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Strings, Partial Words, Indeterminate Strings

Strings (solid strings):

a c a b b b

Partial words (strings with don’t care symbols):

a ♦ a b ♦ b

a c a b b b
a a a b a b
a b a b c b

...

Indeterminate strings:

a b
c a b a

b b

a c a b b b
a c a b a b
a b a b b b
a b a b a b
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Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

a b 0.2
c 0.8 a b a 0.6

b 0.4 b

probability

a c a b b b 0.32
a c a b a b 0.48
a b a b b b 0.08
a b a b a b 0.12

Profiles (Position Weight Matrices):

a 7
b 0
c 1

a 3
b 2
c 8

a 0
b 1
c 0

a 0
b 5
c 0

a 6
b 4
c 3

a 1
b 9
c 0

score

a c a b b b 33
a c a b a b 35
a b a b b b 27
a b a b a b 29. . .
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Applications of Uncertain Strings

Bioinformatics
introduced in:
Stormo, Schneider, Gold, and Ehrenfeucht (1982). “Use of the

‘Perceptron’ algorithm to distinguish translational initiation sites in E.

coli”. Nucleic Acids Research 10 (9): 2997–3011.

one of the standard representations of motifs

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons

Single Nucleotide Polymorphisms, errors in genome
sequencing. . .
|Σ| = 4 for DNA sequences
|Σ| = 20 for protein sequences
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Applications of Uncertain Strings

Noisy sensor data, Probabilistic databases
Measurement and sampling errors, resource limitations

Privacy preserving
Artificial uncertainty can be introduced to sanitize data but
keep its utility

Missing parts of data
Unknown parameters assumed to take any legal value equally
likely
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Threshold

Score function and probability distribution are defined on all
solid strings of matching length

Typically, only high values are considered significant

Definition

A string S matches a weighed string X if P(S ,X ) ≥ 1z for a given
threshold 1z . By Mz(X ) we denote the set of all strings that
match X for threshold z .

Fact 1

|Mz(X )| ≤ z .

Proof. For every S ∈Mz(X ), we have P(S ,X ) ≥ 1z . Moreover,∑
S∈Mz (X ) P(S ,X ) ≤ 1.

z can be used as a parameter for designing algorithms
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Weighted Pattern Matching

Input
T – weighted string text of length n (T [0, n− 1]), represented
as an n × σ array
P – string pattern of length m (P[0,m − 1])
1
z – threshold probability
Σ – integer alphabet of size σ
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P,T [i , i + m − 1]) ≥ 1z

T

P

z = 8

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

1
16 <

1
z NO

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

3
8 ≥

1
z YES

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

a a b

0 < 1z NO
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Solutions to WPM

O(nm) time näıve solution
O(σn logm) time σ times FFT [CIMT’04]

O(n log z) time lookahead scoring
and k-Mismatch

[Kociumaka-Pissis-R’16]
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WPM via Lookahead Scoring

X
a a a a a

b b b b b
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a a a a a
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1
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1
4

1
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1
2
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b a a a aXheavy string

dH(S ,T ) – Hamming distance between strings S and T
(the number of mismatches between S and T )

Fact 2

If S ∈Mz(X ) for string S and weighted string X and X is a heavy
string of X , then dH(S ,X) ≤ log2 z .

Proof. At each mismatch position between S and X, the
probability of the letter of S in X is ≤ 0.5.

The heavy string method is also known as lookahead scoring
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WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T , find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:
1 Construct a data structure for answering lcp-queries for T#P

(O(n + m) time via SA and RMQ)
2 For every position i in T , ask at most k + 1 lcp-queries:

T # P
i

* ** *

Break after reaching the end of the string or after the
(k + 1)th mismatch
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WPM via Lookahead Scoring

1 Compute α := P(T[0,m − 1],T [0,m − 1])
2 k := log2 z
3 For every position i := 0 to n −m do:

1 If T[i , i + m − 1] and P have at most k mismatches, let A be
the set of their positions:
1 α′ := α
2 For every j ∈ A,
α′ := α′ · P(T[i + j ],T [i + j ])/P(P[j ],T [i + j ])

3 If α′ ≥ 1
z

, return a match at position i

2 α := α · P(T[i + m],T [i + m])/P(T[i ],T [i ])

T

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

Theavy string

z = 8

b a a a a

z = 8 a a b

b a a 9
16

6= = 6= 1
16 <

1
z NOz = 8 a a b

a a a 3
8

= = 6= 3
8 ≥

1
z YES
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Application: Profile Matching

Input
T – string text of length n

P – pattern being an m × σ profile

Z – threshold

σ – alphabet size

Output
All positions i in T where T [i , i + m − 1] matches P with score at
least Z

O(nm) time näıve solution with
heuristics

see [Pizzi-Ukkonen’08]

O(σn logm) time σ times FFT [Rajasekaran-Jin-Spouge’02]

O(n log |MZ (P)|) time lookahead scoring
and k-Mismatch

[Kociumaka-Pissis-R’16]

O(nm) time näıve solution with
heuristics

see [Pizzi-Ukkonen’08]

O(σn logm) time σ times FFT [Rajasekaran-Jin-Spouge’02]
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Application: Profile Matching

MZ (P) – the set of strings that match the profile P with
score above Z

Obviously, |MZ (P)| ≤ σm, i.e.
O(n log |MZ (P)|) = O(nm log σ)

However, in practice it is expected to be much smaller

Fact

If a string S matches a profile P with score at least Z and
dH(S ,P) = k, then |MZ (P)| ≥ 2k .

Hence, k ≤ log |MZ (P)|.

Lookahead scoring:

Matching heavy string P in the text T allowing mismatches –
kangaroo jumps

Start at next position if the score drops below Z
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Plan of Presentation

1 Weighted Strings
2 Weighted Pattern Matching and Profile Matching
3 General Weighted Pattern Matching
4 Weighted Indexing
5 On-line and Streaming Weighted Pattern Matching
6 Weighted LCS and SCS
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Three variants of WPM

SPWT (WPM)

Input: T – weighted string text, P – string pattern
Output:
All positions i in T where P(P,T [i , i + m − 1]) ≥ 1z

WPST

Input: T – string text, P – weighted string pattern
Output:
All positions i in T where P(T [i , i + m − 1],P) ≥ 1z

WPWT (General WPM)

Input: T – weighted string text, P – weighted string pattern
Output:
All positions i in T for which there exists a string S such that
P(S ,P) ≥ 1z and P(S ,T [i , i + m − 1]) ≥ 1z
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General WPM

z = 8

T

P

a a a a a a a

b b b b b b b

1
8

7
8

1
2

1
2

1
2

1
2

1

0

0

1

1
2

1
2

1
2

1
2

a a a a a

b b b b b

1
4

3
4

1

0

3
4

1
4

1
2

1
2

1

0

1
8

9
32

λ – the maximum number of letters with probability ≥ 1z at
one position (λ ≤ min(z , σ))

O(nz2 log z) time [Barton-Liu-Pissis’15]

O(n
√
zλ(log log z + log λ)) time [Kociumaka-Pissis-R’16]

O(n
√
z log2 z) time for σ = O(1) this presentation
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Weighted Consensus

Weighted Consensus Problem (WCP): n = m

General WPM reduces to n −m + 1 instances of WCP of size
m

Fact 3 (from Fact 2)

If Mz(X ) ∩Mz(Y ) 6= ∅ for weighted strings X , Y and X, Y are
heavy strings of X and Y , resp., then dH(X,Y) ≤ 2 log2 z .

Proof. If S ∈Mz(X ) ∩Mz(Y ), then
dH(S ,X), dH(S ,Y) ≤ log2 z .

Moreover, there is a string S ∈Mz(X ) ∩Mz(Y ) such that
S [i ] = X[i ] = Y[i ] unless X[i ] 6= Y[i ].

Using k-Mismatch for k = 2 log2 z , in O(n log z) time General
WPM reduces to n−m + 1 instances of WCP of size O(log z)
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Weighted Consensus

Fact 4

If S ∈Mz(X ) for a string S and weighted sequence X of length n,
then there exists a position i such that
P(S [0, i − 1],X [0, i − 1]), P(S [i + 1, n− 1],X [i + 1, n− 1]) ≥ 1√

z
.

Proof.

X

S

≥ 1√
z

< 1√
z

i

≥ 1√
z

≥ 1√
z

≥ 1√
z

i

By Fact 1, |M√z(X )| ≤
√
z for a weighted sequence X
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Weighted Consensus

Meet-in-the-middle:
1 For i = 0, . . . , n − 1 in order, compute M√z(T [0, i ])
2 For i = n, . . . , 0 in order, compute M√z(T [i , n − 1])

3 // O(
√
z log2 z) time since n = O(log z)

4 For every i = 0, . . . , n − 1:
1 try to join every U ∈M√

z(T [0, i − 1]) and
V ∈M√

z(T [i + 1, n − 1]) with a letter c ∈ Σ at position i :

P(Uc,P[0, i ]),P(Uc,T [0, i ]) ≥ 1
z

P(V ,P[i , n − 1]) ≥ 1
z

2 Auxiliary problem: Given two sets P,Q of 2D points, find
(x1, y1) ∈ P and (x2, y2) ∈ Q such that x1x2, y1y2 ≥ 1z

3 Line sweep in O(|P|+ |Q|) time.

In total: O(
√
z log2 z) time.
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General WPM and WCP

O(nz2 log z) time [Barton-Liu-Pissis’15]

O(n
√
zλ(log log z + log λ)) time [Kociumaka-Pissis-R’16]

O(n
√
z log2 z) time for σ = O(1) this presentation

Lower bounds

1

; see [Kociumaka-Pissis-R’16]:
no O∗(zε) time for every ε > 0 unless the Exponential Time

Hypothesis fails
no O∗(z0.5−ε) time for some
ε > 0

unless a better algorithm for
Subset Sum

no Õ(z0.5λ0.5−ε) time for some
ε > 0 and n = O(1)

unless 3-Sum conjecture fails

1O∗ and Õ suppress polynomial and polylog factors with respect to the
instance size, resp.
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Subset Sum and 3-Sum

Problem definitions:

Subset Sum
Input: a set A of n integers
Output: a subset B ⊆ A summing up to a given integer q, if
any

3-Sum
Input: three sets A, B, C of λ integers each
Output: are there elements a ∈ A, b ∈ B, c ∈ C such that
a + b + c = 0?

Both problems are special cases of Multichoice Knapsack (MK).
We show a bidirectional reduction from MK to WCP.

Conditional hardness:

No O(20.5n−ε)-time solution for Subset Sum is known (ε > 0)

No O(λ2−ε)-time solution for 3-Sum is known for ε > 0
(3-Sum conjecture)
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a + b + c = 0?

Both problems are special cases of Multichoice Knapsack (MK).
We show a bidirectional reduction from MK to WCP.

Conditional hardness:

No O(20.5n−ε)-time solution for Subset Sum is known (ε > 0)

No O(λ2−ε)-time solution for 3-Sum is known for ε > 0
(3-Sum conjecture)

Pattern Matching on Weighted Strings 21 / 41



Subset Sum and 3-Sum

Problem definitions:

Subset Sum
Input: a set A of n integers
Output: a subset B ⊆ A summing up to a given integer q, if
any

3-Sum
Input: three sets A, B, C of λ integers each
Output: are there elements a ∈ A, b ∈ B, c ∈ C such that
a + b + c = 0?

Both problems are special cases of Multichoice Knapsack (MK).
We show a bidirectional reduction from MK to WCP.

Conditional hardness:

No O(20.5n−ε)-time solution for Subset Sum is known (ε > 0)

No O(λ2−ε)-time solution for 3-Sum is known for ε > 0
(3-Sum conjecture)

Pattern Matching on Weighted Strings 21 / 41



Efficient Average-Case Algorithms for WPM

problem preprocessing avg search time
WPST O(mσ) o(n) for small

enough z/m
[Barton-Liu-Pissis’18]

SPWT O(m) O(nz logmm ) [Barton-Liu-Pissis’16]

WPWT O(mz) O(nz logmm ) [Barton-Liu-Pissis’16]

Implementations provided
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Plan of Presentation

1 Weighted Strings
2 Weighted Pattern Matching and Profile Matching
3 General Weighted Pattern Matching
4 Weighted Indexing
5 On-line and Streaming Weighted Pattern Matching
6 Weighted LCS and SCS
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Weighted Indexing

Input
T – weighted string text of length n
1
z – threshold probability
σ = O(1) – alphabet size (this presentation)

Query
Input: P – string pattern of length m

Output: Occz(P,T ) – the set of occurrences of P in T

space construction
O(nf (z)) O(nf (z)) [IMPPTT’06]

O(nz2 log z) O(nz2 log z(log log z + log log n)) [ACIKZ’06]

O(nz2 log z) O(nz2 log z) [Iliopoulos-

Rahman’08], [Juan-

Liu-Wang’09]

O(nz) O(nz) [BKLPR’16]

Query time: O(m + |Occz(P,T )|)
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Weighted Indexing

Definition

A property Π is a hereditary collection of integer intervals
contained in {0, . . . , n − 1}.

It is represented as an array π such that the longest interval
starting at position i in Π is [i , π[i ]].

For strings P, S and property π, by Occπ(P,S) we denote the set
of occurrences i of P in S such that i + |P| − 1 ≤ π[i ].

i 0 1 2 3 4 5

S [i ] a b a a b b
π[i ] 3 3 4 5 5 5
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It is represented as an array π such that the longest interval
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Weighted Indexing

Idea: construct a special family of bzc strings with properties that
are “equivalent” to the weighted sequence

Fact 5

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (Sj , πj) of bzc strings of
length n with properties such that, for a string P and position i ,

i ∈ Occz(P,X ) ⇔ i ∈ Occπ(P,Sj) for some j .
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Property Indexing

Input:
S – string of length n
π – property
σ = O(1) – alphabet size (this presentation)

Query:
Input: P – string pattern of length m
Output: Occπ(P, S)

space construction
O(n) O(n log log n) [ACIKZ’06]

O(n) O(n) [Iliopoulos-Rahman’08],
[Juan-Liu-Wang’09]

Query time: O(m + |Occπ(P,S)|)

In [BKLPR’16]: a simpler construction based on Ukkonen’s
algorithm
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Weighted Indexing

1 Construct a special family S of strings with properties
(O(nz) time)

2 Concatenate the strings from S into a string S with property π
3 Construct a data structure for Property Indexing

(O(nz) time and space, O(m + |Occπ(P,S)|) queries)

Problem: If a pattern P occurs at position i in several strings from
S, then position i will be reported multiple times
(i.e., |Occπ(P,S)| ≥ |Occz(P,T )|)

Solution: Use colored range listing of [Muthukrishnan’02].

The index answers decision and counting queries in O(1) time
(for counting, we use the Color Set Size problem of [Hui’92])

And we provide its implementation
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Approximate and Generalized Weighted Indexing

Approximate Weighted Indexing

Input

T – weighted string text of length n

ε > 0 – allowed error

z – maximum threshold probability (optional)

Query

Input: P – string pattern of length m, z ′ ≤ z – threshold
probability

Output: Occ – the set of occurrences of P in T with probab.
≥ 1

z ′ , allowing occurrences with probab. ≥ 1
z ′ − ε

space construction query
O(nε z

2) Ω(1εn
2z2) O(m + |Occ|) [BPTS’16]

O(nε ) O(nε log n
ε ) O(m + |Occ|) [BKLPR’16]
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Approximate and Generalized Weighted Indexing

Generalized Weighted Indexing

Input

T – weighted string text of length n

z – maximum threshold probability

Query

Input: P – string pattern of length m, z ′ ≤ z – threshold
probability

Output: Occ – the set Occz ′(P,T )

space query
O(nε z

2 log z) O(m + m |Occ|) [BPTS’16]

O(nε ) O(m + m |Occ|) [BKLPR’16]
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Approximate and Generalized Weighted Indexing

Fact 5′

Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (Sj , πj) of bzc strings of
length n with properties such that, for a string P and position i ,

b z P(P,T [i , i + m − 1]) c = | {j : i ∈ Occπ(P,Sj)} |.
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Plan of Presentation

1 Weighted Strings
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On-line WPM

Input:

a pattern P of length m

Output:

after T [i ] has been read, say if P matches T [i −m + 1, i ]

Objective:

minimize time of processing a text position

minimize working space

We consider WPST, SPWT, WPWT

All the previous algorithms were not on-line
(FFT; suffix array of T$P; meet-in-the-middle)
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On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat’08]

Pattern matching off-line → on-line

Off-line: T (n,m) total time and S(n,m) space
On-line: 1nT (n,m) logm time per position and S(m,m) space

Space to store a weighted string of length m: O(mmin(σ, z))

problem time/position space
WPST O(σ log2m) pattern FFT+Scheme
WPST O(log z logm) pattern Lookahead+Scheme
WPST O(σ log2m) O(m + z) [CIPR’19]

WPST O(log z logm) O(m + z) [CIPR’19]

SPWT O(σ log2m) text frag. FFT+Scheme
SPWT O((σ + log z) logm) text frag. Lookahead+Scheme
SPWT O(z + σ) O(m + z) [CIPR’19]

WPWT O(z + σ) O(mz2) [CIPR’19]
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Streaming WPM

Input:
a pattern P of length m, read position by position

Output:
after T [i ] has been read, say if P matches T [i −m + 1, i ]

Objective:
sublinear working space (store neither the pattern nor the text)
often at the cost of randomization
minimize time of processing a text position

Streaming pattern matching on strings

First read the pattern, then read the text reporting the occurrences

space time/position
O(logm) O(logm) whp. [Porat-Porat’09]

O(logm) O(1) whp. [Breslauer-Galil’11]
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Streaming WPM

In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log2 z mismatches

Streaming k-Mismatch on strings

“Error Correcting” (EC): Reports the positions of mismatches and
differences of letters at these positions

space time/position EC
Õ(k3) Õ(k2) No [Porat-Porat’09]

Õ(k2) Õ(
√
k) No [CFPSS’16]

Õ(k2) Õ(k) Yes [R-Starikovskaya’17]

Õ(k) Õ(k) Yes [Clifford-Kociumaka-Porat’19]

Sk and Tk – space and time/position for streaming k-Mismatch
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Streaming WPM

In [R-Starikovskaya’17] using Streaming k-Mismatch:

problem space time/position approx
WPST O(z + Slog z) O(log2 z + Tlog z)

SPWT O(z log 1
1−ε

z + Slog z) O(z log 1
1−ε

z + Tlog z) 1− ε

In [R-Starikovskaya’17] using Streaming MultiPattern Matching:

problem space time/position appr.
WPST O(z logm) O(1)
SPWT O(z(log 1

1−ε
z + logm)) O(z log 1

1−ε
z) 1−ε

WPWT O(z(log 1
1−ε

z + log z logm)) O(z(log 1
1−ε

z + log z logm)) 1−ε

Lower bound in [R-Starikovskaya’17]

Any streaming algorithm, exact or (1− ε)-approximate, solving
WPST, SPWT or WPWT must use Ω(z) space.
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Plan of Presentation

1 Weighted Strings
2 Weighted Pattern Matching and Profile Matching
3 General Weighted Pattern Matching
4 Weighted Indexing
5 On-line and Streaming Weighted Pattern Matching
6 Weighted LCS and SCS
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Weighted LCS and SCS

Definition (z-subsequence)

For a string S , a weighted sequence W and a threshold 1z , we write
S ⊆z W if P(S ,W ′) ≥ 1z for some subsequence W ′ of W .

Weighted Longest Common Subsequence, [Amir-Gotthilf-Shalom’09]

Input

W1, W2 – weighted strings of length n
1
z – threshold probability

σ = O(1) – alphabet size (this presentation)

Output

A longest string S such that S ⊆z W1 and S ⊆z W2
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Weighted LCS and SCS

Both problems are NP-complete for σ = 2; see [CKRRW’11]

and [CKPRRSWZ’19]

Weighted SCS

Upper bound

O(n2
√
z log z) (using Facts 1, 2, 4); see [CKPRRSWZ’19]

Lower bounds

O(n2−ε) unless the Strong Exponential Time Hypothesis fails;
see [Abboud-Backurs-Williams’15]

O∗(z0.5−ε) unless a better algorithm for Subset Sum exists;
see [Kociumaka-Pissis-R]

Weighted LCS

Cannot be solved in O(n f (z)) time or O(nf (z)) time unless
P = NP; see [CKPRRSWZ’19]
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Conclusion

1 Weighted Strings
2 Weighted Pattern Matching and Profile Matching
3 General Weighted Pattern Matching
4 Weighted Indexing
5 On-line and Streaming Weighted Pattern Matching
6 Weighted LCS and SCS
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Open Problems and Further Work

A Weighted Index with O(m + |Occz(P,T )|)-time queries
and o(nz) space?

An on-line algorithm for General WPM using less space?

More efficient queries in the Generalized Weighed Index?

Automatic selection of parameter z?

Non-independent probability distributions?
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Thank You

Thank you for your attention!
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