
Theoretical Background Forward Tree Pattern Matching Conclusions

Forward Linearised Tree Pattern Matching Using Tree Pattern

Border Array

Jan Trávńıček Robin Obůrka Tomáš Pecka Jan Janoušek

Department of Theoretical Computer Science

Faculty of Information Technology

Czech Technical University in Prague

{Jan.Travnicek, oburkrob, Tomas.Pecka, Jan.Janousek}@fit.cvut.cz

PSC 2020
31. 8. 2020

Theoretical Background Forward Tree Pattern Matching Conclusions

Outline

1 Theoretical Background
Notations of Trees and Patterns

2 Forward Tree Pattern Matching
Forward Pattern Matching
Tree Pattern Border Array
Algorithm
Measurements

Theoretical Background Forward Tree Pattern Matching Conclusions

Trees and Tree Notations

An unranked alphabet
A = {a, b, ↑}

Subject tree t1u in the prefix bar
notation

pref bar(t1u) = a a a ↑ a a ↑ ↑ ↑ a b ↑ ↑ ↑

A ranked alphabet
A = {a2, a1, a0, b0}

And t1r in the prefix notation
pref (t1r) = a2 a2 a0 a1 a0 a1 b0

a

a a b

a a

a

a0

a0 a1 b0

a2 a1

a2

Figure: Subject tree t1u over an unranked alphabet (left), and the same subject tree t1r over a
ranked alphabet (right)

Theoretical Background Forward Tree Pattern Matching Conclusions

Some Other Notations

On a ranked alphabet

A = {a2, a1, a0, b0}, t1r in the postfix notation
post(t1r) = a0 a0 a1 a2 b0 a1 a2

A = {a2, a1, a0, ↑2, ↑1, ↑0}, t1r in the prefix ranked bar notation
pref ranked bar(t1r) = a2 a2 a0 ↑0 a1 a0 ↑0 ↑1 ↑2 a1 b0 ↑0 ↑1 ↑2

Euler tour traversal, ...

On an unranked alphabet

A = {a, (,)}, t1r in the prefix bracketed notation
pref brac(t1u) = a (a (a () a (a ())) a (b ()))

A = {a, ↑}, t1r in the postfix bar notation
post bar(t1u) = ↑ ↑ ↑ a ↑ ↑ a a a ↑ ↑ b a a

Theoretical Background Forward Tree Pattern Matching Conclusions

Trees Patterns

A ranked alphabet of a tree
template
A = {a2, a1, a0,S}

Tree template p2r in the prefix
notation
pref (t1r) = a2 S a1 S

Symbol S stands for any
subtree.

a0

a0 a1

a2

S

S a1

a2

Figure: Subtree p1r (left) of the t1r , tree template p2r (right)

Theoretical Background Forward Tree Pattern Matching Conclusions

Tree Pattern Matching

a0

a0 a1 a0

a2 a1

a2

S

S a1

a2

a0

a0 a1

a2

Figure: Tree t1r over a ranked alphabet (left), tree template p2r (centre) and subtree p1r of t1r
(right)

For many linearisations it holds that subtree s of a tree t, the linear respresenation
of s is a substring of linear representation of t.

pref (t1r) = a2 a2 a0 a1 a0 a1 a0
pref (p1r) = a2 a0 a1 a0
pref (p2r) = a2S a1S

Theoretical Background Forward Tree Pattern Matching Conclusions

Tree Pattern Matching

a0

a0 a1 a0

a2 a1

a2

S

S a1

a2

a0

a0 a1

a2

Figure: Tree t1r over a ranked alphabet (left), tree template p2r (centre) and subtree p1r of t1r
(right)

For many linearisations it holds that subtree s of a tree t, the linear respresenation
of s is a substring of linear representation of t.

pref (t1r) = a2 a2 a0 a1 a0 a1 a0
pref (p1r) = a2 a0 a1 a0
pref (p2r) = a2S a1S

Theoretical Background Forward Tree Pattern Matching Conclusions

Subtree Jump Table

A structure allowing quick jumps over subtrees of a given linearised tree.

Definition (subtree jump table for prefix notation sjt(pref (t)))

Let t and pref (t) = ℓ1ℓ2 . . . ℓn, n ≥ 1, be a tree and its prefix notation, respectively. A
subtree jump table for prefix notation sjt(pref (t)) is a mapping from a set {1..n} into
a set {2..n + 1}. If ℓiℓi+1 . . . ℓj−1 is the prefix notation of a subtree of tree t, then
sjt(pref (t))[i] = j , 1 ≤ i < j ≤ n+ 1.

Table: Subtree jump table sjt(pref (t1r))

id 1 2 3 4 5 6 7

pref(t1r) a2 a2 a0 a1 a0 a1 b0

sjt(pref(t1r)) 8 6 4 6 6 8 8

Theoretical Background Forward Tree Pattern Matching Conclusions

Forward Pattern Matching

TEXT

PATTERN ✲
pattern shift

✲
symbols comparison

Figure: Graphical outline of a forward pattern matching algorithm

Theoretical Background Forward Tree Pattern Matching Conclusions

Searching for Subtrees

A Morris-Pratt algorithm makes use of a border array table.

A border of a string s a prefix of s that is also a suffix of s.

The border array stores the length of the longest border for each prefix of s.

An alphabet A = {a2, a0}
A string s1 = a2 a0 a2 a0 a0

Table: The border array for string s1

1 2 3 4 5

0 0 1 2 0

In order to look for subtrees in a tree, the Morris-Pratt algorithm can be used without
changes. Actually, any string pattern matching algorithm can be used.

Theoretical Background Forward Tree Pattern Matching Conclusions

String Morris-Pratt algorithm

Algorithm 1: Morris-Pratt matching function.

Input: The subject string s of size n, the pattern string p of size m, the border
array table B(p)

Result: A list of matches.
1 begin

2 i := 0, j := 1
3 while i ≤ n −m do

4 /* occurrence check loop */
5 while j ≤ m and s[i + j] = p[j] do
6 j += 1
7 end

8 if j > m then yield i + 1
9 /* shift handling */

10 if j 6= 1 then

11 i += j − B(p)[j − 1]− 1 /* j - 1st symbol failed or overflowed */
12 j := B(p)[j − 1] + 1

13 else

14 i += 1
15 end

16 end

17 end

Theoretical Background Forward Tree Pattern Matching Conclusions

Alternative border-array definition

Definition (border array B(s))

Let s be a string of length n. The border array B(s) is defined for each index 1 ≤ i ≤ n
such that B(s)[1] = 0 and otherwise
B(s)[i] = max({0} ∪ {k : s[1..k] = s[i − k + 1..i] ∧ k ≥ 1 ∧ i − k + 1 > 1}).

Theoretical Background Forward Tree Pattern Matching Conclusions

Forward Tree Pattern Matching Algorithm

Modifications to the Morris-Pratt algorithm needed to use it for tree patterns.

The occurrence check loop has to be modified to handle the wildcards,

the border array needs to be modified to represent the same idea in tree patterns.

Theoretical Background Forward Tree Pattern Matching Conclusions

Matches

Definition (matches relation s matches r)

Let S be a wildcard symbol representing a complete subtree in prefix ranked notation
of trees. Two strings s and r are in relation matches if:

s = ℓs ′ r = ℓr ′ and s ′ matches r ′

and ℓ ∈ A,

s = Ss ′ r = Sr ′ and s ′ matches r ′,
s = ℓ1...ℓms

′ r = Sr ′ and ac(ℓ1...ℓm) = 0
and ∀k , 1 ≤ k < m, ac(ℓ1...ℓk) ≥ 1
and s ′ matches r ′,

s = Ss ′ r = ℓ1...ℓmr
′ and ac(ℓ1...ℓm) = 0

and ∀k , 1 ≤ k < m, ac(ℓ1...ℓk) ≥ 1
and s ′ matches r ′,

s = Ss ′ r = ℓ1...ℓm and ∀k , 1 ≤ k ≤ m, ac(ℓ1...ℓk) ≥ 1,
s = ε or r = ε

Theoretical Background Forward Tree Pattern Matching Conclusions

Tree pattern border array

Definition (tree pattern border array B(pref (p)))

Let pref (p) be a tree pattern in a prefix notation of length n. The B(pref (p)) is
defined for each index 1 ≤ i ≤ n such that B(pref (p))[1] = 0 and otherwise
B(pref (p))[i] = max({0} ∪ {k : pref (p) matches pref (p)[i − k + 1..i] ∧ k ≥
1 ∧ i − k + 1 > 1}).

Theoretical Background Forward Tree Pattern Matching Conclusions

Visualization of the Matches Relation

Table: Trace of naive computation of pref (p) matches pref (p)[j + 1..5] for 1 ≤ j ≤ 5 and
pref (p) = a2 a2 S a2 b1 S a0 a0.

1 2 3 4 5 6 7 8

pref(p) a2 a2 S a2 b1 S a0 a0

pref(p)[2..5] a2 ⊢ S ⊣ a2 mismatch at position 8
pref(p)[3..5] ⊢ S ⊣ a2 b1 match
pref(p)[4..5] a2 b1 mismatch at position 2
pref(p)[5..5] b1 mismatch at position 1
pref(p)[6..5] match (pref(p)[6..5] = ε)

Theoretical Background Forward Tree Pattern Matching Conclusions

Bad Character Shift Table for Tree Templates

a2

a2

S a2

b1

S

a0

a0

(a) Tree pattern p and the
subgraph of p corresponding to the
prefix of pref (p) relevant to the
computation of relation matches.

a2

S a2

b1

(b) The subgraph
of p corresponding
to pref (p)[2..5].

a2

a2

S a2

b1

S

a0

a0

a2

S a2

b1

=

= 6=

(c) Visualisation of the alignment.

Theoretical Background Forward Tree Pattern Matching Conclusions

The border array example

Table: The tree pattern border array B(pref (p)) for pref (p) = a2 a2 S a2 b1 S a0 a0.

id 1 2 3 4 5 6 7 8

pref(p) a2 a2 S a2 b1 S a0 a0

B(pref(p)) 0 1 2 2 3 4 5 6

Theoretical Background Forward Tree Pattern Matching Conclusions

Modification of the Occurrence Check loop

Due to the variable length of the subtree matched to the wildcard

an offset to the subject is to be maintained,

the subtree jump table is used to efficiently skip over subtrees.

Algorithm 2: (Fragment) modification of the Occurrence check.

4b offset := i + j
5 while j ≤ m and offset ≤ n do

6a if pref (p)[j] = pref (s)[offset] then
6b j += 1
6c offset += 1

6d else if pref (p)[j] = S then

6e offset := sjt(pref (s))[offset]
6f j += 1

6g else

6h break

6i end

7 end

Theoretical Background Forward Tree Pattern Matching Conclusions

Modification of the Shift Handling

Modifications to the shift handling:

the shift handling is mainly updated by switching to tree pattern border array

the number of character that do not need to be matched is limited by the
distance of the wildcard from the beginning of the pattern.

Algorithm 3: (Fragment) modification of the Shift Handling.

0a Spos := min({k : pref (p)[k] = S ∧ 1 ≤ k ≤ m})
0b shift[1] := 1
0c for k := 2 to m + 1 do shift[k] := k − B(pref (p))[k − 1]− 1

/* because the k - 1st symbol failed or overflowed */

...

10-15a i += shift(pref (p))[j]
10-15b j := max(1,min(Spos, j) − shift(pref (p))[j])

Theoretical Background Forward Tree Pattern Matching Conclusions

Sample run of the matching algorithm

Table: The shift(pref (p)) for pref (p) = a2 a2 S a2 b1 S a0 a0.
id 1 2 3 4 5 6 7 8 9

pref(p) a2 a2 S a2 b1 S a0 a0
shift(pref(p)) 1 1 1 1 2 2 2 2 2

Table: Run for the subject pref (s) and the pattern pref (p) = a2 a2 S a2 b1 S a0 a0.

id 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
pref(s) a2 a2 a2 a0 a2 b1 b0 a0 a0 a2 a2 a0 a2 b1 b0 a0 a0
sjt 18 10 9 5 9 8 8 9 10 18 17 13 17 16 16 17 18

1 a2 a2 ⊢ S ⊣ a2
2 a2 a2 S a2 b1 S a0 a0
3 a2
4 a2 a2
5 a2
6 a2
7 a2
8 a2
9 a2 a2 S a2 b1 S a0 a0

Theoretical Background Forward Tree Pattern Matching Conclusions

Complexities

The n is the size of the subject tree, the m is the size of the tree template and the A is
the size of the alphabet.

The tree pattern border array requires Θ(m) space.

The preprocessing (computation of the tree pattern border array) takes O(m2)
time

The algorithm runs in Ω(n) time in the best case and O(m · n) time in the worst
case if searching for tree templates and Θ(n) time if searching for subtrees.

Theoretical Background Forward Tree Pattern Matching Conclusions

Measurements

A
C

D
F

R
T
A

D
F

R
T
A

 P
re

fi
x

P
re

fB
LT

P
M

 1

P
re

fB
LT

P
M

 2

P
re

fB
LT

P
M

 3
+

P
re

fF
LT

P
M

 1

P
re

fF
LT

P
M

 2

P
re

fF
LT

P
M

 3
+

5
1

0
1

5
2

0

T
im

e
 (

m
s
)

Figure: Results on 150 trees of ca. 500 nodes each with wildcards.

Theoretical Background Forward Tree Pattern Matching Conclusions

Measurements

A
C

D
F

R
T
A

D
F

R
T
A

 P
re

fi
x

P
re

fB
LT

P
M

 1

P
re

fB
LT

P
M

 2

P
re

fB
LT

P
M

 3
+

P
re

fF
LT

P
M

 1

P
re

fF
LT

P
M

 2

P
re

fF
LT

P
M

 3
+

5
1

0
1

5
2

0

T
im

e
 (

m
s
)

Figure: Results on 500 trees of ca. 150 nodes each with wildcards.

Theoretical Background Forward Tree Pattern Matching Conclusions

Measurements

A
C

D
F

R
T
A

D
F

R
T
A

 P
re

fi
x

P
re

fB
LT

P
M

 1

P
re

fB
LT

P
M

 2

P
re

fB
LT

P
M

 3
+

P
re

fF
LT

P
M

 1

P
re

fF
LT

P
M

 2

P
re

fF
LT

P
M

 3
+

5
1

0
2

0

T
im

e
 (

m
s
)

Figure: Results on 150 trees of ca. 500 nodes each without wildcards.

Theoretical Background Forward Tree Pattern Matching Conclusions

Measurements

A
C

D
F

R
T
A

D
F

R
T
A

 P
re

fi
x

P
re

fB
LT

P
M

 1

P
re

fB
LT

P
M

 2

P
re

fB
LT

P
M

 3
+

P
re

fF
LT

P
M

 1

P
re

fF
LT

P
M

 2

P
re

fF
LT

P
M

 3
+

5
1

0
2

0

T
im

e
 (

m
s
)

Figure: Results on 500 trees of ca. 150 nodes each without wildcards.

Theoretical Background Forward Tree Pattern Matching Conclusions

Conclusions

Results:

A new tree pattern matching algorithm was presented,

the algorithm is based on Morris-Pratt algorithm and uses an adaptation of the
border array from string domain,

the algorithm was implemented in the Forrest-FIRE toolkit and experimentally
evaluated using the dataset used in its original evaluation.

Takeaway message:

Many string processing algorithms can be modified (with some care) to process
trees represented as strings using some linearisation schemes.

Future work:

Adapt the Knuth-Morris-Pratt improvement to the presented algorithm.

Theoretical Background Forward Tree Pattern Matching Conclusions

	Theoretical Background
	Notations of Trees and Patterns

	Forward Tree Pattern Matching
	Forward Pattern Matching
	Tree Pattern Border Array
	Algorithm
	Measurements

