Conversion of Finite Tree Automata to Regular Tree Expressions by
State Elimination

Tomas Pecka, Jan Travnic¢ek, and Jan Janousek

Arbology Research Group
Dept. of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague

{tomas.pecka, jan.travnicek, jan.janousek}@fit.cvut.cz

August 31, 2020

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 1/22

Outline

@ The Problem

@ Theoretical background
@ Trees, Tree Languages
@ Finite Tree Automata
@ Regular Tree Expressions

© Converting FTAs to RTEs
@ State Elimination in Finite Automata
@ Generalised FTA
@ Elimination of a Single State
@ The Algorithm

@ Conclusion

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination

Aug. 31, 2020 (PSC 2020)

2/22

Problem statement

@ Let A be a nondeterministic bottom-up finite tree automaton (FTA).
e Transform A to an equivalent regular tree expression (RTE) E such that L(E) = L(A).

o Both FTA and RTE describe exactly the class of regular tree languages [CDGT07].
o The problem is analogous to the (string) conversion from a finite automaton to a regular
expression.

Related work
o Converting FTAs to RTEs using regular tree equations (Guellouma, Cherroun [GC18]).

Our approach

@ Elimination of states (inspired by well known state elimination algorithm from
strings [HMUO3]).

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 3/22

Trees

@ Trees are one of the fundamental data structures. Useful for hierarchical data (XML,
AST, ...).

@ Tree is defined by the means of graph theory.

@ Our trees are rooted, ordered, labelled, and ranked.

@ There is a hierarchy of tree languages, today we deal with regular tree languages.

a2

/ N\
a2 bl
AN
c0 bl <O

c0

Figure: Tree t over ranked alphabet A = {a2,b1, c0}. The number associated with the symbol is the
arity of the symbol.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 4/22

Finite Tree Automata |

@ Standard computation model for regular tree languages.

Non-deterministic bottom-up (also frontier-to-root) finite tree automaton is a quadruple
A=(Q,%X,A,Qr), where

@ (is the set of states,

@ Y is a ranked alphabet (symbols with non-negative arity),

e A is a set of transition rules (mapping ¥, x Q" — P(Q)), and
o alqi,---,qn) — ¢

@ Qr is the set of final states.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 5/22

Finite Tree Automata I

@ The computation moves from the leaves towards the root.

e Node a with arity n is assigned with state ¢ if a(q1,...,q,) = ¢ € A and ¢1,...,q, are
the states assigned to children of a.

@ Tree is accepted by the automaton if the root is assigned with a final state.

cons2

/ A\

. 2 .
nt0 m cons nil0
kI/ 1 int0 cons2

/ \

Figure: Example FTA accepting trees representing int0 nil0
valid LISP lists consisting of int symbol.

Figure: Run on an example tree accepted by the

automaton.
Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6/22

Finite Tree Automata I

@ The computation moves from the leaves towards the root.

e Node a with arity n is assigned with state ¢ if a(q1,...,q,) = ¢ € A and ¢1,...,q, are
the states assigned to children of a.

@ Tree is accepted by the automaton if the root is assigned with a final state.

cons2
I
int0 cons2
- I -
Figure: Example FTA accepting trees representing int0 nil0
valid LISP lists consisting of int symbol.
Figure: Run on an example tree accepted by the
automaton.

Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6/22

Finite Tree Automata I

@ The computation moves from the leaves towards the root.

e Node a with arity n is assigned with state ¢ if a(q1,...,q,) = ¢ € A and ¢1,...,q, are
the states assigned to children of a.

@ Tree is accepted by the automaton if the root is assigned with a final state.

cons2

/ A\

. 2 .
int0 m cons nal0 I
kI/ 1 int0 cons2

/ \

I L
Figure: Example FTA accepting trees representing int0 nil0
valid LISP lists consisting of int symbol.

Figure: Run on an example tree accepted by the

automaton.
Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6/22

Finite Tree Automata I

@ The computation moves from the leaves towards the root.

e Node a with arity n is assigned with state ¢ if a(q1,...,q,) = ¢ € A and ¢1,...,q, are
the states assigned to children of a.

@ Tree is accepted by the automaton if the root is assigned with a final state.

cons2
I L
int0 cons2

/ \

I L
Figure: Example FTA accepting trees representing int0 nil0
valid LISP lists consisting of int symbol.

Figure: Run on an example tree accepted by the

automaton.
Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6/22

Finite Tree Automata I

@ The computation moves from the leaves towards the root.

e Node a with arity n is assigned with state ¢ if a(q1,...,q,) = ¢ € A and ¢1,...,q, are
the states assigned to children of a.

@ Tree is accepted by the automaton if the root is assigned with a final state.

L
cons2

/ N\
I L
int0 cons2

/ \

I L
Figure: Example FTA accepting trees representing int0 nil0
valid LISP lists consisting of int symbol.

Figure: Run on an example tree accepted by the

automaton.
Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6/22

Operations on Trees

Tree substitution

@ Substituting occurrences of O; by trees a2
from LZ a2 cl / \
@ Concatenating trees in specified places. / \ -0 ‘ — b0 «cl
o t{0; < Ly,...,0, < Ly} b0 O do |
do

Operations on Tree Languages

@ Union: Ly + Lo =11 ULy
o Concatenation: Ly -0 Ly = Uy, {t{0 < La}}
o Closure: L*H = Un>o i,

o I = qap, 2R = g et

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 7/22

Regular Tree Expressions |

@ Another way of describing regular tree languages.

@ Analogous to regular (string) expressions.

@ Defined as in TATA (Comon et al. [CDG'07]): Alphabets of input symbols (F) and
substitution symbols (K).

@ ac FyisaRTE
e 0cKisaRTE
o If all E; are RTEs, a € F, and O € K, then:
C a(Ela 000 7Ea'rity(a))v
Ey + Es,
E1 -0 EQ, and
E,*H are RTEs.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 8/22

Regular Tree Expressions |l

/\

F = {cons2,int0,nil0}

cons2

/ \

Oy int0 K = {01,02}

/N

=Bz nilo

|
cons2
/\ cons2 int0
o / N\

nil0 int0 nil0

Figure: RTE for valid lists of
integers in LISP.

int0

cons2

/\

nil0

cons2

/ \

int0 cons2

/ \

int0 cons2

/\

int0 nil0

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU)

FTA to RTE by State Elimination

Aug. 31, 2020 (PSC 2020)

9/22

Regular Tree Expressions |l

Bample

-0Oq
/N

‘0o int0

/ \ F = {cons2,int0,nil0}

02 nilo K = {01, 02}

‘ cons2 cons2

o A

Oo O Oo i Oo

U 02

Figure: RTE for valid lists of
integers in LISP.

cons2

/\

O o

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination

Aug. 31, 2020 (PSC 2020)

9/22

Regular Tree Expressions |l

/\

5 il F = {cons2,int0,nil0}
/\ K = {0, 02}
~H2 - nilo cons2 cons2
\ \
cons2 cons2 0; cons2 0; cons2
/\ /\ /\ /\
Ui O Oo O O 0 0o Ui O

Figure: RTE for valid lists of
integers in LISP.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9/22

Regular Tree Expressions |l

Oy
/ \ F = {cons2,int0,nil0}
Oy int0 K = {01, 0}

*’D{ \m'l() 7”5\2
|

) cons< 0 cons\2

cons

/\ cons2 Dl/ cons2 Dl/ cons2

o /\ /\ /\
O O O Op Oo th O

Figure: RTE for valid lists of
integers in LISP.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9/22

Regular Tree Expressions |l

/\

F = {cons2,int0,nil0}

cons2

/ \

Oy int0 K = {01,02}

/N

=Bz nilo

|
cons2
/\ cons2 int0
o / N\

nil0 int0 nil0

Figure: RTE for valid lists of
integers in LISP.

int0

cons2

/\

nil0

cons2

/ \

int0 cons2

/ \

int0 cons2

/\

int0 nil0

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU)

FTA to RTE by State Elimination

Aug. 31, 2020 (PSC 2020)

9/22

© Converting FTAs to RTEs
@ State Elimination in Finite Automata
o Generalised FTA
@ Elimination of a Single State
@ The Algorithm

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 10 /22

State elimination on FA

@ G @ Generalised NFA: transitions use regular expressions

@ 7B instead of symbols
@ Eliminate all states except the initial state and final

B2
» q o state . N
o Replace all paths through ¢ with new transitions

OO

e Remove state ¢

a2
2

@ The path from the initial state to the final state is the

Figure: One step of a state equivalent regular expression.

elimination in FA.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 11/22

State elimination on FTA

@ Generalised FTA (GFTA): transitions use regular tree expressions instead of symbols.

From FTA to GFTA

@ Create RTEs from symbols in the transitions mapping.

e Source states of the transition will be children of the symbol.
e Symbols corresponding to states are references to a language of a state.
o Order of source states of the transition is no longer needed (now defined in the RTE).

@ Transform the automaton to have only a one final state (useful later).

int0 /7 "\ cons2 @ nil0
I <]
! 2

Figure: An example fragment of a FTA. Figure: GFTA corresponding to the FTA on the left.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 12 /22

State elimination on FTA

Transition type
Classification of the GFTA's transitions with respect to a state ¢:

incoming (g is a target, but not a source),

outgoing (g is a source but not a target),
looping (q is both a source and a target).

((ms2

int0

0<:‘

Figure: An example GFTA with a looping transition w.r.t. the state L.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 13 /22

Elimination of a single state from GFTA

o E,, refers to state ¢ (contains ¢ € K).

@ Language of state q can be seen as RTE with
Eloop and Ejy,. "subRTEs” [CDGT07].

*,q/ ’ \

+
|\
+ Eincl cee Eincn
SN
Eloopl o Eloopn

Figure: Situation when eliminating the state ¢ @ Replace ¢ in all E,,; with this fragment (O(1)
of GFTA. if not replacing but using concatenation).

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 14 /22

Elimination of a single state from GFTA

out; q
+ Eincl . ’ . Eincn
E/‘loop1 . ’ . Eloopn
Figure: Situation when eliminating the state ¢
of GFTA. Figure: Modification of an outgoing edge.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 15 /22

Example

Pecka, TravniZek,

Figure: The original GFTA.

Janousek (DTCS, FIT CTU)

FTA to RTE by State Elimination

N,
/ "\L /\

I int0

|
0

Figure: After eliminating state I.

Aug. 31, 2020 (PSC 2020)

16 /22

Example

/\
/\

xL nil0

\
/ \

cons2
N/ \
I L I int0

0
Figure: After eliminating state 1.

Figure: After eliminating state L.
Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 17 /22

State elimination on TA

Elimination Algorithm
© Convert the input FTA to a GFTA.

@ Eliminate any non-final state using the approach on previous slide until a single-state
GFTA remains.

© The resulting RTE can be read from the transitions leading to the final state.

Time Complexity

For an input FTA A = (Q,%,A,QF) and corresponding GFTA G = (Q U {q}, %, T, {qr}):
Conversion to GFTA is done in O(|A| + |QF]).

Eliminating a single state is O(|Q| - |T'|), but both |@Q| and |I'| gradually decrease.

Total time consists of conversion and |Q| invocations of elimination step:

O(IQI- Q] - (|Al + |QFI))-

Pecka, Travni¢ek, Janougek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 18 /22

@ Conclusion

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 19 /22

Conclusion

@ A simple algorithm for the construction of a regular tree expression(RTE) equivalent to
given finite tree automaton (FTA) by eliminating states.

o Ideas come from a proof of RTE - FTA equivalence in [CDG'07] and from the similar
string algorithm [HMUO03].

e Implementation in Algorithms Library Toolkit [ALT].
Future work:

@ |s there a way of speeding up the elimination step?

@ Good and bad elimination orders? Affects the size of the RTE.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 20/22

© Appendix: References

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 21/22

References |

@ Algorithms Library Toolkit.
https://alt.fit.cvut.cz.

@ H. Comon, M. Dauchet, R. Gilleron, C. Léding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications, 2007.
Release October 2007.

ﬁ Younes Guellouma and Hadda Cherroun.
From tree automata to rational tree expressions.
Int. J. Found. Comput. Sci., 29(6):1045-1062, 2018.

@ John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to automata theory, languages, and computation (2. ed).
Addison-Wesley, 2003.

Pecka, Travni¢ek, Janousek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 22/22

https://alt.fit.cvut.cz

	The Problem
	Theoretical background
	Trees, Tree Languages
	Finite Tree Automata
	Regular Tree Expressions

	Converting FTAs to RTEs
	State Elimination in Finite Automata
	Generalised FTA
	Elimination of a Single State
	The Algorithm

	Conclusion
	Appendix
	Appendix: References

