
Conversion of Finite Tree Automata to Regular Tree Expressions by
State Elimination

Tomáš Pecka, Jan Trávńıček, and Jan Janoušek

Arbology Research Group
Dept. of Theoretical Computer Science

Faculty of Information Technology
Czech Technical University in Prague

{tomas.pecka,jan.travnicek,jan.janousek}@fit.cvut.cz

August 31, 2020

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 1 / 22

Outline

1 The Problem

2 Theoretical background
Trees, Tree Languages
Finite Tree Automata
Regular Tree Expressions

3 Converting FTAs to RTEs
State Elimination in Finite Automata
Generalised FTA
Elimination of a Single State
The Algorithm

4 Conclusion

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 2 / 22

Problem statement

Let A be a nondeterministic bottom-up finite tree automaton (FTA).

Transform A to an equivalent regular tree expression (RTE) E such that L(E) = L(A).

Both FTA and RTE describe exactly the class of regular tree languages [CDG+07].
The problem is analogous to the (string) conversion from a finite automaton to a regular
expression.

Related work

Converting FTAs to RTEs using regular tree equations (Guellouma, Cherroun [GC18]).

Our approach

Elimination of states (inspired by well known state elimination algorithm from
strings [HMU03]).

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 3 / 22

Trees

Trees are one of the fundamental data structures. Useful for hierarchical data (XML,
AST, ...).
Tree is defined by the means of graph theory.
Our trees are rooted, ordered, labelled, and ranked.
There is a hierarchy of tree languages, today we deal with regular tree languages.

a2

a2

c0 b1

c0

b1

c0

Figure: Tree t over ranked alphabet A = {a2, b1, c0}. The number associated with the symbol is the
arity of the symbol.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 4 / 22

Finite Tree Automata I

Standard computation model for regular tree languages.

Definition

Non-deterministic bottom-up (also frontier-to-root) finite tree automaton is a quadruple
A = (Q,Σ,∆, QF), where

Q is the set of states,
Σ is a ranked alphabet (symbols with non-negative arity),
∆ is a set of transition rules (mapping Σn ×Qn 7→ P(Q)), and

a(q1, . . . , qn)→ q

QF is the set of final states.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 5 / 22

Finite Tree Automata II

The computation moves from the leaves towards the root.
Node a with arity n is assigned with state q if a(q1, . . . , qn)→ q ∈ ∆ and q1, . . . , qn are
the states assigned to children of a.
Tree is accepted by the automaton if the root is assigned with a final state.

Example

I L
int0 nil0

1
2

cons2

Figure: Example FTA accepting trees representing
valid LISP lists consisting of int symbol.

cons2

int0 cons2

int0 nil0

Figure: Run on an example tree accepted by the
automaton.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6 / 22

Finite Tree Automata II

The computation moves from the leaves towards the root.
Node a with arity n is assigned with state q if a(q1, . . . , qn)→ q ∈ ∆ and q1, . . . , qn are
the states assigned to children of a.
Tree is accepted by the automaton if the root is assigned with a final state.

Example

I L
int0 nil0

1
2

cons2

Figure: Example FTA accepting trees representing
valid LISP lists consisting of int symbol.

cons2

I
int0 cons2

I
int0 nil0

Figure: Run on an example tree accepted by the
automaton.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6 / 22

Finite Tree Automata II

The computation moves from the leaves towards the root.
Node a with arity n is assigned with state q if a(q1, . . . , qn)→ q ∈ ∆ and q1, . . . , qn are
the states assigned to children of a.
Tree is accepted by the automaton if the root is assigned with a final state.

Example

I L
int0 nil0

1
2

cons2

Figure: Example FTA accepting trees representing
valid LISP lists consisting of int symbol.

cons2

I
int0 cons2

I
int0

L
nil0

Figure: Run on an example tree accepted by the
automaton.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6 / 22

Finite Tree Automata II

The computation moves from the leaves towards the root.
Node a with arity n is assigned with state q if a(q1, . . . , qn)→ q ∈ ∆ and q1, . . . , qn are
the states assigned to children of a.
Tree is accepted by the automaton if the root is assigned with a final state.

Example

I L
int0 nil0

1
2

cons2

Figure: Example FTA accepting trees representing
valid LISP lists consisting of int symbol.

cons2

I
int0

L
cons2

I
int0

L
nil0

Figure: Run on an example tree accepted by the
automaton.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6 / 22

Finite Tree Automata II

The computation moves from the leaves towards the root.
Node a with arity n is assigned with state q if a(q1, . . . , qn)→ q ∈ ∆ and q1, . . . , qn are
the states assigned to children of a.
Tree is accepted by the automaton if the root is assigned with a final state.

Example

I L
int0 nil0

1
2

cons2

Figure: Example FTA accepting trees representing
valid LISP lists consisting of int symbol.

L
cons2

I
int0

L
cons2

I
int0

L
nil0

Figure: Run on an example tree accepted by the
automaton.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 6 / 22

Operations on Trees

Tree substitution

Substituting occurrences of �i by trees
from Li.
Concatenating trees in specified places.
t {�1 ← L1, . . . ,�n ← Ln}

Example

a2

b0 �

·�
c1

d0

−→

a2

b0 c1

d0

Operations on Tree Languages

Union: L1 + L2 = L1 ∪ L2

Concatenation: L1 ·� L2 =
⋃

t∈L1
{t {�← L2}}

Closure: L∗,� =
⋃

n≥0 L
n,�.

L0,� = {�}, Ln+1,� = L ·� Ln,�

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 7 / 22

Regular Tree Expressions I

Another way of describing regular tree languages.
Analogous to regular (string) expressions.
Defined as in TATA (Comon et al. [CDG+07]): Alphabets of input symbols (F) and
substitution symbols (K).

Definition

a ∈ F0 is a RTE
� ∈ K is a RTE
If all Ei are RTEs, a ∈ F , and � ∈ K, then:

a(E1, . . . , Earity(a)),
E1 + E2,
E1 ·� E2, and
E1

∗,� are RTEs.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 8 / 22

Regular Tree Expressions II

Example

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure: RTE for valid lists of
integers in LISP.

F = {cons2, int0, nil0}
K = {�1,�2}

nil0

cons2

int0 nil0

cons2

int0 cons2

int0 nil0

cons2

int0 cons2

int0 cons2

int0 nil0

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9 / 22

Regular Tree Expressions II

Example

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure: RTE for valid lists of
integers in LISP.

F = {cons2, int0, nil0}
K = {�1,�2}

�2

cons2

�1 �2

cons2

�1 �2

cons2

�1 �2

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9 / 22

Regular Tree Expressions II

Example

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure: RTE for valid lists of
integers in LISP.

F = {cons2, int0, nil0}
K = {�1,�2}

�2

cons2

�1 �2

cons2

�1 cons2

�1 �2

cons2

�1 cons2

�1 �2

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9 / 22

Regular Tree Expressions II

Example

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure: RTE for valid lists of
integers in LISP.

F = {cons2, int0, nil0}
K = {�1,�2}

�2

cons2

�1 �2

cons2

�1 cons2

�1 �2

cons2

�1 cons2

�1 cons2

�1 �2

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9 / 22

Regular Tree Expressions II

Example

·�1

·�2

∗,�2

cons2

�1 �2

nil0

int0

Figure: RTE for valid lists of
integers in LISP.

F = {cons2, int0, nil0}
K = {�1,�2}

nil0

cons2

int0 nil0

cons2

int0 cons2

int0 nil0

cons2

int0 cons2

int0 cons2

int0 nil0

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 9 / 22

1 The Problem

2 Theoretical background
Trees, Tree Languages
Finite Tree Automata
Regular Tree Expressions

3 Converting FTAs to RTEs
State Elimination in Finite Automata
Generalised FTA
Elimination of a Single State
The Algorithm

4 Conclusion

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 10 / 22

State elimination on FA

q

p1

p2

pn

r1

r2

rm

...
...

γα1

α2

αn

β1

β2

βm

Figure: One step of a state
elimination in FA.

Generalised NFA: transitions use regular expressions
instead of symbols

Eliminate all states except the initial state and final
state

Replace all paths through q with new transitions

pi rj
αiγ

∗βj

Remove state q

The path from the initial state to the final state is the
equivalent regular expression.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 11 / 22

State elimination on FTA

Generalised FTA (GFTA): transitions use regular tree expressions instead of symbols.

From FTA to GFTA

Create RTEs from symbols in the transitions mapping.

Source states of the transition will be children of the symbol.
Symbols corresponding to states are references to a language of a state.
Order of source states of the transition is no longer needed (now defined in the RTE).

Transform the automaton to have only a one final state (useful later).

I L
int0 nil0

1
2

cons2

Figure: An example fragment of a FTA.

I L

qf

int0 nil0

cons2

I L

L

Figure: GFTA corresponding to the FTA on the left.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 12 / 22

State elimination on FTA

Transition type

Classification of the GFTA’s transitions with respect to a state q:

incoming (q is a target, but not a source),

outgoing (q is a source but not a target),

looping (q is both a source and a target).

I L

qf

int0 nil0

cons2

I L

L

Figure: An example GFTA with a looping transition w.r.t. the state L.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 13 / 22

Elimination of a single state from GFTA

q

r1

rn

...

...

...

...

. . .

. . .

. . .

.

...
Einc1

Eincn

Eloop1 Eloopn
Eout1

Eoutn

Figure: Situation when eliminating the state q
of GFTA.

Eout refers to state q (contains q ∈ K).

Language of state q can be seen as RTE with
Eloop and Einc ”subRTEs” [CDG+07].

·q

∗,q

+

Eloop1 . . . Eloopn

+

Einc1 . . . Eincn

Replace q in all Eout with this fragment (O(1)
if not replacing but using concatenation).

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 14 / 22

Elimination of a single state from GFTA

q

r1

rn

...

...

...

...

. . .

. . .

. . .

.

...
Einc1

Eincn

Eloop1 Eloopn
Eout1

Eoutn

Figure: Situation when eliminating the state q
of GFTA.

ri
·q

Eouti ·q

∗,q

+

Eloop1 . . . Eloopn

+

Einc1 . . . Eincn

Figure: Modification of an outgoing edge.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 15 / 22

Example

I L

qf

int0 nil0

cons2

I L
L

Figure: The original GFTA. L

qf

nil0

·I

cons2

I L

·I

∗I

∅

int0

L

Figure: After eliminating state I.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 16 / 22

Example

L

qf

nil0

·I

cons2

I L

·I

∗I

∅

int0

L

Figure: After eliminating state I. qf

·L

L ·L

∗L

·I

cons2

I L

·I

∗I

∅

int0

nil0

Figure: After eliminating state L.
Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 17 / 22

State elimination on TA

Elimination Algorithm

1 Convert the input FTA to a GFTA.

2 Eliminate any non-final state using the approach on previous slide until a single-state
GFTA remains.

3 The resulting RTE can be read from the transitions leading to the final state.

Time Complexity

For an input FTA A = (Q,Σ,∆, QF) and corresponding GFTA G = (Q ∪ {qf},Σ,Γ, {qf}):

Conversion to GFTA is done in O(|∆|+ |QF |).

Eliminating a single state is O(|Q| · |Γ|), but both |Q| and |Γ| gradually decrease.

Total time consists of conversion and |Q| invocations of elimination step:
O(|Q| · |Q| · (|∆|+ |QF |)).

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 18 / 22

1 The Problem

2 Theoretical background
Trees, Tree Languages
Finite Tree Automata
Regular Tree Expressions

3 Converting FTAs to RTEs
State Elimination in Finite Automata
Generalised FTA
Elimination of a Single State
The Algorithm

4 Conclusion

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 19 / 22

Conclusion

A simple algorithm for the construction of a regular tree expression(RTE) equivalent to
given finite tree automaton (FTA) by eliminating states.

Ideas come from a proof of RTE - FTA equivalence in [CDG+07] and from the similar
string algorithm [HMU03].

Implementation in Algorithms Library Toolkit [ALT].

Future work:

Is there a way of speeding up the elimination step?

Good and bad elimination orders? Affects the size of the RTE.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 20 / 22

5 Appendix: References

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 21 / 22

References I

Algorithms Library Toolkit.
https://alt.fit.cvut.cz.

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi.
Tree automata techniques and applications, 2007.
Release October 2007.

Younes Guellouma and Hadda Cherroun.
From tree automata to rational tree expressions.
Int. J. Found. Comput. Sci., 29(6):1045–1062, 2018.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman.
Introduction to automata theory, languages, and computation (2. ed).
Addison-Wesley, 2003.

Pecka, Trávńıček, Janoušek (DTCS, FIT CTU) FTA to RTE by State Elimination Aug. 31, 2020 (PSC 2020) 22 / 22

https://alt.fit.cvut.cz

	The Problem
	Theoretical background
	Trees, Tree Languages
	Finite Tree Automata
	Regular Tree Expressions

	Converting FTAs to RTEs
	State Elimination in Finite Automata
	Generalised FTA
	Elimination of a Single State
	The Algorithm

	Conclusion
	Appendix
	Appendix: References

