathcal{P}(P, T[i, i + m - 1]) \geq \frac{1}{z}$

z = 8

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

$$T \qquad \begin{array}{cccc} a & \frac{1}{4} & a & 1 \\ b & \frac{3}{4} & b & 0 \\ \end{array} \qquad \begin{array}{c} a & \frac{3}{4} & a & \frac{1}{2} & a & 1 \\ b & \frac{1}{2} & b & 0 \\ \end{array}$$

$$P \qquad \begin{array}{c} a & a & b \\ \end{array} \qquad \begin{array}{c} a & \frac{3}{4} & \frac{1}{2} & \frac{1}{2} \\ \end{array} \qquad \begin{array}{c} b & \frac{1}{2} \\ \end{array} \qquad \begin{array}{c} b & \frac{1}{2} \\ \end{array} \qquad \begin{array}{c} b & \frac{1}{2} \\ \end{array}$$

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

$$T \qquad \begin{array}{c} a \frac{1}{4} \\ b \frac{3}{4} \end{array} \begin{array}{c} a 1 \\ b 0 \end{array} \begin{array}{c} a \frac{3}{4} \\ b \frac{3}{4} \end{array} \begin{array}{c} a \frac{1}{2} \\ b \frac{1}{2} \end{array} \begin{array}{c} a 1 \\ b \frac{1}{2} \end{array} \begin{array}{c} a 1 \\ b 0 \end{array}$$

$$P \qquad \qquad \begin{array}{c} a a \\ a \end{array} \begin{array}{c} a \end{array} \begin{array}{c} a b \\ c \end{array}$$

$$z = 8$$

Input

- T weighted string text of length n (T[0, n-1]), represented as an $n \times \sigma$ array
- P string pattern of length m (P[0, m-1])
- $\frac{1}{7}$ threshold probability
- Σ integer alphabet of size σ
- \bullet Model: probabilities can be multiplied in $\mathcal{O}(1)$ time

Output

$\mathcal{O}(\mathit{nm})$ time	naïve solution			
$\mathcal{O}(\sigma n \log m)$ time	σ times FFT	[CIMT'04]		
$\mathcal{O}(n \log z)$ time	lookahead scoring	[Kociumaka-Pissis-R'16]		
and <i>k</i> -Mismatch				
$\mathcal{O}(\mathit{nm})$ time	naïve solution			
-------------------------------------	--------------------	-------------------------		
$\mathcal{O}(\sigma n \log m)$ time	σ times FFT	[CIMT'04]		
$\mathcal{O}(n \log z)$ time	lookahead scoring	[Kociumaka-Pissis-R'16]		
and <i>k</i> -Mismatch				

 d_H(S, T) – Hamming distance between strings S and T (the number of mismatches between S and T)

Fact 2

If $S \in \mathcal{M}_z(X)$ for string S and weighted string X and X is a heavy string of X, then $d_H(S, \mathbf{X}) \leq \log_2 z$.

 d_H(S, T) – Hamming distance between strings S and T (the number of mismatches between S and T)

Fact 2

If $S \in \mathcal{M}_z(X)$ for string S and weighted string X and X is a heavy string of X, then $d_H(S, \mathbf{X}) \leq \log_2 z$.

Proof. At each mismatch position between S and X, the probability of the letter of S in X is ≤ 0.5 .

 d_H(S, T) – Hamming distance between strings S and T (the number of mismatches between S and T)

Fact 2

If $S \in \mathcal{M}_z(X)$ for string S and weighted string X and X is a heavy string of X, then $d_H(S, \mathbf{X}) \leq \log_2 z$.

Proof. At each mismatch position between S and X, the probability of the letter of S in X is ≤ 0.5 .

• The heavy string method is also known as lookahead scoring

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

- Construct a data structure for answering *lcp*-queries for T#P (O(n + m) time via SA and RMQ)
- **②** For every position *i* in *T*, ask at most k + 1 *lcp*-queries:

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

- Construct a data structure for answering *lcp*-queries for T#P (O(n + m) time via SA and RMQ)
- **②** For every position *i* in *T*, ask at most k + 1 *lcp*-queries:

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

- Construct a data structure for answering *lcp*-queries for T#P (O(n + m) time via SA and RMQ)
- **②** For every position *i* in *T*, ask at most k + 1 *lcp*-queries:

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

- Construct a data structure for answering *lcp*-queries for T#P (O(n + m) time via SA and RMQ)
- **②** For every position *i* in *T*, ask at most k + 1 *lcp*-queries:

For two strings P and T, find all positions where P matches T with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in $\mathcal{O}(nk)$ time using kangaroo jumps:

- Construct a data structure for answering *lcp*-queries for T # P($\mathcal{O}(n+m)$ time via SA and RMQ)
- **②** For every position *i* in *T*, ask at most k + 1 *lcp*-queries:

Break after reaching the end of the string or after the (k + 1)th mismatch

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position *i*
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathsf{T}[i+j], \mathsf{T}[i+j])/\mathcal{P}(\mathcal{P}[j], \mathsf{T}[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position *i*
• $\alpha := \alpha \cdot \mathcal{P}(\mathsf{T}[i+m], \mathsf{T}[i+m])/\mathcal{P}(\mathsf{T}[i], \mathsf{T}[i])$

z = 8

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathsf{T}[i+j], \mathsf{T}[i+j])/\mathcal{P}(\mathcal{P}[j], \mathsf{T}[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathsf{T}[i+m], \mathsf{T}[i+m])/\mathcal{P}(\mathsf{T}[i], \mathsf{T}[i])$

$$T \qquad \begin{array}{cccc} a & \frac{1}{4} & (a & 1) & (a & \frac{3}{4}) & (a & \frac{1}{2}) & (a & 1) \\ \hline b & \frac{3}{4} & b & 0 & b & \frac{1}{4} & b & \frac{1}{2} & b & 0 \end{array}$$

heavy string **T** b a a a a a a a a a a a a a a a b b

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

$$T \qquad \begin{array}{cccc} a & \frac{1}{4} & (a & 1) & (a & \frac{3}{4}) & (a & \frac{1}{2}) & (a & 1) \\ \hline b & \frac{3}{4} & b & 0 & b & \frac{1}{4} & b & \frac{1}{2} & b & 0 \end{array}$$

heavy string **T** b a a $\begin{array}{cccc} a & 0 \\ \hline 16 & 0 \\ \hline 7 & -8 & a & a \end{array}$

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

$$T \qquad \begin{array}{cccc} a & \frac{1}{4} & (a & 1) & (a & \frac{3}{4}) & (a & \frac{1}{2}) & (a & 1) \\ \hline b & \frac{3}{4} & b & 0 & b & \frac{1}{4} & b & \frac{1}{2} & b & 0 \end{array}$$

heavy string **T** b a a a $\frac{9}{16}$
 $X = 8$ a a b

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathsf{T}[i+j], \mathsf{T}[i+j])/\mathcal{P}(\mathcal{P}[j], \mathsf{T}[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position *i*
• $\alpha := \alpha \cdot \mathcal{P}(\mathsf{T}[i+m], \mathsf{T}[i+m])/\mathcal{P}(\mathsf{T}[i], \mathsf{T}[i])$

$$T \qquad \begin{array}{c} a & \frac{1}{4} \\ b & \frac{3}{4} \\ b & \frac{3}{4} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{3}{4} \\ \end{array} \begin{array}{c} a & \frac{3}{4} \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & \frac{1}{2} \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & \frac{1}{2} \\ \end{array} \begin{array}{c} a & 1 \\ b & 0 \end{array}$$

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position *i*
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

$$T \qquad \begin{array}{cccc} a & \frac{1}{4} & (a & 1) & (a & \frac{3}{4}) & (a & \frac{1}{2}) & (a & 1) \\ \hline b & \frac{3}{4} & b & 0 & b & \frac{1}{4} & b & \frac{1}{2} & b & 0 \end{array}$$

heavy string **T** b a a $\begin{array}{cccc} a & \frac{9}{16} & \frac{1}{16} &$

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m − 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

T
a
$$\frac{1}{4}$$
 (a 1) (a $\frac{3}{4}$) (a $\frac{1}{2}$) (a 1)
(b $\frac{3}{4}$) (b 0) (b $\frac{1}{4}$) (a $\frac{1}{2}$) (a 1)
(b $\frac{3}{4}$) (b 0) (b $\frac{1}{4}$) (a $\frac{1}{2}$) (a 1)
(b $\frac{1}{2}$) (b 0)
heavy string T
a a a a $\frac{3}{8}$
 $z = 8$
a a b

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

 $k := \log_2 z$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

$$T \qquad \begin{array}{cccc} \mathbf{a} & \frac{1}{4} & \begin{array}{c} a & 1 \\ \hline b & \frac{3}{4} \end{array} & \begin{array}{c} a & \frac{3}{4} \\ \hline b & 0 \end{array} & \begin{array}{c} b & \frac{3}{4} \\ \hline b & \frac{1}{2} \end{array} & \begin{array}{c} a & 1 \\ \hline b & \frac{1}{2} \end{array} & \begin{array}{c} a & 1 \\ \hline b & \frac{1}{2} \end{array} & \begin{array}{c} a & 1 \\ \hline b & 0 \end{array}$$

eavy string
$$\mathbf{T} \qquad \begin{array}{c} \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ \parallel & \parallel & \end{matrix}$$
$$z = 8 \qquad \begin{array}{c} \mathbf{a} & \mathbf{a} & \mathbf{a} & \mathbf{a} \\ \mathbf{a} & \mathbf{a} & \mathbf{a} \end{array} & \begin{array}{c} \frac{3}{8} \\ \mathbf{b} & \mathbf{b} \end{array}$$

Pattern Matching on Weighted Strings

h

• Compute $\alpha := \mathcal{P}(\mathbf{T}[0, m-1], T[0, m-1])$

$$k := \log_2 z$$

- **③** For every position i := 0 to n m do:
 - If T[i, i + m − 1] and P have at most k mismatches, let A be the set of their positions:

•
$$\alpha' := \alpha$$

• For every $j \in A$,
 $\alpha' := \alpha' \cdot \mathcal{P}(\mathbf{T}[i+j], T[i+j])/\mathcal{P}(\mathcal{P}[j], T[i+j])$
• If $\alpha' \ge \frac{1}{z}$, return a match at position i
• $\alpha := \alpha \cdot \mathcal{P}(\mathbf{T}[i+m], T[i+m])/\mathcal{P}(\mathbf{T}[i], T[i])$

Input

- T string text of length n
- P pattern being an $m \times \sigma$ profile
- Z threshold
- σ alphabet size

Output

All positions i in ${\cal T}$ where ${\cal T}[i,i+m-1]$ matches ${\cal P}$ with score at least ${\cal Z}$

Input

- T string text of length n
- P pattern being an $m \times \sigma$ profile
- Z threshold
- σ alphabet size

Output

All positions i in ${\cal T}$ where ${\cal T}[i,i+m-1]$ matches ${\cal P}$ with score at least ${\cal Z}$

$\mathcal{O}(\mathit{nm})$ time	naïve solution with	see [Pizzi-Ukkonen'08]
	heuristics	
$\mathcal{O}(\sigma n \log m)$ time	σ times FFT	[Rajasekaran-Jin-Spouge'02]
$\mathcal{O}(n \log \mathcal{M}_Z(P))$ time	lookahead scoring	[Kociumaka-Pissis-R'16]
	and <i>k</i> -Mismatch	

Input

- T string text of length n
- P pattern being an $m \times \sigma$ profile
- Z threshold
- σ alphabet size

Output

All positions i in ${\cal T}$ where ${\cal T}[i,i+m-1]$ matches ${\cal P}$ with score at least ${\cal Z}$

$\mathcal{O}(\mathit{nm})$ time	naïve solution with	see [Pizzi-Ukkonen'08]
	heuristics	
$\mathcal{O}(\sigma n \log m)$ time	σ times FFT	[Rajasekaran-Jin-Spouge'02]
$\mathcal{O}(n \log \mathcal{M}_Z(P))$ time	lookahead scoring	[Kociumaka-Pissis-R'16]
	and <i>k</i> -Mismatch	

• $\mathcal{M}_Z(P)$ – the set of strings that match the profile P with score above Z

- $\mathcal{M}_Z(P)$ the set of strings that match the profile P with score above Z
- Obviously, $|\mathcal{M}_Z(P)| \leq \sigma^m$, i.e. $\mathcal{O}(n \log |\mathcal{M}_Z(P)|) = \mathcal{O}(nm \log \sigma)$

- $\mathcal{M}_Z(P)$ the set of strings that match the profile P with score above Z
- Obviously, $|\mathcal{M}_Z(P)| \leq \sigma^m$, i.e. $\mathcal{O}(n \log |\mathcal{M}_Z(P)|) = \mathcal{O}(nm \log \sigma)$
- However, in practice it is expected to be much smaller

- $\mathcal{M}_Z(P)$ the set of strings that match the profile P with score above Z
- Obviously, $|\mathcal{M}_Z(P)| \leq \sigma^m$, i.e. $\mathcal{O}(n \log |\mathcal{M}_Z(P)|) = \mathcal{O}(nm \log \sigma)$
- However, in practice it is expected to be much smaller

Fact

If a string S matches a profile P with score at least Z and $d_H(S, \mathbf{P}) = k$, then $|\mathcal{M}_Z(P)| \ge 2^k$.

- $\mathcal{M}_Z(P)$ the set of strings that match the profile P with score above Z
- Obviously, $|\mathcal{M}_Z(P)| \leq \sigma^m$, i.e. $\mathcal{O}(n \log |\mathcal{M}_Z(P)|) = \mathcal{O}(nm \log \sigma)$
- However, in practice it is expected to be much smaller

Fact

```
If a string S matches a profile P with score at least Z and

d_H(S, \mathbf{P}) = k, then |\mathcal{M}_Z(P)| \ge 2^k.

Hence, k \le \log |\mathcal{M}_Z(P)|.
```

- $\mathcal{M}_Z(P)$ the set of strings that match the profile P with score above Z
- Obviously, $|\mathcal{M}_Z(P)| \leq \sigma^m$, i.e. $\mathcal{O}(n \log |\mathcal{M}_Z(P)|) = \mathcal{O}(nm \log \sigma)$
- However, in practice it is expected to be much smaller

Fact

If a string *S* matches a profile *P* with score at least *Z* and $d_H(S, \mathbf{P}) = k$, then $|\mathcal{M}_Z(P)| \ge 2^k$.

Hence, $k \leq \log |\mathcal{M}_Z(P)|$.

Lookahead scoring:

- Matching heavy string P in the text T allowing mismatches kangaroo jumps
- Start at next position if the score drops below \boldsymbol{Z}

Plan of Presentation

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

SPWT (WPM)

Input: *T* – weighted string text, *P* – string pattern **Output:** All positions *i* in *T* where $\mathcal{P}(P, T[i, i + m - 1]) \ge \frac{1}{2}$

WPST

Input: *T* – string text, *P* – **weighted** string pattern **Output:** All positions *i* in *T* where $\mathcal{P}(T[i, i + m - 1], P) \geq \frac{1}{z}$

WPWT (General WPM)

Input: T - weighted string text, P - weighted string pattern **Output:** All positions i in T for which there exists a string S such that $\mathcal{P}(S, P) \geq \frac{1}{z}$ and $\mathcal{P}(S, T[i, i + m - 1]) \geq \frac{1}{z}$

SPWT (WPM)

Input: *T* – weighted string text, *P* – string pattern **Output:** All positions *i* in *T* where $\mathcal{P}(P, T[i, i + m - 1]) \ge \frac{1}{2}$

WPST

Input: *T* – string text, *P* – **weighted** string pattern **Output:** All positions *i* in *T* where $\mathcal{P}(T[i, i + m - 1], P) \ge \frac{1}{z}$

Off-line solutions for WPST and SPWT are the same

WPWT (General WPM)

Input: T – weighted string text, P – weighted string pattern **Output:**

All positions *i* in *T* for which there exists a string *S* such that $\mathcal{P}(S, P) \geq \frac{1}{z}$ and $\mathcal{P}(S, T[i, i + m - 1]) \geq \frac{1}{z}$

General WPM

General WPM

λ – the maximum number of letters with probability ≥ ¹/_z at one position (λ ≤ min(z, σ))

$$\mathcal{O}(nz^2 \log z)$$
 time[Barton-Liu-Pissis'15] $\mathcal{O}(n\sqrt{z\lambda}(\log\log z + \log \lambda))$ time[Kociumaka-Pissis-R'16]
General WPM

λ – the maximum number of letters with probability ≥ ¹/_z at one position (λ ≤ min(z, σ))

$$\begin{array}{ll} \mathcal{O}(nz^2 \log z) \text{ time} & [\text{Barton-Liu-Pissis'15}] \\ \hline \mathcal{O}(n\sqrt{z\lambda}(\log\log z + \log\lambda)) \text{ time} & [\text{Kociumaka-Pissis-R'16}] \\ \hline \mathcal{O}(n\sqrt{z}\log^2 z) \text{ time for } \sigma = \mathcal{O}(1) & \text{this presentation} \end{array}$$

- Weighted Consensus Problem (WCP): n = m
- General WPM reduces to n m + 1 instances of WCP of size m

- Weighted Consensus Problem (WCP): n = m
- General WPM reduces to n m + 1 instances of WCP of size m

Fact 3 (from Fact 2)

If $\mathcal{M}_z(X) \cap \mathcal{M}_z(Y) \neq \emptyset$ for weighted strings X, Y and X, Y are heavy strings of X and Y, resp., then $d_H(X, Y) \leq 2 \log_2 z$.

- Weighted Consensus Problem (WCP): n = m
- General WPM reduces to n m + 1 instances of WCP of size m

Fact 3 (from Fact 2)

If $\mathcal{M}_z(X) \cap \mathcal{M}_z(Y) \neq \emptyset$ for weighted strings X, Y and X, Y are heavy strings of X and Y, resp., then $d_H(X, Y) \leq 2 \log_2 z$.

```
Proof. If S \in \mathcal{M}_z(X) \cap \mathcal{M}_z(Y), then d_H(S, \mathbf{X}), d_H(S, \mathbf{Y}) \leq \log_2 z.
```

- Weighted Consensus Problem (WCP): n = m
- General WPM reduces to n m + 1 instances of WCP of size m

Fact 3 (from Fact 2)

If $\mathcal{M}_z(X) \cap \mathcal{M}_z(Y) \neq \emptyset$ for weighted strings X, Y and X, Y are heavy strings of X and Y, resp., then $d_H(X, Y) \leq 2 \log_2 z$.

Proof. If
$$S \in \mathcal{M}_z(X) \cap \mathcal{M}_z(Y)$$
, then $d_H(S, \mathbf{X}), d_H(S, \mathbf{Y}) \leq \log_2 z$.

Moreover, there is a string $S \in \mathcal{M}_z(X) \cap \mathcal{M}_z(Y)$ such that $S[i] = \mathbf{X}[i] = \mathbf{Y}[i]$ unless $\mathbf{X}[i] \neq \mathbf{Y}[i]$.

- Weighted Consensus Problem (WCP): n = m
- General WPM reduces to n m + 1 instances of WCP of size m

Fact 3 (from Fact 2)

If $\mathcal{M}_z(X) \cap \mathcal{M}_z(Y) \neq \emptyset$ for weighted strings X, Y and X, Y are heavy strings of X and Y, resp., then $d_H(X, Y) \leq 2 \log_2 z$.

Proof. If
$$S \in \mathcal{M}_z(X) \cap \mathcal{M}_z(Y)$$
, then $d_H(S, \mathbf{X}), d_H(S, \mathbf{Y}) \leq \log_2 z$.

Moreover, there is a string $S \in \mathcal{M}_z(X) \cap \mathcal{M}_z(Y)$ such that $S[i] = \mathbf{X}[i] = \mathbf{Y}[i]$ unless $\mathbf{X}[i] \neq \mathbf{Y}[i]$.

• Using k-Mismatch for $k = 2 \log_2 z$, in $\mathcal{O}(n \log z)$ time General WPM reduces to n - m + 1 instances of WCP of size $\mathcal{O}(\log z)$

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}.$

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{2}}$ Proof. S Х

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}.$ *Proof.*

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}$. *Proof.*

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}.$ *Proof.*

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{2}}.$ Proof. $\geq \frac{1}{\sqrt{z}}$ S Х

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{2}}$ Proof. $\geq \frac{1}{\sqrt{z}}$ i S Х

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}.$ *Proof.*

Fact 4

If $S \in \mathcal{M}_z(X)$ for a string S and weighted sequence X of length n, then there exists a position i such that $\mathcal{P}(S[0, i-1], X[0, i-1]), \mathcal{P}(S[i+1, n-1], X[i+1, n-1]) \geq \frac{1}{\sqrt{z}}.$ *Proof.*

• By Fact 1,
$$|\mathcal{M}_{\sqrt{z}}(X)| \leq \sqrt{z}$$
 for a weighted sequence X

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(T[i, n-1])$
- // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[i, n-1])$
- 3 // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

• For every
$$i = 0, \ldots, n-1$$
:

• try to join every $U \in \mathcal{M}_{\sqrt{z}}(T[0, i-1])$ and $V \in \mathcal{M}_{\sqrt{z}}(T[i+1, n-1])$ with a letter $c \in \Sigma$ at position *i*:

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[i, n-1])$
- 3 // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

• For every
$$i = 0, \ldots, n-1$$
:

• try to join every $U \in \mathcal{M}_{\sqrt{z}}(T[0, i-1])$ and $V \in \mathcal{M}_{\sqrt{z}}(T[i+1, n-1])$ with a letter $c \in \Sigma$ at position *i*: • $\mathcal{P}(U_c P[0, i]) = \mathcal{P}(U_c T[0, i]) > 1$

•
$$\mathcal{P}(Uc, P[0, i]), \mathcal{P}(Uc, T[0, i]) \geq \frac{1}{2}$$

•
$$\mathcal{P}(V, P[i, n-1]) \geq \frac{1}{2}$$

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[i, n-1])$
- 3 // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

• For every
$$i = 0, ..., n - 1$$
:

• try to join every $U \in \mathcal{M}_{\sqrt{z}}(T[0, i-1])$ and $V \in \mathcal{M}_{\sqrt{z}}(T[i+1, n-1])$ with a letter $c \in \Sigma$ at position *i*:

•
$$\mathcal{P}(Uc, P[0, i]), \mathcal{P}(Uc, T[0, i]) \geq \frac{1}{z}$$

•
$$\mathcal{P}(V, P[i, n-1]) \geq \frac{1}{z}$$

• Auxiliary problem: Given two sets \mathcal{P}, \mathcal{Q} of 2D points, find $(x_1, y_1) \in \mathcal{P}$ and $(x_2, y_2) \in \mathcal{Q}$ such that $x_1 x_2, y_1 y_2 \ge \frac{1}{z}$

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[i, n-1])$
- 3 // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

• For every
$$i = 0, ..., n - 1$$
:

• try to join every $U \in \mathcal{M}_{\sqrt{z}}(T[0, i-1])$ and $V \in \mathcal{M}_{\sqrt{z}}(T[i+1, n-1])$ with a letter $c \in \Sigma$ at position *i*:

•
$$\mathcal{P}(Uc, P[0, i]), \mathcal{P}(Uc, T[0, i]) \geq \frac{1}{z}$$

•
$$\mathcal{P}(V, P[i, n-1]) \geq \frac{1}{z}$$

- 2 Auxiliary problem: Given two sets \mathcal{P}, \mathcal{Q} of 2D points, find $(x_1, y_1) \in \mathcal{P}$ and $(x_2, y_2) \in \mathcal{Q}$ such that $x_1 x_2, y_1 y_2 \ge \frac{1}{z}$
- So Line sweep in $\mathcal{O}(|\mathcal{P}| + |\mathcal{Q}|)$ time.

Meet-in-the-middle:

- For i = 0, ..., n-1 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[0, i])$
- So For i = n, ..., 0 in order, compute $\mathcal{M}_{\sqrt{z}}(\mathcal{T}[i, n-1])$
- 3 // $\mathcal{O}(\sqrt{z}\log^2 z)$ time since $n = \mathcal{O}(\log z)$

• For every
$$i = 0, ..., n - 1$$
:

• try to join every $U \in \mathcal{M}_{\sqrt{z}}(T[0, i-1])$ and $V \in \mathcal{M}_{\sqrt{z}}(T[i+1, n-1])$ with a letter $c \in \Sigma$ at position *i*:

•
$$\mathcal{P}(Uc, P[0, i]), \mathcal{P}(Uc, T[0, i]) \geq \frac{1}{z}$$

•
$$\mathcal{P}(V, P[i, n-1]) \geq \frac{1}{z}$$

- Auxiliary problem: Given two sets \mathcal{P}, \mathcal{Q} of 2D points, find $(x_1, y_1) \in \mathcal{P}$ and $(x_2, y_2) \in \mathcal{Q}$ such that $x_1 x_2, y_1 y_2 \ge \frac{1}{z}$
- So Line sweep in $\mathcal{O}(|\mathcal{P}| + |\mathcal{Q}|)$ time.

In total: $\mathcal{O}(\sqrt{z}\log^2 z)$ time.

General WPM and WCP

$\mathcal{O}(nz^2 \log z)$ time	[Barton-Liu-Pissis'15]
$\mathcal{O}(n\sqrt{z\lambda}(\log\log z + \log\lambda))$ time	[Kociumaka-Pissis-R'16]
$\mathcal{O}(n\sqrt{z}\log^2 z)$ time for $\sigma=\mathcal{O}(1)$	this presentation

 ${}^1\mathcal{O}^*$ and $\tilde{\mathcal{O}}$ suppress polynomial and polylog factors with respect to the instance size, resp. Pattern Matching on Weighted Strings

General WPM and WCP

 $\begin{array}{ll} \mathcal{O}(nz^2 \log z) \text{ time} & [\text{Barton-Liu-Pissis'15}] \\ \mathcal{O}(n\sqrt{z\lambda}(\log\log z + \log\lambda)) \text{ time} & [\text{Kociumaka-Pissis-R'16}] \\ \mathcal{O}(n\sqrt{z}\log^2 z) \text{ time for } \sigma = \mathcal{O}(1) & \text{this presentation} \end{array}$

Lower bounds¹; see [Kociumaka-Pissis-R'16]: no $\mathcal{O}^*(z^{\varepsilon})$ time for every $\varepsilon > 0$ unless the Exponential Time Hypothesis fails no $\mathcal{O}^*(z^{0.5-\varepsilon})$ time for some unless a better algorithm for $\varepsilon > 0$ Subset Sum no $\tilde{\mathcal{O}}(z^{0.5}\lambda^{0.5-\varepsilon})$ time for some unless 3-Sum conjecture fails $\varepsilon > 0$ and $n = \mathcal{O}(1)$

 ${}^1\mathcal{O}^*$ and $\tilde{\mathcal{O}}$ suppress polynomial and polylog factors with respect to the instance size, resp. Pattern Matching on Weighted Strings

Problem definitions:

• Subset Sum

```
Input: a set A of n integers
Output: a subset B \subseteq A summing up to a given integer q, if
any
```

• 3-Sum

Input: three sets *A*, *B*, *C* of λ integers each **Output:** are there elements $a \in A$, $b \in B$, $c \in C$ such that a + b + c = 0?

Problem definitions:

• Subset Sum

```
Input: a set A of n integers
Output: a subset B \subseteq A summing up to a given integer q, if
any
```

• 3-Sum

Input: three sets A, B, C of λ integers each **Output:** are there elements $a \in A$, $b \in B$, $c \in C$ such that a + b + c = 0?

Both problems are special cases of Multichoice Knapsack (MK). We show a bidirectional reduction from MK to WCP.

Problem definitions:

• Subset Sum

```
Input: a set A of n integers
Output: a subset B \subseteq A summing up to a given integer q, if
any
```

• 3-Sum

Input: three sets A, B, C of λ integers each **Output:** are there elements $a \in A$, $b \in B$, $c \in C$ such that a + b + c = 0?

Both problems are special cases of Multichoice Knapsack (MK). We show a bidirectional reduction from MK to WCP.

Conditional hardness:

- No $\mathcal{O}(2^{0.5n-\varepsilon})$ -time solution for Subset Sum is known ($\varepsilon > 0$)
- No O(λ^{2-ε})-time solution for 3-Sum is known for ε > 0 (3-Sum conjecture)

Pattern Matching on Weighted Strings

Efficient Average-Case Algorithms for WPM

problem	preprocessing	avg search time	
WPST	$\mathcal{O}(m\sigma)$	o(n) for small	[Barton-Liu-Pissis'18]
		enough <i>z/m</i>	
SPWT	$\mathcal{O}(m)$	$\mathcal{O}(\frac{nz\log m}{m})$	[Barton-Liu-Pissis'16]
WPWT	$\mathcal{O}(mz)$	$\mathcal{O}(\frac{nz\log m}{m})$	[Barton-Liu-Pissis'16]

problem	preprocessing	avg search time	
WPST	$\mathcal{O}(m\sigma)$	o(n) for small	[Barton-Liu-Pissis'18]
		enough <i>z/m</i>	
SPWT	$\mathcal{O}(m)$	$\mathcal{O}(\frac{nz\log m}{m})$	[Barton-Liu-Pissis'16]
WPWT	$\mathcal{O}(mz)$	$\mathcal{O}(\frac{nz\log m}{m})$	[Barton-Liu-Pissis'16]

Implementations provided

Plan of Presentation

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Input

- T weighted string text of length n
- $\frac{1}{7}$ threshold probability
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query

- Input: P string pattern of length m
- Output: $Occ_z(P, T)$ the set of occurrences of P in T

Input

- T weighted string text of length n
- $\frac{1}{7}$ threshold probability
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query

- Input: P string pattern of length m
- Output: $Occ_z(P, T)$ the set of occurrences of P in T

space	construction				
$\mathcal{O}(nf(z))$	$\mathcal{O}(nf(z))$	[IMPPTT'06]			
$\mathcal{O}(nz^2 \log z)$	$\mathcal{O}(nz^2 \log z(\log \log z + \log \log n))$	[ACIKZ'06]			
$\mathcal{O}(nz^2 \log z)$	$\mathcal{O}(nz^2 \log z)$	[lliopoulos-			
		Rahman'08],	[Juan-		
		Liu-Wang'09]			
$\mathcal{O}(nz)$	$\mathcal{O}(nz)$	[BKLPR'16]			
Query time: $\mathcal{O}(m + \operatorname{Occ}_z(P, T))$					

Pattern Matching on Weighted Strings

Input

- T weighted string text of length n
- $\frac{1}{7}$ threshold probability
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query

- Input: P string pattern of length m
- Output: $Occ_z(P, T)$ the set of occurrences of P in T

space	construction				
$\mathcal{O}(nf(z))$	$\mathcal{O}(nf(z))$	[IMPPTT'06]			
$\mathcal{O}(nz^2 \log z)$	$\mathcal{O}(nz^2 \log z(\log \log z + \log \log n))$	[ACIKZ'06]			
$\mathcal{O}(nz^2 \log z)$	$\mathcal{O}(nz^2 \log z)$	[lliopoulos-			
		Rahman'08],	[Juan-		
		Liu-Wang'09]			
$\mathcal{O}(nz)$	$\mathcal{O}(nz)$	[BKLPR'16]			
Query time: $\mathcal{O}(m + \operatorname{Occ}_z(P, T))$					

Pattern Matching on Weighted Strings

Definition

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position *i* in Π is $[i, \pi[i]]$.

Definition

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position *i* in Π is $[i, \pi[i]]$.

For strings *P*, *S* and property π , by $Occ_{\pi}(P, S)$ we denote the set of occurrences *i* of *P* in *S* such that $i + |P| - 1 \le \pi[i]$.

Definition

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position *i* in Π is $[i, \pi[i]]$.

For strings *P*, *S* and property π , by $Occ_{\pi}(P, S)$ we denote the set of occurrences *i* of *P* in *S* such that $i + |P| - 1 \le \pi[i]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

Definition

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position i in Π is $[i, \pi[i]]$.

For strings *P*, *S* and property π , by $Occ_{\pi}(P, S)$ we denote the set of occurrences *i* of *P* in *S* such that $i + |P| - 1 \le \pi[i]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position i in Π is $[i, \pi[i]]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position i in Π is $[i, \pi[i]]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position i in Π is $[i, \pi[i]]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

A property Π is a hereditary collection of integer intervals contained in $\{0, \ldots, n-1\}$.

It is represented as an array π such that the longest interval starting at position i in Π is $[i, \pi[i]]$.

i	0	1	2	3	4	5
<i>S</i> [<i>i</i>]	a	b	a	a	b	b
$\pi[i]$	3	3	4	5	5	5

Idea: construct a special family of $\lfloor z \rfloor$ strings with properties that are "equivalent" to the weighted sequence

Idea: construct a special family of $\lfloor z \rfloor$ strings with properties that are "equivalent" to the weighted sequence

Fact 5

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Property Indexing

Input:

- S string of length n
- π property
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query:

- Input: P string pattern of length m
- Output: $Occ_{\pi}(P, S)$

Property Indexing

Input:

- S string of length n
- π property
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query:

- Input: P string pattern of length m
- Output: $Occ_{\pi}(P, S)$

space	construction	
$\mathcal{O}(n)$	$\mathcal{O}(n \log \log n)$	[ACIKZ'06]
$\mathcal{O}(n)$	$\mathcal{O}(n)$	[Iliopoulos-Rahman'08],
		[Juan-Liu-Wang'09]

Query time: $\mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|)$

Property Indexing

Input:

- S string of length n
- π property
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Query:

- Input: P string pattern of length m
- Output: $Occ_{\pi}(P, S)$

space	construction	
$\mathcal{O}(n)$	$\mathcal{O}(n \log \log n)$	[ACIKZ'06]
$\mathcal{O}(n)$	$\mathcal{O}(n)$	[Iliopoulos-Rahman'08],
		[Juan-Liu-Wang'09]

Query time: $\mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|)$

In [BKLPR'16]: a simpler construction based on Ukkonen's algorithm

Pattern Matching on Weighted Strings

- Construct a special family S of strings with properties (O(nz) time)
- $\textbf{@} \quad \textbf{Concatenate the strings from \mathcal{S} into a string \mathcal{S} with property π}$
- Solution Construct a data structure for Property Indexing $(\mathcal{O}(nz) \text{ time and space}, \mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|) \text{ queries})$

- Construct a special family S of strings with properties (O(nz) time)
- $\textbf{@} \quad \textbf{Concatenate the strings from \mathcal{S} into a string S with property π}$
- Solution Construct a data structure for Property Indexing $(\mathcal{O}(nz) \text{ time and space, } \mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|) \text{ queries})$

Problem: If a pattern P occurs at position i in several strings from S, then position i will be reported multiple times (i.e., $|\operatorname{Occ}_{\pi}(P, S)| \ge |\operatorname{Occ}_{z}(P, T)|$)

- Construct a special family S of strings with properties (O(nz) time)
- $\textbf{@} \quad \textbf{Concatenate the strings from \mathcal{S} into a string S with property π}$
- Solution Construct a data structure for Property Indexing $(\mathcal{O}(nz) \text{ time and space}, \mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|) \text{ queries})$

Problem: If a pattern P occurs at position i in several strings from S, then position i will be reported multiple times (i.e., $|\operatorname{Occ}_{\pi}(P, S)| \ge |\operatorname{Occ}_{z}(P, T)|$)

Solution: Use colored range listing of [Muthukrishnan'02].

- Construct a special family S of strings with properties (O(nz) time)
- $\textbf{@} \quad \textbf{Concatenate the strings from \mathcal{S} into a string \mathcal{S} with property π}$
- Solution Construct a data structure for Property Indexing $(\mathcal{O}(nz) \text{ time and space}, \mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|) \text{ queries})$

Problem: If a pattern P occurs at position i in several strings from S, then position i will be reported multiple times (i.e., $|\operatorname{Occ}_{\pi}(P, S)| \ge |\operatorname{Occ}_{z}(P, T)|$)

Solution: Use colored range listing of [Muthukrishnan'02].

• The index answers decision and counting queries in O(1) time (for counting, we use the Color Set Size problem of [Hui'92])

- Construct a special family S of strings with properties (O(nz) time)
- $\textbf{@} \quad \textbf{Concatenate the strings from \mathcal{S} into a string \mathcal{S} with property π}$
- Construct a data structure for Property Indexing $(\mathcal{O}(nz) \text{ time and space}, \mathcal{O}(m + |\operatorname{Occ}_{\pi}(P, S)|) \text{ queries})$

Problem: If a pattern P occurs at position i in several strings from S, then position i will be reported multiple times (i.e., $|\operatorname{Occ}_{\pi}(P, S)| \ge |\operatorname{Occ}_{z}(P, T)|$)

Solution: Use colored range listing of [Muthukrishnan'02].

- The index answers decision and counting queries in O(1) time (for counting, we use the Color Set Size problem of [Hui'92])
- And we provide its implementation

Approximate Weighted Indexing

Input

- T weighted string text of length n
- $\varepsilon > 0$ allowed error
- z maximum threshold probability (optional)

Query

- Input: P string pattern of length $m, z' \leq z$ threshold probability
- Output: Occ the set of occurrences of *P* in *T* with probab. $\geq \frac{1}{z'}$, allowing occurrences with probab. $\geq \frac{1}{z'} - \varepsilon$

Approximate Weighted Indexing

Input

- T weighted string text of length n
- $\varepsilon > 0$ allowed error
- z maximum threshold probability (optional)

Query

- Input: P string pattern of length $m, z' \leq z$ threshold probability
- Output: Occ the set of occurrences of *P* in *T* with probab. $\geq \frac{1}{z'}$, allowing occurrences with probab. $\geq \frac{1}{z'} - \varepsilon$

space	construction	query	
$\mathcal{O}(\frac{n}{\varepsilon}z^2)$	$\Omega(\frac{1}{\varepsilon}n^2z^2)$	$\mathcal{O}(m + \mathrm{Occ})$	[BPTS'16]
$\mathcal{O}(\frac{n}{\varepsilon})$	$\mathcal{O}(\frac{n}{\varepsilon}\log\frac{n}{\varepsilon})$	$\mathcal{O}(m + \mathrm{Occ})$	[BKLPR'16]

Pattern Matching on Weighted Strings

Generalized Weighted Indexing

Input

- T weighted string text of length n
- z maximum threshold probability

Query

- Input: P − string pattern of length m, z' ≤ z − threshold probability
- Output: Occ the set $Occ_{z'}(P, T)$

Generalized Weighted Indexing

Input

- T weighted string text of length n
- z maximum threshold probability

Query

- Input: P − string pattern of length m, z' ≤ z − threshold probability
- Output: Occ the set $Occ_{z'}(P, T)$

space	query	
$\mathcal{O}(\frac{n}{\varepsilon}z^2\log z)$	$\mathcal{O}(m+m \mathrm{Occ})$	[BPTS'16]
$\mathcal{O}(\frac{n}{\varepsilon})$	$\mathcal{O}(m+m \mathrm{Occ})$	[BKLPR'16]

Fact 5'

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Fact 5'

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Fact 5'

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Fact 5'

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Fact 5'

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family $S = (S_j, \pi_j)$ of $\lfloor z \rfloor$ strings of length *n* with properties such that, for a string *P* and position *i*,

Plan of Presentation

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Input:

• a pattern P of length m

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Input:

• a pattern P of length m

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- minimize time of processing a text position
- minimize working space

Input:

• a pattern P of length m

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- minimize time of processing a text position
- minimize working space
- We consider WPST, SPWT, WPWT

Input:

• a pattern P of length m

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- minimize time of processing a text position
- minimize working space
- We consider WPST, SPWT, WPWT
- All the previous algorithms were *not* on-line (FFT; suffix array of *T*\$*P*; meet-in-the-middle)

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line
Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

problem	time/position	space	
WPST	$\mathcal{O}(\sigma \log^2 m)$	pattern	FFT+Scheme
WPST	$\mathcal{O}(\log z \log m)$	pattern	Lookahead+Scheme

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

problem	time/position	space	
WPST	$\mathcal{O}(\sigma \log^2 m)$	pattern	FFT+Scheme
WPST	$\mathcal{O}(\log z \log m)$	pattern	Lookahead+Scheme
WPST	$\mathcal{O}(\sigma \log^2 m)$	$\mathcal{O}(m+z)$	[CIPR'19]
WPST	$\mathcal{O}(\log z \log m)$	$\mathcal{O}(m+z)$	[CIPR'19]

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

problem	time/position	space	
WPST	$\mathcal{O}(\sigma \log^2 m)$	pattern	FFT+Scheme
WPST	$\mathcal{O}(\log z \log m)$	pattern	Lookahead+Scheme
WPST	$\mathcal{O}(\sigma \log^2 m)$	$\mathcal{O}(m+z)$	[CIPR'19]
WPST	$\mathcal{O}(\log z \log m)$	$\mathcal{O}(m+z)$	[CIPR'19]
SPWT	$\mathcal{O}(\sigma \log^2 m)$	text frag.	FFT+Scheme
SPWT	$\mathcal{O}((\sigma + \log z) \log m)$	text frag.	Lookahead+Scheme

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

problem	time/position	space	
WPST	$\mathcal{O}(\sigma \log^2 m)$	pattern	FFT+Scheme
WPST	$\mathcal{O}(\log z \log m)$	pattern	Lookahead+Scheme
WPST	$\mathcal{O}(\sigma \log^2 m)$	$\mathcal{O}(m+z)$	[CIPR'19]
WPST	$\mathcal{O}(\log z \log m)$	$\mathcal{O}(m+z)$	[CIPR'19]
SPWT	$\mathcal{O}(\sigma \log^2 m)$	text frag.	FFT+Scheme
SPWT	$\mathcal{O}((\sigma + \log z) \log m)$	text frag.	Lookahead+Scheme
SPWT	$\mathcal{O}(z+\sigma)$	$\mathcal{O}(m+z)$	[CIPR'19]

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line \rightarrow on-line

Off-line: T(n, m) total time and S(n, m) space On-line: $\frac{1}{n}T(n, m) \log m$ time per position and S(m, m) space

Space to store a weighted string of length $m: \mathcal{O}(m\min(\sigma, z))$

problem	time/position	space	
WPST	$\mathcal{O}(\sigma \log^2 m)$	pattern	FFT+Scheme
WPST	$\mathcal{O}(\log z \log m)$	pattern	Lookahead+Scheme
WPST	$\mathcal{O}(\sigma \log^2 m)$	$\mathcal{O}(m+z)$	[CIPR'19]
WPST	$\mathcal{O}(\log z \log m)$	$\mathcal{O}(m+z)$	[CIPR'19]
SPWT	$\mathcal{O}(\sigma \log^2 m)$	text frag.	FFT+Scheme
SPWT	$\mathcal{O}((\sigma + \log z) \log m)$	text frag.	Lookahead+Scheme
SPWT	$\mathcal{O}(z+\sigma)$	$\mathcal{O}(m+z)$	[CIPR'19]
WPWT	$\mathcal{O}(z+\sigma)$	$\mathcal{O}(mz^2)$	[CIPR'19]

Pattern Matching on Weighted Strings

Input:

• a pattern P of length m, read position by position

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Input:

• a pattern P of length m, read position by position

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- sublinear working space (store neither the pattern nor the text)
- often at the cost of randomization
- minimize time of processing a text position

Input:

• a pattern P of length m, read position by position

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- sublinear working space (store neither the pattern nor the text)
- often at the cost of randomization
- minimize time of processing a text position

Streaming pattern matching on strings

First read the pattern, then read the text reporting the occurrences

Input:

• a pattern P of length m, read position by position

Output:

• after T[i] has been read, say if P matches T[i - m + 1, i]

Objective:

- sublinear working space (store neither the pattern nor the text)
- often at the cost of randomization
- minimize time of processing a text position

Streaming pattern matching on strings

First read the pattern, then read the text reporting the occurrences

space	time/position	
$\mathcal{O}(\log m)$	$\mathcal{O}(\log m)$ whp.	[Porat-Porat'09]
$\mathcal{O}(\log m)$	$\mathcal{O}(1)$ whp.	[Breslauer-Galil'11]

 In the Lookahead scoring for SPWT, we considered all occurrences of the pattern P in the heavy string T with at most log₂ z mismatches

 In the Lookahead scoring for SPWT, we considered all occurrences of the pattern P in the heavy string T with at most log₂ z mismatches

Streaming *k*-Mismatch on strings

"Error Correcting" (EC): Reports the positions of mismatches and differences of letters at these positions

 In the Lookahead scoring for SPWT, we considered all occurrences of the pattern P in the heavy string T with at most log₂ z mismatches

Streaming *k*-Mismatch on strings

"Error Correcting" (EC): Reports the positions of mismatches and differences of letters at these positions

space	time/position	EC	
$\tilde{\mathcal{O}}(k^3)$	$ ilde{\mathcal{O}}(k^2)$	No	[Porat-Porat'09]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(\sqrt{k})$	No	[CFPSS'16]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(k)$	Yes	[R-Starikovskaya'17]

 In the Lookahead scoring for SPWT, we considered all occurrences of the pattern P in the heavy string T with at most log₂ z mismatches

Streaming *k*-Mismatch on strings

"Error Correcting" (EC): Reports the positions of mismatches and differences of letters at these positions

space	time/position	EC	
$\tilde{\mathcal{O}}(k^3)$	$ ilde{\mathcal{O}}(k^2)$	No	[Porat-Porat'09]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(\sqrt{k})$	No	[CFPSS'16]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(k)$	Yes	[R-Starikovskaya'17]
$ ilde{\mathcal{O}}(k)$	$ ilde{\mathcal{O}}(k)$	Yes	[Clifford-Kociumaka-Porat'19]

 In the Lookahead scoring for SPWT, we considered all occurrences of the pattern P in the heavy string T with at most log₂ z mismatches

Streaming *k*-Mismatch on strings

"Error Correcting" (EC): Reports the positions of mismatches and differences of letters at these positions

space	time/position	EC	
$\tilde{\mathcal{O}}(k^3)$	$ ilde{\mathcal{O}}(k^2)$	No	[Porat-Porat'09]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(\sqrt{k})$	No	[CFPSS'16]
$\tilde{\mathcal{O}}(k^2)$	$ ilde{\mathcal{O}}(k)$	Yes	[R-Starikovskaya'17]
$ ilde{\mathcal{O}}(k)$	$ ilde{\mathcal{O}}(k)$	Yes	[Clifford-Kociumaka-Porat'19]

 S_k and T_k – space and time/position for streaming k-Mismatch

Pattern Matching on Weighted Strings

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem	space	time/position	approx
WPST	$\mathcal{O}(z + S_{\log z})$	$\mathcal{O}(\log^2 z + T_{\log z})$	
SPWT	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + S_{\log z})$	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + T_{\log z})$	$1-\varepsilon$

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem	space	time/position	approx
WPST	$\mathcal{O}(z + S_{\log z})$	$\mathcal{O}(\log^2 z + T_{\log z})$	
SPWT	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + S_{\log z})$	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + T_{\log z})$	$1-\varepsilon$

In [R-Starikovskaya'17] using Streaming MultiPattern Matching:

problem	space	time/position	appr.
WPST	$\mathcal{O}(z \log m)$	$\mathcal{O}(1)$	
SPWT	$\mathcal{O}(z(\log_{\frac{1}{1-\varepsilon}}z+\log m))$	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z)$	$1-\varepsilon$
WPWT	$\mathcal{O}(z(\log_{\frac{1}{1-\varepsilon}}z+\log z\log m))$	$\mathcal{O}(z(\log_{\frac{1}{1-\varepsilon}}z+\log z\log m))$	$1-\varepsilon$

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem	space	time/position	approx
WPST	$\mathcal{O}(z + S_{\log z})$	$\mathcal{O}(\log^2 z + T_{\log z})$	
SPWT	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + S_{\log z})$	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z + T_{\log z})$	$1-\varepsilon$

In [R-Starikovskaya'17] using Streaming MultiPattern Matching:

problem	space	time/position	appr.
WPST	$\mathcal{O}(\mathbf{z} \log m)$	$\mathcal{O}(1)$	
SPWT	$\mathcal{O}(\mathbf{z}(\log_{\frac{1}{1-\varepsilon}}\mathbf{z} + \log m))$	$\mathcal{O}(z \log_{\frac{1}{1-\varepsilon}} z)$	$1-\varepsilon$
WPWT	$\mathcal{O}(\mathbf{z}(\log_{\frac{1}{1-\varepsilon}} z + \log z \log m))$	$\mathcal{O}(z(\log_{\frac{1}{1-\varepsilon}}z + \log z \log m))$	$1-\varepsilon$

Lower bound in [R-Starikovskaya'17]

Any streaming algorithm, exact or $(1 - \varepsilon)$ -approximate, solving WPST, SPWT or WPWT must use $\Omega(z)$ space.

Plan of Presentation

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

For a string S, a weighted sequence W and a threshold $\frac{1}{z}$, we write $S \subseteq_z W$ if $\mathcal{P}(S, W') \ge \frac{1}{z}$ for some subsequence W' of W.

For a string S, a weighted sequence W and a threshold $\frac{1}{z}$, we write $S \subseteq_z W$ if $\mathcal{P}(S, W') \ge \frac{1}{z}$ for some subsequence W' of W.

Weighted Longest Common Subsequence, [Amir-Gotthilf-Shalom'09]

Input

- W_1 , W_2 weighted strings of length n
- $\frac{1}{z}$ threshold probability
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Output

• A longest string S such that $S \subseteq_z W_1$ and $S \subseteq_z W_2$

For a string S, a weighted sequence W and a threshold $\frac{1}{z}$, we write $W \subseteq_z S$ if $\mathcal{P}(S', W) \ge \frac{1}{z}$ for some subsequence S' of S.

For a string S, a weighted sequence W and a threshold $\frac{1}{z}$, we write $W \subseteq_z S$ if $\mathcal{P}(S', W) \geq \frac{1}{z}$ for some subsequence S' of S.

Weighted Shortest Common Supersequence, [Amir-Gotthilf-Shalom'11]

Input

- W_1 , W_2 weighted strings of length n
- $\frac{1}{7}$ threshold probability
- $\sigma = \mathcal{O}(1)$ alphabet size (this presentation)

Output

• A shortest string S such that $W_1 \subseteq_z S$ and $W_2 \subseteq_z S$

Weighted LCS and SCS

• Both problems are NP-complete for $\sigma = 2$; see [CKRRW'11] and [CKPRRSWZ'19]

Weighted LCS and SCS

• Both problems are NP-complete for $\sigma = 2$; see [CKRRW'11] and [CKPRRSWZ'19]

Weighted SCS

Upper bound

• $\mathcal{O}(n^2\sqrt{z}\log z)$ (using Facts 1, 2, 4); see [CKPRRSWZ'19]

Lower bounds

- O(n^{2-ε}) unless the Strong Exponential Time Hypothesis fails; see [Abboud-Backurs-Williams'15]
- O^{*}(z^{0.5-ε}) unless a better algorithm for Subset Sum exists; see [Kociumaka-Pissis-R]

Weighted LCS and SCS

• Both problems are NP-complete for $\sigma = 2$; see [CKRRW'11] and [CKPRRSWZ'19]

Weighted SCS

Upper bound

• $\mathcal{O}(n^2\sqrt{z}\log z)$ (using Facts 1, 2, 4); see [CKPRRSWZ'19]

Lower bounds

- O(n^{2-ε}) unless the Strong Exponential Time Hypothesis fails; see [Abboud-Backurs-Williams'15]
- O^{*}(z^{0.5-ε}) unless a better algorithm for Subset Sum exists; see [Kociumaka-Pissis-R]

Weighted LCS

• Cannot be solved in $\mathcal{O}(n f(z))$ time or $\mathcal{O}(n^{f(z)})$ time unless P = NP; see [CKPRRSWZ'19]

Conclusion

- Weighted Strings
- **2** Weighted Pattern Matching and Profile Matching
- General Weighted Pattern Matching
- Weighted Indexing
- On-line and Streaming Weighted Pattern Matching
- Weighted LCS and SCS

Open Problems and Further Work

• A Weighted Index with $\mathcal{O}(m + |\operatorname{Occ}_z(P, T)|)$ -time queries and o(nz) space?

Open Problems and Further Work

- A Weighted Index with $\mathcal{O}(m + |\operatorname{Occ}_z(P, T)|)$ -time queries and o(nz) space?
- An on-line algorithm for General WPM using less space?
- More efficient queries in the Generalized Weighed Index?

Open Problems and Further Work

- A Weighted Index with $\mathcal{O}(m + |\operatorname{Occ}_z(P, T)|)$ -time queries and o(nz) space?
- An on-line algorithm for General WPM using less space?
- More efficient queries in the Generalized Weighed Index?
- Automatic selection of parameter *z*?
- Non-independent probability distributions?

[BKLPR'16]

C. Barton, T. Kociumaka, C. Liu, S.P. Pissis, R, Efficient Index for Weighted Sequences, CPM 2016 Full version (with C. Liu) accepted to Inf. Comput. https://arxiv.org/abs/1704.07625

[CIPR'19]

P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, R On-line weighted pattern matching, Inf. Comput. 266, 2019

[Kociumaka-Pissis-R'16]

Pattern Matching and Consensus Problems on Weighted Sequences and Profiles, ISAAC 2016 Full version in **Theory Comput. Syst.** 63(3), 2019

[R-Starikovskaya]

Streaming k-Mismatch with Error Correcting and Applications, DCC 2017 Full version: https://arxiv.org/abs/1607.05626

[Barton-Liu-Pissis'16]

On-Line Pattern Matching on Uncertain Sequences and Applications, COCOA 2016

[Barton-Liu-Pissis'18]

Fast Average-Case Pattern Matching on Weighted Sequences, Int. J. Found. Comput. Sci. 29(8), 2018

[CKRRW'11]

M. Cygan, M. Kubica, R, W. Rytter, T. Waleń, *Polynomial-Time Approximation Algorithms for Weighted LCS Problem*, CPM 2011 Full version in **Discr. Appl. Math.** 204, 2016

[CKPRRSWZ'19]

P. Charalampopoulos, T. Kociumaka, S.P. Pissis, R, W. Rytter, J. Straszyński, T. Waleń, W. Zuba, *Weighted Shortest Common Supersequence Problem Revisited*, SPIRE 2019

[ACIKZ'06]

A. Amir, E. Chencinski, C.S. Iliopoulos, T. Kopelowitz, H. Zhang, *Property matching and weighted matching*, CPM 2006 Full version in **Theor. Comput. Sci.** 395 (2-3), 2008

[Amir-Gotthilf-Shalom'09]

Weighted LCS, IWOCA 2009 Full version in J. Discrete Algorithms 8(3), 2010

[Amir-Gotthilf-Shalom'11]

Weighted Shortest Common Supersequence, SPIRE 2011

[Barton-Liu-Pissis'15]

Linear-Time Computation of Prefix Table for Weighted Strings, WORDS 2015 Full version (with C. Liu) in **Theor. Comput. Sci.** 656, 2016

[BPTS'16]

S. Biswas, M. Patil, S.V. Thankachan, R. Shah, Probabilistic Threshold Indexing for Uncertain Strings, EDBT 2016

[CIMT'04]

M. Christodoulakis, C.S. Iliopoulos, L. Mouchard, K. Tsichlas,

Pattern matching on weighted sequences, CompBioNets 2004 Pattern Matching on Weighted Strings

[IMPPTT'06]

C.S. Iliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis, A.K. Tsakalidis, *The weighted suffix tree: An efficient data structure for handling molecular weighted sequences and its applications*, **Fundam. Inform.** 71 (2-3), 2006

[lliopoulos-Rahman'08] Faster index for property matching, Inf. Process. Lett. 105 (6), 2008

[Juan-Liu-Wang'09]

Errata for "Faster index for property matching", **Inf. Process. Lett.** 109 (18), 2009

[Pizzi-Ukkonen'08]

Fast profile matching algorithms – A survey, **Theor. Comput. Sci.** 395(2-3), 2008

[Rajasekaran-Jin-Spouge'02]

The Efficient Computation of Position-Specific Match Scores with the Fast Fourier Transform, J. Comp. Biol. 9(1): 23-33 (2002)

Pattern Matching on Weighted Strings

Other References – General Tools

[Breslauer-Galil'11]

Real-Time Streaming String-Matching, CPM 2011 Full version in **ACM Trans. Algorithms** 10(4), 2014

[Clifford-Efremenko-Porat-Porat'08]

A Black Box for Online Approximate Pattern Matching, CPM 2008 Full version in **Inf. Comput.** 209(4), 2011

[CFPSS'16]

R. Clifford, A. Fontaine, E. Porat, B. Sach, T. Starikovskaya, *The k-mismatch problem revisited*, SODA 2016

[Clifford-Kociumaka-Porat'19]

The streaming k-mismatch problem, SODA 2019

[Hui'92]

Color set size problem with application to string matching, CPM 1992

[Muthukrishnan'02]

Efficient algorithms for document retrieval problems, SODA 2002

[Porat-Porat'09]

Exact and approximate pattern matching in the streaming model, FOCS 2009 Pattern Matching on Weighted Strings

Thank you for your attention!