Forward Linearised Tree Pattern Matching Using Tree Pattern Border Array

Jan Trávníček Robin Obůrka Tomáš Pecka Jan Janoušek

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague {Jan.Travnicek, oburkrob, Tomas.Pecka, Jan.Janousek}@fit.cvut.cz

> PSC 2020 31. 8. 2020

Outline

1 Theoretical Background

• Notations of Trees and Patterns

Porward Tree Pattern Matching

- Forward Pattern Matching
- Tree Pattern Border Array
- Algorithm
- Measurements

Trees and Tree Notations

- An unranked alphabet
 A = {a, b, ↑}
- Subject tree t_{1u} in the prefix bar notation

$$pref_bar(t_{1u}) = a a a \uparrow a a \uparrow \uparrow \uparrow a b \uparrow \uparrow \uparrow$$

- A ranked alphabet
 - $\mathcal{A} = \{a2, a1, a0, b0\}$
- And t_{1r} in the prefix notation $pref(t_{1r}) = a2 a2 a0 a1 a0 a1 b0$

Figure: Subject tree t_{1u} over an unranked alphabet (left), and the same subject tree t_{1r} over a ranked alphabet (right)

Some Other Notations

On a ranked alphabet

 $\textit{pref_ranked_bar}(t_{1r}) = \textit{a2 a2 a0 \uparrow 0 a1 a0 \uparrow 0 \uparrow 1 \uparrow 2 a1 b0 \uparrow 0 \uparrow 1 \uparrow 2}$

• Euler tour traversal, ...

On an unranked alphabet

Trees Patterns

- A ranked alphabet of a tree template
 - $\mathcal{A} = \{a2, a1, a0, S\}$
- Tree template *p*_{2*r*} in the prefix notation

$$pref(t_{1r}) = a2 S a1 S$$

• Symbol *S* stands for any subtree.

Theoretical Background

Forward Tree Pattern Matching

Tree Pattern Matching

For many linearisations it holds that subtree s of a tree t, the linear respresentation of s is a substring of linear representation of t.
 pref(t_{1r}) = a2 a2 a0 a1 a0 a1 a0 pref(p_{1r}) = a2 a0 a1 a0 a1 a0 pref(p_{2r}) = a2 S a1 S

Theoretical Background

Forward Tree Pattern Matching

Tree Pattern Matching

For many linearisations it holds that subtree s of a tree t, the linear respresentation of s is a substring of linear representation of t.
 pref(t_{1r}) = a2 a2 a0 a1 a0 a1 a0 pref(p_{1r}) = a2 a0 a1 a0 a1 a0 pref(p_{1r}) = a2 a0 a1 a0

Subtree Jump Table

A structure allowing quick jumps over subtrees of a given linearised tree.

Definition (subtree jump table for prefix notation sjt(pref(t)))

Let t and $pref(t) = \ell_1 \ell_2 \dots \ell_n$, $n \ge 1$, be a tree and its prefix notation, respectively. A subtree jump table for prefix notation sjt(pref(t)) is a mapping from a set $\{1...n\}$ into a set $\{2...n+1\}$. If $\ell_i \ell_{i+1} \dots \ell_{j-1}$ is the prefix notation of a subtree of tree t, then sjt(pref(t))[i] = j, $1 \le i < j \le n+1$.

Table: Subtree jump table $sjt(pref(t_{1r}))$

id	1	2	3	4	5	6	7
pref(t _{1r})	<i>a</i> 2	<i>a</i> 2	<i>a</i> 0	<i>a</i> 1	<i>a</i> 0	<i>a</i> 1	<i>b</i> 0
sjt(pref(t _{1r}))	8	6	4	6	6	8	8

Forward Pattern Matching

TEXT

Figure: Graphical outline of a forward pattern matching algorithm

Searching for Subtrees

- A Morris-Pratt algorithm makes use of a border array table.
- A border of a string s a prefix of s that is also a suffix of s.
- The border array stores the length of the longest border for each prefix of s.

An alphabet $\mathcal{A} = \{a2, a0\}$ A string $s_1 = a2 a0 a2 a0 a0$

Table: The border array for string s_1

1	2	3	4	5
0	0	1	2	0

In order to look for subtrees in a tree, the Morris-Pratt algorithm can be used without changes. Actually, any string pattern matching algorithm can be used.

String Morris-Pratt algorithm

Algorithm 1: Morris-Pratt matching function.	
Input: The subject string s of size n , the pattern string p of size m , the border	
array table $\mathcal{B}(p)$	
Result: A list of matches.	
1 begin	
2 $i := 0, j := 1$	
3 while $i \leq n - m$ do	
4 /* occurrence check loop */	
5 while $j \leq m$ and $s[i+j] = p[j]$ do	
6 $j += 1$	
7 end	
8 if $j > m$ then yield $i+1$	
9 /* shift handling */	
10 if $j \neq 1$ then	
11 $i += j - \mathcal{B}(p)[j-1] - 1 /* j$ - 1st symbol failed or overflowed */	
12 $j := \mathcal{B}(p)[j-1] + 1$	
13 else	
14 $i += 1$	
15 end	
16 end	
17 end	

Alternative border-array definition

Definition (border array $\mathcal{B}(s)$)

Let s be a string of length n. The border array $\mathcal{B}(s)$ is defined for each index $1 \le i \le n$ such that $\mathcal{B}(s)[1] = 0$ and otherwise $\mathcal{B}(s)[i] = max(\{0\} \cup \{k : s[1..k] = s[i-k+1..i] \land k \ge 1 \land i-k+1 > 1\}).$

Forward Tree Pattern Matching Algorithm

Modifications to the Morris-Pratt algorithm needed to use it for tree patterns.

- The occurrence check loop has to be modified to handle the wildcards,
- the border array needs to be modified to represent the same idea in tree patterns.

Matches

Definition (matches relation s matches r)

Let S be a wildcard symbol representing a complete subtree in prefix ranked notation of trees. Two strings s and r are in relation *matches* if:

 $s = \ell s'$ $r = \ell r'$ and s' matches r' and $\ell \in \mathcal{A}$. s = Ss' r = Sr' and s' matches r'. $s = \ell_1 \dots \ell_m s'$ r = Sr' and $ac(\ell_1 \dots \ell_m) = 0$ and $\forall k, 1 \leq k \leq m, ac(\ell_1 \dots \ell_k) > 1$ and s' matches r'. s = Ss' $r = \ell_1 \dots \ell_m r'$ and $ac(\ell_1...\ell_m) = 0$ and $\forall k, 1 \leq k < m, ac(\ell_1 \dots \ell_k) \geq 1$ and s' matches r'. s = Ss' $r = \ell_1 \dots \ell_m$ and $\forall k, 1 \le k \le m, ac(\ell_1...\ell_k) \ge 1$. $s = \varepsilon$ or $r = \varepsilon$

Tree pattern border array

Definition (tree pattern border array $\mathcal{B}(pref(p))$)

Let pref(p) be a tree pattern in a prefix notation of length n. The $\mathcal{B}(pref(p))$ is defined for each index $1 \le i \le n$ such that $\mathcal{B}(pref(p))[1] = 0$ and otherwise $\mathcal{B}(pref(p))[i] = max(\{0\} \cup \{k : pref(p) \ matches \ pref(p)[i - k + 1..i] \land k \ge 1 \land i - k + 1 > 1\}).$

Visualization of the Matches Relation

Table: Trace of naive computation of pref(p) matches pref(p)[j+1..5] for $1 \le j \le 5$ and $pref(p) = a2 \ a2 \ S \ a2 \ b1 \ S \ a0 \ a0$.

	1	2	3	4	5	6	7	8			
pref(p)	<i>a</i> 2	<i>a</i> 2	S	<i>a</i> 2	b1	S	<i>a</i> 0	<i>a</i> 0			
pref(p)[25]	<i>a</i> 2	\vdash		S			Т	<i>a</i> 2			mismatch at position 8
pref(p)[35]	\vdash			S				\neg	<i>a</i> 2	b1	match
pref(p)[45]	<i>a</i> 2	b1									mismatch at position 2
pref(p)[55]	b1										mismatch at position 1
pref(p)[65]											match (pref(p)[65] = ε)

Bad Character Shift Table for Tree Templates

(a) Tree pattern p and the subgraph of p corresponding to the prefix of pref(p) relevant to the computation of relation *matches*.

(b) The subgraph of p corresponding to pref(p)[2..5]. (c) Visualisation of the alignment.

The border array example

Table: The tree pattern border array $\mathcal{B}(pref(p))$ for $pref(p) = a2 \ a2 \ S \ a2 \ b1 \ S \ a0 \ a0$.

id	1	2	3	4	5	6	7	8
pref(p)	<i>a</i> 2	<i>a</i> 2	S	<i>a</i> 2	<i>b</i> 1	S	<i>a</i> 0	<i>a</i> 0
B(pref(p))	0	1	2	2	3	4	5	6

Modification of the Occurrence Check loop

Due to the variable length of the subtree matched to the wildcard

- an offset to the subject is to be maintained,
- the subtree jump table is used to efficiently skip over subtrees.

Algorithm 2: (Fragment) modification of the Occurrence check.

```
4b offset := i + j
 5 while i < m and offset < n do
      if pref(p)[i] = pref(s)[offset] then
6a
6Ь
          i += 1
          offset +=1
66
      else if pref(p)[j] = S then
6d
          offset := sit(pref(s))[offset]
6e
          i += 1
6f
      else
6g
          break
6h
6i
      end
 7 end
```

Modification of the Shift Handling

Modifications to the shift handling:

- the shift handling is mainly updated by switching to tree pattern border array
- the number of character that do not need to be matched is limited by the distance of the wildcard from the beginning of the pattern.

Algorithm 3: (Fragment) modification of the Shift Handling.

```
0a Spos := min(\{k : pref(p)[k] = S \land 1 \le k \le m\})

0b shift[1] := 1

0c for k := 2 to m + 1 do shift[k] := k - \mathcal{B}(pref(p))[k - 1] - 1

/* because the k - 1st symbol failed or overflowed */

:

10-15a i += shift(pref(p))[j]

10-15b j := max(1, min(Spos, j) - shift(pref(p))[j])
```

Sample run of the matching algorithm

Table: The shift(pref(p)) for $pref(p) = a2 \ a2 \ S \ a2 \ b1 \ S \ a0 \ a0$.																	
	id					1	2 3	3 4	5	6	7	8	9				
	pref(p)					a2	a2 .	5 a'.	2 b	1 <i>S</i>	<i>a</i> 0	<i>a</i> 0					
	shift(pref(p))				1	1	1 1	2	2	2	2	2					
Table	e: Ru	n for	the s	ubject	t pre	f(s)	and th	ie pat	tern /	pref (µ	o) = a	a2 a2	<i>S a</i> 2	b1 S	a0 a	0.	
id	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
pref(s)	<i>a</i> 2	<i>a</i> 2	<i>a</i> 2	<i>a</i> 0	<i>a</i> 2	<i>b</i> 1	<i>b</i> 0	<i>a</i> 0	<i>a</i> 0	<i>a</i> 2	<i>a</i> 2	<i>a</i> 0	<i>a</i> 2	b1	<i>b</i> 0	<i>a</i> 0	<i>a</i> 0
sjt	18	10	9	5	9	8	8	9	10	18	17	13	17	16	16	17	18
1	<i>a</i> 2	<i>a</i> 2	F			S		-	<i>a</i> 2								
2		<i>a</i> 2	<i>a</i> 2	S	<i>a</i> 2	b1	S	<i>a</i> 0	<i>a</i> 0								
3				<i>a</i> 2													
4					<i>a</i> 2	<i>a</i> 2											
5						<i>a</i> 2											
6							<i>a</i> 2										
7								<i>a</i> 2									
8									<i>a</i> 2								
9										a2	a2	S	a2	<i>b</i> 1	S	<i>a</i> 0	<i>a</i> 0

Complexities

The *n* is the size of the subject tree, the *m* is the size of the tree template and the A is the size of the alphabet.

- The tree pattern border array requires $\Theta(m)$ space.
- The preprocessing (computation of the tree pattern border array) takes $\mathcal{O}(m^2)$ time
- The algorithm runs in Ω(n) time in the best case and O(m · n) time in the worst case if searching for tree templates and Θ(n) time if searching for subtrees.

Conclusions

Results:

- A new tree pattern matching algorithm was presented,
- the algorithm is based on Morris-Pratt algorithm and uses an adaptation of the border array from string domain,
- the algorithm was implemented in the Forrest-FIRE toolkit and experimentally evaluated using the dataset used in its original evaluation.

Takeaway message:

• Many string processing algorithms can be modified (with some care) to process trees represented as strings using some linearisation schemes.

Future work:

• Adapt the Knuth-Morris-Pratt improvement to the presented algorithm.

