Pattern Matching on Weighted Strings

Jakub Radoszewski

University of Warsaw, Poland

Prague Stringology Conference 2019

Pattern Matching on Weighted Strings 1/41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 2/41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 2/41

Strings, Partial Words, Indeterminate Strings

Strings (solid strings):
a c a b b b

Pattern Matching on Weighted Strings 3/41

Strings, Partial Words, Indeterminate Strings

Strings (solid strings):
a c a b b b

Partial words (strings with don't care symbols):

a & a b & b

Pattern Matching on Weighted Strings 3/41

Strings, Partial Words, Indeterminate Strings

Strings (solid strings):

a C

Partial words (strings with don't care symbols):

%
c
a
b

[SV R Y

Pattern Matching on Weighted Strings

a

Moo

b

o T T T

b

%

b
a
c

o T T T

3/41

Strings, Partial Words, Indeterminate Strings

Strings (solid strings):
a c a b b b

Partial words (strings with don't care symbols):

a & a b & b

a c a b b b

a a a b a b

a b a b c b
Indeterminate strings:

a b a b 2 b

Pattern Matching on Weighted Strings

3/41

Strings, Partial Words, Indeterminate Strings

Strings (solid strings)

a

Partial words (strings with don't care symbols):

[SV R Y

Indeterminate strings:

[2 SV R Y

a
Pattern Matching on Weighted Strings

C

%
c
a
b

o o 0O Ooc

a

Moo

v PP

b

o T T T

o T T T O

b

%

b
a
c

vV O M T o

o T T T

o o T T o

3/41

Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

b 0.2 a 0.6
a .0 & Db pga Db

Pattern Matching on Weighted Strings 4/41

Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

a 8 % a b 8 2 b probability
a C a b b b 0.32
a C a b a b 0.48
a b a b b b 0.08
a b a b a b 0.12

Pattern Matching on Weighted Strings 4/41

Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

al a0 al a0 a06 a0

b0 b02 b0 bl b04 Dbl -
c0 c08 c0 c0 c 0 c0Q Pprobability
a c a b b b 0.32

a ¢ a b a b 0.48

a b a b b b 0.08

a b a b a b 0.12

Pattern Matching on Weighted Strings 4/41

Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

al a0 al a0 a06 a0

b0 p02 b0 bl 04 bl .
c0 c08 c0 c0 c 0 c0Q Pprobability
a c a b b b 0.32
a c a b a b 0.48
a b a b b b 0.08
a b a b a b 0.12

Profiles (Position Weight Matrices):

a7 a3 a0 a0 a6 al

b0 b2 b1l bb b 4 b9

cl ¢c8 ¢c0 c¢c0 ¢c3 <¢0

Pattern Matching on Weighted Strings 4/41

Weighted Strings (PPMs) and Profiles (PWMs)

Weighted Strings (Position Probability Matrices):

al a0 al a0 a06 a0

b0 p02 b0 bl 04 bl babili

c0 c08 ¢c0 ¢c0 c¢c 0 <coO probability

a c a b b b 0.32

a c a b a b 0.48

a b a b b b 0.08

a b a b a b 0.12
Profiles (Position Weight Matrices):

a7 a3 a0 a0 a6 al

b0 b2 b1l bb b 4 b9

cl ¢c8 c¢c0 c¢c0 c¢c3 <co0 score

a c a b b b 33

a c a b a b 35

a b a b b b 27

a b a b a b 29

Pattern Matching on Weighted Strings 4/41

Applications of Uncertain Strings

Bioinformatics
@ introduced in:
Stormo, Schneider, Gold, and Ehrenfeucht (1982). “Use of the
‘Perceptron’ algorithm to distinguish translational initiation sites in E.
coli”. Nucleic Acids Research 10 (9): 2997-3011.
@ one of the standard representations of motifs

2
»
24 T
0 P- G JA AP o L o
- o (4] =3 [T:] w ~ L] (=] o - o [x] < n w
p CRE -

webloge berkekey. i

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons

Pattern Matching on Weighted Strings 5/41

Applications of Uncertain Strings

Bioinformatics

@ introduced in:
Stormo, Schneider, Gold, and Ehrenfeucht (1982). “Use of the

‘Perceptron’ algorithm to distinguish translational initiation sites in E.
coli”. Nucleic Acids Research 10 (9): 2997-3011.
@ one of the standard representations of motifs

2
»
24 T
0 P- G JA AP o L o
- o (4] =3 [T:] w ~ L] (=] o - o [x] < n w
p CRE -

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons
@ Single Nucleotide Polymorphisms, errors in genome
sequencing. . .

Pattern Matching on Weighted Strings 5/41

Applications of Uncertain Strings

Bioinformatics

@ introduced in:
Stormo, Schneider, Gold, and Ehrenfeucht (1982). “Use of the

‘Perceptron’ algorithm to distinguish translational initiation sites in E.
coli”. Nucleic Acids Research 10 (9): 2997-3011.
@ one of the standard representations of motifs

2
»
24 T
0 P- G JA AP o L o
- o (4] =3 [T:] w ~ L] (=] o - o [x] < n w
p CRE -

Source: Gnomehacker at English Wikipedia [GFDL, CC BY-SA 3.0] via Wikimedia Commons
@ Single Nucleotide Polymorphisms, errors in genome

sequencing. . .
o |X| =4 for DNA sequences
@ |X| = 20 for protein sequences

Pattern Matching on Weighted Strings

5/41

Applications of Uncertain Strings

@ Noisy sensor data, Probabilistic databases
Measurement and sampling errors, resource limitations

Pattern Matching on Weighted Strings 6/41

Applications of Uncertain Strings

@ Noisy sensor data, Probabilistic databases
Measurement and sampling errors, resource limitations

@ Privacy preserving
Artificial uncertainty can be introduced to sanitize data but
keep its utility

Pattern Matching on Weighted Strings 6/41

Applications of Uncertain Strings

@ Noisy sensor data, Probabilistic databases
Measurement and sampling errors, resource limitations

@ Privacy preserving
Artificial uncertainty can be introduced to sanitize data but
keep its utility

@ Missing parts of data
Unknown parameters assumed to take any legal value equally
likely

Pattern Matching on Weighted Strings 6/41

Threshold

@ Score function and probability distribution are defined on all
solid strings of matching length

e Typically, only high values are considered significant

Pattern Matching on Weighted Strings 7/41

Threshold

@ Score function and probability distribution are defined on all
solid strings of matching length
e Typically, only high values are considered significant

Definition

A string S matches a weighed string X if P(S, X) > % for a given
threshold 1. By M (X) we denote the set of all strings that
match X for threshold z.

Pattern Matching on Weighted Strings 7/41

Threshold

@ Score function and probability distribution are defined on all
solid strings of matching length

e Typically, only high values are considered significant

Definition

A string S matches a weighed string X if P(S, X) > % for a given
threshold 1. By M (X) we denote the set of all strings that
match X for threshold z.

| A

Fact 1
M (X)| < z.

Pattern Matching on Weighted Strings 7/41

Threshold

@ Score function and probability distribution are defined on all
solid strings of matching length

e Typically, only high values are considered significant

Definition

A string S matches a weighed string X if P(S, X) > % for a given
threshold 1. By M (X) we denote the set of all strings that
match X for threshold z.

Fact 1
M (X)| < z.

Proof. For every S € M (X), we have P(S, X) > % Moreover,
> semyx) P(S: X) < L.

| A

Pattern Matching on Weighted Strings 7/41

Threshold

@ Score function and probability distribution are defined on all
solid strings of matching length

e Typically, only high values are considered significant

Definition

A string S matches a weighed string X if P(S, X) > % for a given
threshold 1. By M (X) we denote the set of all strings that
match X for threshold z.

Fact 1
M (X)| < z.

Proof. For every S € M (X), we have P(S, X) > % Moreover,
> semyx) P(S: X) < L.

| A

@ z can be used as a parameter for designing algorithms

Pattern Matching on Weighted Strings 7/41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 7/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
% — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

Bl AW
—

Bl Bl

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

\'
o)
Slw
o)
IR NI
=

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

[ary

o
Blw
o
o
o
IR NI

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
% — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

Bl AW
—_

Bl B=

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

a i aj a1
T % b0 bl 0
P a a b %Z%YES

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

~
(W)
Bl B=
(Y
NI=
=

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
% — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

Bl AW
—_

Bl B=

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

al a1 a1
T % bo bl bl
P a a b
z=28

Pattern Matching on Weighted Strings 8/41

Weighted Pattern Matching

Input
e T — weighted string text of length n (T[0, n — 1]), represented
as an n x ¢ array
P — string pattern of length m (P[0, m — 1])
1 — threshold probability
> — integer alphabet of size o
Model: probabilities can be multiplied in O(1) time

Output
All positions i in T where P(P, T[i,i+m—1]) > 1

~
(W)
ENTN T
—
o
ENP
o
NI=
o
=

P a a b 0<%NO

Pattern Matching on Weighted Strings 8/41

Solutions to WPM

O(nm) time naive solution
O(onlog m) time o times FFT [CIMT’04]
O(nlog z) time lookahead scoring [Kociumaka-Pissis-R'16]
and k-Mismatch

Pattern Matching on Weighted Strings 9/41

Solutions to WPM

O(nm) time naive solution
O(onlog m) time o times FFT [CIMT’04]
O(nlog z) time lookahead scoring [Kociumaka-Pissis-R'16]
and k-Mismatch

Pattern Matching on Weighted Strings 9/41

WPM via Lookahead Scoring

1 3 1

7 al a z > 1
X 3 1 1

3 1 1 0

7 2 2

Pattern Matching on Weighted Strings 10/41

WPM via Lookahead Scoring
ai (D @D @D
X 1
b

b 0 b 2 b 0

heavy string X b a a a a

Pattern Matching on Weighted Strings 10/41

WPM via Lookahead Scoring
ai (D @D @D
X 1
b

b 0 b 2 b 0

heavy string X b a a a a

e dy(S, T) — Hamming distance between strings S and T
(the number of mismatches between S and T)

If S € M,(X) for string S and weighted string X and X is a heavy
string of X, then dy(S, X) < log, z.

Pattern Matching on Weighted Strings 10/41

WPM via Lookahead Scoring
ai (D @D @D
X 1
b

b 0 b 2 b 0

heavy string X b a a a a

e dy(S, T) — Hamming distance between strings S and T
(the number of mismatches between S and T)

If S € M,(X) for string S and weighted string X and X is a heavy
string of X, then dy(S, X) < log, z.

Proof. At each mismatch position between S and X, the
probability of the letter of S in X is < 0.5.

Pattern Matching on Weighted Strings 10/41

WPM via Lookahead Scoring
ai (D @D @D
X 1
b

b 0 b 2 b 0

heavy string X b a a a a

e dy(S, T) — Hamming distance between strings S and T
(the number of mismatches between S and T)

If S € M,(X) for string S and weighted string X and X is a heavy
string of X, then dy(S, X) < log, z.

Proof. At each mismatch position between S and X, the
probability of the letter of S in X is < 0.5.

@ The heavy string method is also known as lookahead scoring

Pattern Matching on Weighted Strings 10/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

Pattern Matching on Weighted Strings 11/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:

© Construct a data structure for answering Icp-queries for T#P
(O(n + m) time via SA and RMQ)

@ For every position / in T, ask at most k + 1 /cp-queries:

| i T 4 P

Pattern Matching on Weighted Strings

11/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:

© Construct a data structure for answering Icp-queries for T#P
(O(n + m) time via SA and RMQ)

@ For every position / in T, ask at most k + 1 /cp-queries:
T 4 P

I
* *

— Xk ¥

Pattern Matching on Weighted Strings 11/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:

© Construct a data structure for answering Icp-queries for T#P
(O(n + m) time via SA and RMQ)

@ For every position / in T, ask at most k + 1 /cp-queries:
T 4 P

I
* *

— »Xk_ ¥k — X %k

Pattern Matching on Weighted Strings 11/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:

© Construct a data structure for answering Icp-queries for T#P
(O(n + m) time via SA and RMQ)

@ For every position / in T, ask at most k + 1 /cp-queries:

| i T 4 P

Sk ok

>k 5%k

Pattern Matching on Weighted Strings

11/41

WPM via Lookahead Scoring

k-Mismatch Problem

For two strings P and T, find all positions where P matches T
with at most k mismatches (and recover the mismatches).

k-Mismatch can be solved in O(nk) time using kangaroo jumps:

© Construct a data structure for answering Icp-queries for T#P
(O(n + m) time via SA and RMQ)

@ For every position / in T, ask at most k + 1 /cp-queries:
T 4 P

I
* *

>k 5k > NG G >

Break after reaching the end of the string or after the
(k 4+ 1)th mismatch

Pattern Matching on Weighted Strings 11/41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

2}
T bO bl bl Dbo

heavy string T b a a a a

2

z=28

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

2}
T bO bl bl Dbo

heavy string T b a a a a

2

z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

a; G0 @D @D @D
' b

b 0 b 2 b 0
heavy string T b a a %
z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

a; G0 @D @D @D
' b

b 0 b 2 b 0
heavy string T b a a %
IS I T
z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:

@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

2

heavy string b a a %
IS I T L 1
z=28 a a b 75 < 7 NO

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

a; G0 @D @D @D
' b

b 0 b 2 b 0
heavy string T b a a %
z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

a; GD GEGD @D @D
7 vl

b o0 b 0
heavy string T a a a %
z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

a; GD GEGD @D @D
7 vl

b o0 b 0
heavy string T a a a %
I I St
z=28 a a b

Pattern Matching on Weighted Strings 12 /41

WPM via Lookahead Scoring

@ Compute a:= P(T[0, m — 1], T[0, m — 1])
Q k:=log,z
© For every position / := 0 to n — m do:
@ If T[i,i+ m — 1] and P have at most k mismatches, let A be
the set of their positions:
0 o =a
@ Forevery j € A,
o =o' - P(T[i +j], T[i + 1)/P(PU], T[i + 1)
O Ifa > % return a match at position i

@ a:=a -P(T[i+m],T[i+m])/P(T[i], T[i])

2 GO GD @D @D
T bO bt (1 bo

heavy string T a a a %
I I th 31
z=28 a a b 5> 3 YES

Pattern Matching on Weighted Strings 12 /41

Application: Profile Matching

Input
@ T — string text of length n
@ P — pattern being an m x ¢ profile
@ Z — threshold
@ o — alphabet size

Output
All positions i in T where T[i,i + m — 1] matches P with score at

least Z

Pattern Matching on Weighted Strings 13 /41

Application: Profile Matching

Input
@ T — string text of length n
@ P — pattern being an m x ¢ profile
@ Z — threshold
@ o — alphabet size

Output
All positions i in T where T[i,i + m — 1] matches P with score at
least Z
O(nm) time naive solution with see [Pizzi-Ukkonen'08]
heuristics
O(onlog m) time o times FFT [Rajasekaran-Jin-Spouge’'02]

O(nlog|Mz(P)|) time lookahead scoring [Kociumaka-Pissis-R'16]
and k-Mismatch

Pattern Matching on Weighted Strings 13 /41

Application: Profile Matching

Input
@ T — string text of length n
@ P — pattern being an m x ¢ profile
@ Z — threshold
@ o — alphabet size

Output
All positions i in T where T[i,i + m — 1] matches P with score at
least Z
O(nm) time naive solution with see [Pizzi-Ukkonen'08]
heuristics
O(onlog m) time o times FFT [Rajasekaran-Jin-Spouge'02]

O(nlog |Mz(P)|) time lookahead scoring [Kociumaka-Pissis-R’16]
and k-Mismatch

Pattern Matching on Weighted Strings 13 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

Pattern Matching on Weighted Strings 14 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

@ Obviously, [Mz(P)| < o™,
O(nlog |[Mz(P)|) = (’)(nmlog o)

Pattern Matching on Weighted Strings 14 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

e Obviously, IMz(P)| < o™, i.e.
O(nlog|Mz(P)|) = O(nmlog o)

@ However, in practice it is expected to be much smaller

Pattern Matching on Weighted Strings 14 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

e Obviously, IMz(P)| < o™, i.e.
O(nlog|Mz(P)|) = O(nmlog o)

@ However, in practice it is expected to be much smaller

If a string S matches a profile P with score at least Z and
dn(S,P) = k, then [Mz(P)| > 2*.

Pattern Matching on Weighted Strings 14 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

e Obviously, IMz(P)| < o™, i.e.
O(nlog|Mz(P)|) = O(nmlog o)

@ However, in practice it is expected to be much smaller

If a string S matches a profile P with score at least Z and
dn(S,P) = k, then [Mz(P)| > 2*.

Hence, k < log | Mz(P)|.

Pattern Matching on Weighted Strings 14 /41

Application: Profile Matching

@ Mz(P) — the set of strings that match the profile P with
score above Z

e Obviously, IMz(P)| < o™, i.e.
O(nlog|Mz(P)|) = O(nmlog o)

@ However, in practice it is expected to be much smaller

If a string S matches a profile P with score at least Z and
dn(S,P) = k, then [Mz(P)| > 2*.

Hence, k < log | Mz(P)|.

Lookahead scoring:
@ Matching heavy string P in the text T allowing mismatches —
kangaroo jumps
@ Start at next position if the score drops below Z

Pattern Matching on Weighted Strings 14 /41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 14 /41

Three variants of WPM

Input: T — weighted string text, P — string pattern
Output:
All positions i in T where P(P, T[i,i+m—1]) > 1

Input: T — string text, P — weighted string pattern
Output:
All positions i in T where P(T[i,i+m—1],P) > %

WPWT (General WPM)

Input: T — weighted string text, P — weighted string pattern
Output:

All positions i in T for which there exists a string S such that
P(S,P)>Land P(S, T[i,i+ m—1]) > 1

Pattern Matching on Weighted Strings 15 /41

Three variants of WPM

Input: T — weighted string text, P — string pattern
Output:
All positions i in T where P(P, T[i,i+m—1]) > 1

Input: T — string text, P — weighted string pattern
Output:
All positions i in T where P(T[i,i+m—1],P) > %

Off-line solutions for WPST and SPWT are the same
WPWT (General WPM)

Input: T — weighted string text, P — weighted string pattern
Output:

All positions i in T for which there exists a string S such that
P(S,P) > % and P(S, T[i,i+m—1]) > %

Pattern Matching on Weighted Strings 15 /41

General WPM

1 41 1
T2l GDGED
7 1 18
8 2 bz b 3
4 2 =
P 1 32
ol G

z=28

Pattern Matching on Weighted Strings 16 /41

General WPM

a3} @D @GO a0 @D a
b% bo (b1 bi b

P ai G0 @D a3 @D s
bOb%bo .

z=28

T 5

@I~ ol
NI= NI

@)\ — the maximum number of letters with probability >
one position (A < min(z,0))

at

N [—=

O(nz?log z) time [Barton-Liu-Pissis’15]
O(nvzA(loglogz + log \)) time [Kociumaka-Pissis-R'16]

Pattern Matching on Weighted Strings 16 /41

General WPM

®D v: b0 GO v b
T GD b0 v: GO b ”

z=28

T 5

@I~ ol
NI= NI

N [—=

@ A — the maximum number of letters with probability > = at

one position (A < min(z,0))

O(nz?log z) time [Barton-Liu-Pissis’15]
O(nvzA(loglogz + log \)) time [Kociumaka-Pissis-R'16]
O(ny/zlog? z) time for o = O(1) this presentation

Pattern Matching on Weighted Strings 16 /41

Weighted Consensus

o Weighted Consensus Problem (WCP): n=m

@ General WPM reduces to n — m + 1 instances of WCP of size
m

Pattern Matching on Weighted Strings 17 /41

Weighted Consensus

o Weighted Consensus Problem (WCP): n=m

@ General WPM reduces to n — m + 1 instances of WCP of size
m

Fact 3 (from Fact 2)

If M,(X)NM(Y) # D for weighted strings X, Y and X, Y are
heavy strings of X and Y/, resp., then dy(X,Y) < 2log, z.

Pattern Matching on Weighted Strings 17 /41

Weighted Consensus

o Weighted Consensus Problem (WCP): n=m

@ General WPM reduces to n — m + 1 instances of WCP of size
m

Fact 3 (from Fact 2)
If M,(X)NM(Y) # D for weighted strings X, Y and X, Y are
heavy strings of X and Y/, resp., then dy(X,Y) < 2log, z.

Proof. If S € M (X) N M_,(Y), then
dH(S7X)7 dH(S7Y) < |0g22.

Pattern Matching on Weighted Strings 17 /41

Weighted Consensus

o Weighted Consensus Problem (WCP): n=m

@ General WPM reduces to n — m + 1 instances of WCP of size
m

Fact 3 (from Fact 2)

If M,(X)NM(Y) # D for weighted strings X, Y and X, Y are
heavy strings of X and Y/, resp., then dy(X,Y) < 2log, z.
Proof. If S € M (X) N M_,(Y), then

dH(S7X)7 dH(S7Y) < |0g2 Z.

Moreover, there is a string S € M,(X) N M,(Y) such that
S[i] = X[i] = Y[i] unless X[i] # Y[i].

Pattern Matching on Weighted Strings 17 /41

Weighted Consensus

o Weighted Consensus Problem (WCP): n=m

@ General WPM reduces to n — m + 1 instances of WCP of size
m

Fact 3 (from Fact 2)

If M,(X)NM(Y) # D for weighted strings X, Y and X, Y are
heavy strings of X and Y/, resp., then dy(X,Y) < 2log, z.
Proof. If S € M (X) N M,(Y), then

dH(S7X)7 dH(S7Y) < |0g2 Z.

Moreover, there is a string S € M,(X) N M,(Y) such that
S[i] = X[i] = Y[i] unless X[i] # Y[i].

@ Using k-Mismatch for k = 2log, z, in O(nlog z) time General
WPM reduces to n — m + 1 instances of WCP of size O(log z)

Pattern Matching on Weighted Strings 17 /41

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

z

5

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

v
-

Y

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

Y

H
D

v
N

Y

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4
If S € M,(X) for a string S and weighted sequence X of length n,

1
z

5

then there exists a position / such that
P(S[()?’_ 1]aX[0>l_ 1])7 P(S[’+ 17 n— 1]7X[’+ 1?n_ 1]) >

Proof.
< i
> L > L
> -
S
X

Pattern Matching on Weighted Strings

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

v
-

Y

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

v
-

Y

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Fact 4
If S € M,(X) for a string S and weighted sequence X of length n,

1
z

5

then there exists a position / such that
P(S[()?’_ 1]aX[0>l_ 1])7 P(S[’+ 17 n— 1]7X[’+ 1?n_ 1]) >

Proof.
< i
> L > L
> -
S
X

Pattern Matching on Weighted Strings

Weighted Consensus

Fact 4

If S € M,(X) for a string S and weighted sequence X of length n,
then there exists a position / such that
P(S[0,i — 1], X[0,i —1]), P(S[i +1,n— 1], X[i + 1,n —1]) > =

Proof.

5

vV
s
Y

N
v

-

Y
A

X

e By Fact 1,

M z(X)| < /z for a weighted sequence X

Pattern Matching on Weighted Strings 18 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)

Pattern Matching on Weighted Strings 19 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)

Q Foreveryi=0,...,n—1:
© try to join every U € M ;(T[0,i — 1]) and
VeM (T[i+1,n—1]) with a letter c € ¥ at position i:

Pattern Matching on Weighted Strings 19 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)
Q Foreveryi=0,...,n—1:
© try to join every U € M ;(T[0,i — 1]) and
VeM (T[i+1,n—1]) with a letter c € ¥ at position i:

e P(Uc, P[0, i]),P(Uc, T[0,i]) > 1
o P(V,Pli,n—1])>1

Pattern Matching on Weighted Strings 19 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)
Q Foreveryi=0,...,n—1:
© try to join every U € M ;(T[0,i — 1]) and
VeM (T[i+1,n—1]) with a letter c € ¥ at position i:

e P(Uc, P[0, i]),P(Uc, T[0,i]) > 1
o P(V,Pli,n—1])>1

@ Auxiliary problem: Given two sets P, Q of 2D points, find
(x1,y1) € P and (x2,y2) € Q such that xyxp, y1y» > 1

Pattern Matching on Weighted Strings 19 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)
Q Foreveryi=0,...,n—1:
© try to join every U € M ;(T[0,i — 1]) and
VeM (T[i+1,n—1]) with a letter c € ¥ at position i:

e P(Uc, P[0, i]),P(Uc, T[0,i]) > 1
o P(V,Pli,n—1])>1

@ Auxiliary problem: Given two sets P, Q of 2D points, find
(x1,y1) € P and (x2,y2) € Q such that xyxp, y1y» > 1

© Line sweep in O(|P] + |Q]) time.

Pattern Matching on Weighted Strings 19 /41

Weighted Consensus

Meet-in-the-middle:
Q Fori=0,...,n—1in order, compute M_(TI0,])
@ Fori=n,...,0in order, compute M (T[i,n—1])
Q // O(\/zlog? z) time since n = O(log z)
Q Foreveryi=0,...,n—1:
© try to join every U € M ;(T[0,i — 1]) and
VeM (T[i+1,n—1]) with a letter c € ¥ at position i:

e P(Uc, P[0, i]),P(Uc, T[0,i]) > 1
o P(V,Pli,n—1])>1

@ Auxiliary problem: Given two sets P, Q of 2D points, find
(x1,y1) € P and (x2,y2) € Q such that x1x2, y1y2 > %
© Line sweep in O(|P] + |Q]) time.

In total: O(y/zlog? z) time.

Pattern Matching on Weighted Strings 19 /41

General WPM and WCP

O(nz2 log z) time [Barton-Liu-Pissis'15]
O(nvzA(loglog z + log \)) time [Kociumaka-Pissis-R'16]
O(ny/zlog? z) time for o = O(1) this presentation

1O* and O suppress polynomial and polylog factors with respect to the

instance size, resp.
Pattern Matching on Weighted Strings 20 /41

General WPM and WCP

O(nz2 log z) time [Barton-Liu-Pissis'15]
O(nvzA(loglog z + log \)) time [Kociumaka-Pissis-R'16]
O(ny/zlog? z) time for o = O(1) this presentation

Lower bounds!; see [Kociumaka-Pissis-R'16]:
no O*(z%) time for every € > 0 unless the Exponential Time
Hypothesis fails
no O*(z%°7¢) time for some unless a better algorithm for
e>0 Subset Sum
no O(z%°\%-57¢) time for some unless 3-Sum conjecture fails
e>0and n=0(1)

1O* and & suppress polynomial and polylog factors with respect to the

instance size, resp.

Pattern Matching on Weighted Strings 20 /41

Subset Sum and 3-Sum

Problem definitions:

@ Subset Sum
Input: a set A of n integers
Output: a subset B C A summing up to a given integer q, if
any

@ 3-Sum
Input: three sets A, B, C of X integers each
Output: are there elements a € A, b € B, ¢ € C such that
at+b+c=07?

Pattern Matching on Weighted Strings 21/41

Subset Sum and 3-Sum

Problem definitions:

@ Subset Sum
Input: a set A of n integers
Output: a subset B C A summing up to a given integer q, if
any
@ 3-Sum
Input: three sets A, B, C of X integers each
Output: are there elements a € A, b € B, ¢ € C such that
at+b+c=07?
Both problems are special cases of Multichoice Knapsack (MK).
We show a bidirectional reduction from MK to WCP.

Pattern Matching on Weighted Strings 21/41

Subset Sum and 3-Sum

Problem definitions:
@ Subset Sum
Input: a set A of n integers
Output: a subset B C A summing up to a given integer q, if
any
@ 3-Sum
Input: three sets A, B, C of X integers each
Output: are there elements a € A, b € B, ¢ € C such that
at+b+c=07?
Both problems are special cases of Multichoice Knapsack (MK).
We show a bidirectional reduction from MK to WCP.

Conditional hardness:
e No O(2%57=¢)-time solution for Subset Sum is known (¢ > 0)

e No O(\?7¢)-time solution for 3-Sum is known for ¢ > 0
(3-Sum conjecture)

Pattern Matching on Weighted Strings 21/41

Efficient Average-Case Algorithms for WPM

problem | preprocessing | avg search time

WPST O(mo) o(n) for small | [Barton-Liu-Pissis'18]
enough z/m

SPWT O(m) O(nﬂ%) [Barton-Liu-Pissis'16]

WPWT O(mz) O(m%) [Barton-Liu-Pissis'16]

Pattern Matching on Weighted Strings 22 /41

Efficient Average-Case Algorithms for WPM

problem | preprocessing | avg search time

WPST O(mo) o(n) for small | [Barton-Liu-Pissis'18]
enough z/m

SPWT O(m) O(nﬂ%) [Barton-Liu-Pissis'16]

WPWT O(mz) O(m%) [Barton-Liu-Pissis'16]

Implementations provided

Pattern Matching on Weighted Strings

22 /41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 22 /41

Weighted Indexing

Input
@ T — weighted string text of length n
° % — threshold probability
@ 0 = O(1) — alphabet size (this presentation)

Query
@ Input: P — string pattern of length m
@ Output: Occ,(P, T) — the set of occurrences of P in T

Pattern Matching on Weighted Strings 23 /41

Weighted Indexing

Input
@ T — weighted string text of length n
° % — threshold probability
@ 0 = O(1) — alphabet size (this presentation)

Query
@ Input: P — string pattern of length m
@ Output: Occ,(P, T) — the set of occurrences of P in T

space construction
O(nf(z)) O(nf(z)) [IMPPTT06]
O(nz?log z) | O(nz?log z(log log z + loglog n)) | [ACIKZ'06]
O(nz%log z) O(nz°log 2) [lliopoulos-
Rahman’08], [Juan-
Liu-Wang'09]
O(nz) O(nz) [BKLPR'16]
Query time: O(m + |Occ,(P, T)|)
23 /41

Pattern Matching on Weighted Strings

Weighted Indexing

Input
@ T — weighted string text of length n
° % — threshold probability
@ 0 = O(1) — alphabet size (this presentation)

Query
@ Input: P — string pattern of length m
@ Output: Occ,(P, T) — the set of occurrences of P in T

space construction
O(nf(z)) O(nf(z)) [IMPPTT06]
O(nz?log z) | O(nz?log z(log log z + loglog n)) | [ACIKZ'06]
O(nz%log z) O(nz°log 2) [lliopoulos-
Rahman’08], [Juan-
Liu-Wang'09]
O(nz) O(nz) [BKLPR'16]
Query time: O(m + |Occ,(P, T)|)
23 /41

Pattern Matching on Weighted Strings

Weighted Indexing

Definition
A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb
Pattern P = ab

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb
Pattern P = ab

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb
Pattern P = ab

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb

Pattern P = abaab

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Definition

A property I is a hereditary collection of integer intervals
contained in {0,...,n—1}.

It is represented as an array 7 such that the longest interval
starting at position /i in I is [i, 7[{]].

For strings P, S and property 7, by Occ,(P,S) we denote the set
of occurrences i of P in S such that i + |P| — 1 < «[i].

a b aabb

Pattern P = abaab

Pattern Matching on Weighted Strings 24 /41

Weighted Indexing

Idea: construct a special family of |z| strings with properties that
are “equivalent” to the weighted sequence

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Idea: construct a special family of |z| strings with properties that
are “equivalent” to the weighted sequence

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;,7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occ,(P,X) <« i€ Occr(P,S;) for some ;.

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of |z] strings of
length n with properties such that, for a string P and position i,

i € Occ,(P,X) <« i€ Occr(P,S;) for some j.

a1 a3 a? af al ai

b0 bi bl bl bl Db _—
a b bbbb

a b aabb a a a a a a a aaaayb

z=4

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;,7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occ,(P,X) <« i€ Occr(P,S;) for some j.

a1 a3 a3l af al aj;

b0 bi bl bl bl Db _—
a b bbbb

a b aabb a a a a a a a aaaayb

z=4, P =aab

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occz(P,X) <« i€ Occr(P,S;) for some j.

a1 ai a? a? al al

b0 bi bl bl - _—
a b bbbb

a b aabb a a a a a a a aaaayb

z=4, P=aab, i =2, prob=10.3

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occz(P,X) <« i€ Occr(P,S;) for some j.

a1 ai a3 a?! al al

b0 bi bl bl bl b _—
a b bbbb

a b aabb a a a a a a a aa a ab

z=4, P=aab, i =3, prob=10.3

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occz(P,X) <« i€ Occr(P,S;) for some j.

a1 a3 al af al aji

b0 bi bl bl bl Db _—
a bbb bbb

a b aabb a a a a a a a aaaayb

z=4,P=ab,i=0, prob=05

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occz(P,X) <« i€ Occr(P,S;) for some j.

a1 ai a3 a?! al al

b0 bi bl bl - _—
a b bbbb

a b aabb a a a a a a a aaaayb

z=4, P=ab,i=3, prob=0.4

Pattern Matching on Weighted Strings 25 /41

Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

i € Occz(P,X) <« i€ Occr(P,S;) for some j.

a1 a3 a? af al ai

b0 bi bl bl bl b _—
a b bbbb

a b aabb a a a a a a a a aaab

z=4, P=ab,i =4, prob=0.375

Pattern Matching on Weighted Strings 25 /41

Property Indexing

Input:
@ S — string of length n
@ T — property
@ 0 = O(1) — alphabet size (this presentation)

Query:
@ Input: P — string pattern of length m
@ Output: Occr(P,S)

Pattern Matching on Weighted Strings 26 /41

Property Indexing

Input:
@ S — string of length n
@ T — property
@ 0 = O(1) — alphabet size (this presentation)

Query:
@ Input: P — string pattern of length m
@ Output: Occr(P,S)

space | construction
O(n) | O(nloglogn) | [ACIKZ'06]

O(n) O(n) [lliopoulos-Rahman’'08],
[Juan-Liu-Wang’'09]

Query time: O(m + |Occr(P, S)|)

Pattern Matching on Weighted Strings 26 /41

Property Indexing

Input:
@ S — string of length n
@ T — property
@ 0 = O(1) — alphabet size (this presentation)

Query:
@ Input: P — string pattern of length m
@ Output: Occr(P,S)

space | construction
O(n) | O(nloglogn) | [ACIKZ'06]

O(n) O(n) [lliopoulos-Rahman’'08],
[Juan-Liu-Wang’'09]

Query time: O(m + |Occr(P, S)|)

@ In [BKLPR'16]: a simpler construction based on Ukkonen's

algorithm
Pattern Matching on Weighted Strings 26 /41

Weighted Indexing

@ Construct a special family S of strings with properties
(O(nz) time)
@ Concatenate the strings from S into a string S with property 7

© Construct a data structure for Property Indexing
(O(nz) time and space, O(m + |Occ(P, S)|) queries)

Pattern Matching on Weighted Strings 27 /41

Weighted Indexing

@ Construct a special family S of strings with properties
(O(nz) time)
@ Concatenate the strings from S into a string S with property 7

© Construct a data structure for Property Indexing
(O(nz) time and space, O(m + |Occ(P, S)|) queries)

Problem: If a pattern P occurs at position / in several strings from

S, then position i will be reported multiple times
(i.e., |Occr(P,S)| > |Occ (P, T)|)

Pattern Matching on Weighted Strings 27 /41

Weighted Indexing

@ Construct a special family S of strings with properties
(O(nz) time)
@ Concatenate the strings from S into a string S with property 7

© Construct a data structure for Property Indexing
(O(nz) time and space, O(m + |Occ(P, S)|) queries)

Problem: If a pattern P occurs at position / in several strings from
S, then position i will be reported multiple times
(i.e., |Occr(P,S)| > |Occ (P, T)|)

Solution: Use colored range listing of [Muthukrishnan'02].

Pattern Matching on Weighted Strings 27 /41

Weighted Indexing

@ Construct a special family S of strings with properties
(O(nz) time)
@ Concatenate the strings from S into a string S with property 7

© Construct a data structure for Property Indexing
(O(nz) time and space, O(m + |Occ(P, S)|) queries)

Problem: If a pattern P occurs at position / in several strings from
S, then position i will be reported multiple times
(i.e., |Occr(P,S)| > |Occ (P, T)|)

Solution: Use colored range listing of [Muthukrishnan'02].

@ The index answers decision and counting queries in O(1) time
(for counting, we use the Color Set Size problem of [Hui'92])

Pattern Matching on Weighted Strings 27 /41

Weighted Indexing

@ Construct a special family S of strings with properties
(O(nz) time)
@ Concatenate the strings from S into a string S with property 7

© Construct a data structure for Property Indexing
(O(nz) time and space, O(m + |Occ(P, S)|) queries)

Problem: If a pattern P occurs at position / in several strings from
S, then position i will be reported multiple times
(i.e., |Occr(P,S)| > |Occ (P, T)|)

Solution: Use colored range listing of [Muthukrishnan'02].

@ The index answers decision and counting queries in O(1) time
(for counting, we use the Color Set Size problem of [Hui'92])

@ And we provide its implementation

Pattern Matching on Weighted Strings 27 /41

Approximate and Generalized Weighted Indexing

Approximate Weighted Indexing

Input

@ T — weighted string text of length n
@ ¢ > 0 — allowed error

@ z — maximum threshold probability (optional)

Query
@ Input: P — string pattern of length m, z/ < z — threshold
probability

@ Output: Occ — the set of occurrences of P in T with probab.
> % allowing occurrences with probab. > % — &

Pattern Matching on Weighted Strings 28 /41

Approximate and Generalized Weighted Indexing

Approximate Weighted Indexing

Input

@ T — weighted string text of length n
@ ¢ > 0 — allowed error

@ z — maximum threshold probability (optional)

Query
@ Input: P — string pattern of length m, z/ < z — threshold
probability

@ Output: Occ — the set of occurrences of P in T with probab.
> % allowing occurrences with probab. > % — &

space | construction query
0(2z2) | Q(in*z%) | O(m+|Occ|) | [BPTS'16]

£

o(2) O(Zlog2) | O(m+ |Occ|) | [BKLPR'16]

€

Pattern Matching on Weighted Strings 28 /41

Approximate and Generalized Weighted Indexing

Generalized Weighted Indexing

Input

@ T — weighted string text of length n

@ z — maximum threshold probability

Query
@ Input: P — string pattern of length m, z/ < z — threshold
probability

@ Output: Occ — the set Occ,/(P, T)

Pattern Matching on Weighted Strings 29 /41

Approximate and Generalized Weighted Indexing

Generalized Weighted Indexing

Input

@ T — weighted string text of length n

@ z — maximum threshold probability

Query
@ Input: P — string pattern of length m, z/ < z — threshold
probability

@ Output: Occ — the set Occ,/(P, T)

space query
O(2z%logz) | O(m+ m|Occl) | [BPTS'16]
o) O(m+ m|Occ|) | [BKLPR'16]

Pattern Matching on Weighted Strings 29 /41

Approximate and Generalized Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S5;, 7j) of | z] strings of
length n with properties such that, for a string P and position i,

| zP(P, T[i,i+m—1])| = |{j : i € Occ(P,Sj)}|.

Pattern Matching on Weighted Strings 30/41

Approximate and Generalized Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S;, 7;) of |z] strings of
length n with properties such that, for a string P and position i,

| zP(P, Tli,i+m—1])| = |{j : i€ Occ(P,S)}|.

a1 ai a? at al al

b0 bi bl bl bl Db -
abbbbb

a b aabb a aaa a a a aaaapb

z=4

Pattern Matching on Weighted Strings 30/41

Approximate and Generalized Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S, 7j) of |z] strings of
length n with properties such that, for a string P and position i,

| zP(P, T[i,i+ m—1])] = |{j : i € Occx(P,Sj)}|.

a1 ai a? af al al

bo bl bl bl Bl B3 -
a bbbbb

a b aabbd a a a a a a a aaaapb

z=4, P=a,i=0,prob=1

Pattern Matching on Weighted Strings 30/41

Approximate and Generalized Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S, 7j) of |z] strings of
length n with properties such that, for a string P and position i,

| zP(P, T[i,i+ m—1])] = |{j : i € Occx(P,Sj)}|.

a1 ai a? af al al

bo b: bl bl bl B -
a b bbbb

a b aabb a a a a a a a aaaapb

z=4, P=ab,i=0, prob=0.5

Pattern Matching on Weighted Strings 30/41

Approximate and Generalized Weighted Indexing

Fact 5
Input: a weighted sequence X of length n and a threshold z

Output: one can construct a family S = (S, 7j) of |z] strings of
length n with properties such that, for a string P and position i,

| zP(P, T[i,i+ m—1])] = |{j : i € Occx(P,Sj)}|.

a1 ai a? af al al

bo b: bl bl bl B -
abbbbb

a b aabb a a a a a a a aaaapb

z=4, P=aba, i=0, prob=10.375

Pattern Matching on Weighted Strings 30/41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 30/41

On-line WPM

Input:
@ a pattern P of length m

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Pattern Matching on Weighted Strings 31/41

On-line WPM

Input:
@ a pattern P of length m

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Objective:
@ minimize time of processing a text position

@ minimize working space

Pattern Matching on Weighted Strings 31/41

On-line WPM

Input:
@ a pattern P of length m

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Objective:
@ minimize time of processing a text position

@ minimize working space

e We consider WPST, SPWT, WPWT

Pattern Matching on Weighted Strings 31/41

On-line WPM

Input:
@ a pattern P of length m

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Objective:
@ minimize time of processing a text position

@ minimize working space

o We consider WPST, SPWT, WPWT

@ All the previous algorithms were not on-line
(FFT,; suffix array of T$P; meet-in-the-middle)

Pattern Matching on Weighted Strings 31/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Space to store a weighted string of length m: O(mmin(o, z))

problem time/position space
WPST O(o log® m) pattern | FFT+Scheme
WPST O(log zlog m) pattern | Lookahead+Scheme

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Space to store a weighted string of length m: O(mmin(o, z))

problem time/position space
WPST O(o log® m) pattern | FFT+4Scheme
WPST O(log zlog m) pattern | Lookahead+Scheme
WPST O(o log® m) O(m+ z) | [CIPR'19]
WPST O(log zlog m) O(m+ z) | [CIPR'19]

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Space to store a weighted string of length m: O(mmin(o, z))

problem time/position space
WPST O(o log® m) pattern | FFT+4Scheme
WPST O(log zlog m) pattern | Lookahead+Scheme
WPST O(o log® m) O(m+ z) | [CIPR'19]
WPST O(log zlog m) O(m+ z) | [CIPR'19]
SPWT O(o log® m) text frag. | FFT+Scheme
SPWT | O((o + logz) log m) | text frag. | Lookahead+Scheme

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Space to store a weighted string of length m: O(mmin(o, z))

problem time/position space

WPST O(o log® m) pattern | FFT+4Scheme
WPST O(log zlog m) pattern | Lookahead+Scheme
WPST O(o log® m) O(m+ z) | [CIPR'19]

WPST O(log zlog m) O(m+ z) | [CIPR'19]

SPWT O(o log® m) text frag. | FFT+Scheme
SPWT | O((o + logz) log m) | text frag. | Lookahead+Scheme
SPWT O(z+ o) O(m+ z) | [CIPR'19]

Pattern Matching on Weighted Strings 32/41

On-line WPM

Black-box scheme [Clifford-Efremenko-Porat-Porat'08]

Pattern matching off-line — on-line

Off-line: T(n, m) total time and S(n, m) space
On-line: %T(n, m) log m time per position and S(m, m) space

Space to store a weighted string of length m: O(mmin(o, z))

problem time/position space

WPST O(o log® m) pattern | FFT+4Scheme
WPST O(log zlog m) pattern | Lookahead+Scheme
WPST O(o log® m) O(m+ z) | [CIPR'19]

WPST O(log zlog m) O(m+ z) | [CIPR'19]

SPWT O(o log® m) text frag. | FFT+Scheme
SPWT | O((o + logz) log m) | text frag. | Lookahead+Scheme
SPWT O(z+ o) O(m+ z) | [CIPR'19]

WPWT O(z+ o) O(mz?) | [CIPR'19]

Pattern Matching on Weighted Strings 32/41

Streaming WPM

Input:
@ a pattern P of length m, read position by position

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Pattern Matching on Weighted Strings 33 /41

Streaming WPM

Input:
@ a pattern P of length m, read position by position

Output:
o after T[i] has been read, say if P matches T[i — m+1,1]

Objective:
@ sublinear working space (store neither the pattern nor the text)
@ often at the cost of randomization
@ minimize time of processing a text position

Pattern Matching on Weighted Strings 33 /41

Streaming WPM

Input:
@ a pattern P of length m, read position by position

Output:
e after T[i] has been read, say if P matches T[i — m+ 1,]

Objective:
@ sublinear working space (store neither the pattern nor the text)
@ often at the cost of randomization
@ minimize time of processing a text position

Streaming pattern matching on strings

First read the pattern, then read the text reporting the occurrences

Pattern Matching on Weighted Strings 33 /41

Streaming WPM

Input:
@ a pattern P of length m, read position by position

Output:
o after T[i] has been read, say if P matches T[i — m+1,1]

Objective:
@ sublinear working space (store neither the pattern nor the text)
@ often at the cost of randomization
@ minimize time of processing a text position

Streaming pattern matching on strings

First read the pattern, then read the text reporting the occurrences

space | time/position
O(log m) | O(log m) whp. | [Porat-Porat'09]
O(log m) O(1) whp. [Breslauer-Galil'11]

Pattern Matching on Weighted Strings 33/41

Streaming WPM

@ In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log, z mismatches

Pattern Matching on Weighted Strings 34 /41

Streaming WPM

@ In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log, z mismatches

Streaming k-Mismatch on strings

“Error Correcting” (EC): Reports the positions of mismatches and
differences of letters at these positions

Pattern Matching on Weighted Strings 34 /41

Streaming WPM

@ In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log, z mismatches

Streaming k-Mismatch on strings

“Error Correcting” (EC): Reports the positions of mismatches and
differences of letters at these positions

space | time/position | EC

@(k3) O(k?) No | [Porat-Porat'09]
O(k?) O(Vk) No | [CFPSS'16]

O(k?) O(k) Yes | [R-Starikovskaya'17]

Pattern Matching on Weighted Strings 34 /41

Streaming WPM

@ In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log, z mismatches

Streaming k-Mismatch on strings

“Error Correcting” (EC): Reports the positions of mismatches and
differences of letters at these positions

space | time/position | EC

@(k3) O(k?) No | [Porat-Porat'09]

O(k?) O(Vk) No | [CFPSS'16]

O(k?) O(k) Yes | [R-Starikovskaya'17]

O(k) O(k) Yes | [Clifford-Kociumaka-Porat'19]

Pattern Matching on Weighted Strings 34 /41

Streaming WPM

@ In the Lookahead scoring for SPWT, we considered all
occurrences of the pattern P in the heavy string T with at
most log, z mismatches

Streaming k-Mismatch on strings

“Error Correcting” (EC): Reports the positions of mismatches and
differences of letters at these positions

space | time/position | EC

@(k3) O(k?) No | [Porat-Porat'09]

O(k?) O(Vk) No | [CFPSS'16]

O(k?) O(k) Yes | [R-Starikovskaya'17]

O(k) O(k) Yes | [Clifford-Kociumaka-Porat'19]

Sk and Ty — space and time/position for streaming k-Mismatch

Pattern Matching on Weighted Strings 34 /41

Streaming WPM

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem space time/position approx
WPST O(Z + Slogz) (9(|0g22 + 7—Iogz)
SPWT l—¢

O(z log 1 z+ Siog z)

Pattern Matching on Weighted Strings

O(zlog%Z—F Tiog z)

35/41

Streaming WPM

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem space time/position approx
WPST O(Z + Slogz) (9(|0g2 z+ 7—Iogz)
SPWT O(z Iogl% zZ+ Sigz) | O(z Iogl% z+ Tgz) | L —¢

In [R-Starikovskaya'17] using Streaming MultiPattern Matching:

problem space time/position appr.
WPST O(zlog m) O(1)

SPWT O(z(logﬁz—i—logm)) O(zlogﬁ z) 1-¢
WPWT O(z(log_1_ z +log zlogm)) | O(z(log_1_ z + log zlog m)) 1—¢

Pattern Matching on Weighted Strings 35/41

Streaming WPM

In [R-Starikovskaya'17] using Streaming k-Mismatch:

problem space time/position approx
WPST O(Z + Slogz) (9(|0g22 + 7—Iogz)
SPWT O(z Iogl% zZ+ Sigz) | O(z Iogl% z+ Tgz) | L —¢

In [R-Starikovskaya'17] using Streaming MultiPattern Matching:

problem space time/position appr.
WPST O(zlog m) O(1)

SPWT O(z(logﬁz—i—logm)) O(zlogﬁ z) 1-¢
WPWT O(z(log_1_ z+logzlogm)) | O(z(log_1_ z + log zlog m)) 1—¢

Lower bound in [R-Starikovskaya'17]

Any streaming algorithm, exact or (1 —)-approximate, solving
WPST, SPWT or WPWT must use Q(z) space.

Pattern Matching on Weighted Strings 35/41

Plan of Presentation

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 35/41

Weighted LCS and SCS

Definition (z-subsequence)

For a string S, a weighted sequence W and a threshold % we write
S C, Wif P(S, W) > L for some subsequence W’ of W.

Pattern Matching on Weighted Strings 36 /41

Weighted LCS and SCS

Definition (z-subsequence)

For a string S, a weighted sequence W and a threshold % we write
S C, Wif P(S, W) > L for some subsequence W’ of W.

Weighted Longest Common Subsequence, [Amir-Gotthilf-Shalom'09]

Input

o Wi, W, — weighted strings of length n

° % — threshold probability

@ 0 = O(1) — alphabet size (this presentation)
Output

@ A longest string S such that S C, W; and S C, W,

Pattern Matching on Weighted Strings 36 /41

Weighted LCS and SCS

Definition (z-subsequence)

For a string S, a weighted sequence W and a threshold % we write
W C,Sif P(S',W) > % for some subsequence S’ of S.

Pattern Matching on Weighted Strings 37 /41

Weighted LCS and SCS

Definition (z-subsequence)

For a string S, a weighted sequence W and a threshold % we write
W C,Sif P(S',W) > % for some subsequence S’ of S.

Weighted Shortest Common Supersequence, [Amir-Gotthilf-Shalom'11]

Input
o Wi, W, — weighted strings of length n
° % — threshold probability
@ 0 = O(1) — alphabet size (this presentation)
Output
@ A shortest string S such that Wiy C, Sand W, C, S

Pattern Matching on Weighted Strings 37 /41

Weighted LCS and SCS

@ Both problems are NP-complete for o = 2; see [CKRRW'11]
and [CKPRRSWZ'19]

Pattern Matching on Weighted Strings 38 /41

Weighted LCS and SCS

@ Both problems are NP-complete for o = 2; see [CKRRW'11]
and [CKPRRSWZ'19]

Weighted SCS

Upper bound
e O(n?\/zlog z) (using Facts 1, 2, 4); see [CKPRRSWZ'19)
Lower bounds

o O(n?>¢) unless the Strong Exponential Time Hypothesis fails;
see [Abboud-Backurs-Williams'15]

o O*(2957¢) unless a better algorithm for Subset Sum exists;

see [Kociumaka-Pissis-R]

Pattern Matching on Weighted Strings 38 /41

Weighted LCS and SCS

@ Both problems are NP-complete for o = 2; see [CKRRW'11]
and [CKPRRSWZ'19]

Weighted SCS

Upper bound
e O(n?\/zlog z) (using Facts 1, 2, 4); see [CKPRRSWZ'19)
Lower bounds

o O(n?>¢) unless the Strong Exponential Time Hypothesis fails;
see [Abboud-Backurs-Williams'15]

o O*(2957¢) unless a better algorithm for Subset Sum exists;
see [Kociumaka-Pissis-R]

Weighted LCS

o Cannot be solved in O(nf(z)) time or O(nf(?) time unless
P = NP; see [CKPRRSWZ'19)]

Pattern Matching on Weighted Strings 38 /41

Conclusion

@ Weighted Strings

@ Weighted Pattern Matching and Profile Matching
© General Weighted Pattern Matching

@ Weighted Indexing

© On-line and Streaming Weighted Pattern Matching
Q@ Weighted LCS and SCS

Pattern Matching on Weighted Strings 39 /41

Open Problems and Further Work

o A Weighted Index with O(m + |Occ,(P, T)|)-time queries
and o(nz) space?

Pattern Matching on Weighted Strings 40 /41

Open Problems and Further Work

o A Weighted Index with O(m + |Occ,(P, T)|)-time queries
and o(nz) space?

@ An on-line algorithm for General WPM using less space?

@ More efficient queries in the Generalized Weighed Index?

Pattern Matching on Weighted Strings 40 /41

Open Problems and Further Work

o A Weighted Index with O(m + |Occ,(P, T)|)-time queries
and o(nz) space?

@ An on-line algorithm for General WPM using less space?

@ More efficient queries in the Generalized Weighed Index?

@ Automatic selection of parameter z?

@ Non-independent probability distributions?

Pattern Matching on Weighted Strings 40 /41

References Presented Today

[BKLPR'16]

C. Barton, T. Kociumaka, C. Liu, S.P. Pissis, R,
Efficient Index for Weighted Sequences, CPM 2016
Full version (with C. Liu) accepted to Inf. Comput.
https://arxiv.org/abs/1704.07625

[CIPR'19]
P. Charalampopoulos, C.S. lliopoulos, S.P. Pissis, R
On-line weighted pattern matching, Inf. Comput. 266, 2019

[Kociumaka-Pissis-R'16]

Pattern Matching and Consensus Problems on Weighted Sequences and
Profiles, ISAAC 2016

Full version in Theory Comput. Syst. 63(3), 2019

[R-Starikovskaya]
Streaming k-Mismatch with Error Correcting and Applications, DCC 2017
Full version: https://arxiv.org/abs/1607.05626

Pattern Matching on Weighted Strings 41 /41

References Presented Today

[Barton-Liu-Pissis'16]
On-Line Pattern Matching on Uncertain Sequences and Applications,
COCOA 2016

[Barton-Liu-Pissis'18]
Fast Average-Case Pattern Matching on Weighted Sequences,
Int. J. Found. Comput. Sci. 29(8), 2018

[CKRRW'11]

M. Cygan, M. Kubica, R, W. Rytter, T. Walen,

Polynomial-Time Approximation Algorithms for Weighted LCS Problem,
CPM 2011

Full version in Discr. Appl. Math. 204, 2016

[CKPRRSWZ'19]

P. Charalampopoulos, T. Kociumaka, S.P. Pissis, R, W. Rytter, J. Straszynski,
T. WaleA, W. Zuba,

Weighted Shortest Common Supersequence Problem Revisited, SPIRE 2019

Pattern Matching on Weighted Strings 41 /41

Other References — WPM

[ACIKZ'06]

A. Amir, E. Chencinski, C.S. lliopoulos, T. Kopelowitz, H. Zhang,
Property matching and weighted matching, CPM 2006

Full version in Theor. Comput. Sci. 395 (2-3), 2008

[Amir-Gotthilf-Shalom’09]
Weighted LCS, IWOCA 2009
Full version in J. Discrete Algorithms 8(3), 2010

[Amir-Gotthilf-Shalom'11]
Weighted Shortest Common Supersequence, SPIRE 2011

[Barton-Liu-Pissis'15]
Linear-Time Computation of Prefix Table for Weighted Strings, WORDS 2015
Full version (with C. Liu) in Theor. Comput. Sci. 656, 2016

[BPTS'16]
S. Biswas, M. Patil, S.V. Thankachan, R. Shah,
Probabilistic Threshold Indexing for Uncertain Strings, EDBT 2016

[CIMT’04]
M. Christodoulakis, C.S. lliopoulos, L. Mouchard, K. Tsichlas,

Pattern matching on weighted sequences, CompBioNets 2004
Pattern Matching on Weighted Strings 41 /41

Other References — WPM

[IMPPTT'06]

C.S. lliopoulos, C. Makris, Y. Panagis, K. Perdikuri, E. Theodoridis,

A.K. Tsakalidis,

The weighted suffix tree: An efficient data structure for handling molecular
weighted sequences and its applications,

Fundam. Inform. 71 (2-3), 2006

[liopoulos-Rahman'08]
Faster index for property matching,
Inf. Process. Lett. 105 (6), 2008

[Juan-Liu-Wang'09]
Errata for “Faster index for property matching”,
Inf. Process. Lett. 109 (18), 2009

[Pizzi-Ukkonen'08]
Fast profile matching algorithms — A survey,
Theor. Comput. Sci. 395(2-3), 2008

[Rajasekaran-Jin-Spouge’02]
The Efficient Computation of Position-Specific Match Scores with the Fast
Fourier Transform, J. Comp. Biol. 9(1): 23-33 (2002)

Pattern Matching on Weighted Strings 41 /41

Other References — General Tools

[Breslauer-Galil'11]
Real-Time Streaming String-Matching, CPM 2011
Full version in ACM Trans. Algorithms 10(4), 2014

[Clifford-Efremenko-Porat-Porat’08]
A Black Box for Online Approximate Pattern Matching, CPM 2008
Full version in Inf. Comput. 209(4), 2011

[CFPSS'16]
R. Clifford, A. Fontaine, E. Porat, B. Sach, T. Starikovskaya,
The k-mismatch problem revisited, SODA 2016

[Clifford-Kociumaka-Porat'19]
The streaming k-mismatch problem, SODA 2019

[Hui'92]
Color set size problem with application to string matching, CPM 1992

[Muthukrishnan’02]
Efficient algorithms for document retrieval problems, SODA 2002

[Porat-Porat’09]
Exact and approximate pattern matching in the streaming model, FOCS 2009
Pattern Matching on Weighted Strings 41 /41

Thank You

Thank you for your attention!

Pattern Matching on Weighted Strings 41 /41

