Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees and DAWGs on Multiple Strings

Shunsuke Inenaga
Kyushu University, Japan
Fully-Online Indexing of Multiple Strings

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- Motivation: Indexing multi online/streaming data.
 - Sensing data, trajectory data, SNS, etc.
Fully-Online Indexing of Multiple Strings

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.
- Motivation: Indexing multi online/streaming data.
 - Sensing data, trajectory data, SNS, etc.

![Diagram showing sensors, an index, and a user interacting with strings]

- s_1
- s_2
- s_3

Strings:
- T_1: abcaab
- T_2: cca
- T_3: bcdax
Fully-Online Indexing of Multiple Strings

- Goal: Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.

- Motivation: Indexing multi online/streaming data.
 - Sensing data, trajectory data, SNS, etc.

Diagram:

- **sensors:** \(s_1, s_2, s_3 \)
- **index:** \(T_1: \text{abcaabc}, T_2: \text{cca}, T_3: \text{bcdax} \)
- **user**
Fully-Online Indexing of Multiple Strings

- **Goal:** Indexing multiple strings in a **fully-online manner** where each string can grow **any time**.

- **Motivation:** Indexing multi online/streaming data.
 - Sensing data, trajectory data, SNS, etc.

![Diagram](image)
Overview of This Work

- We will consider **suffix trees** and **DAWGs** as indexing structures for fully-online multiple strings.

- For **suffix trees**, we propose a Weiner-type algorithm where strings grow **from right to left**.

- For **DAWGs**, we propose a Blumer et al.-type algorithm where strings grow **from left to right**.

- Our model of computation is the **pointer machine** that is strictly weaker than the word RAM.
The suffix tree of multiple strings is a path-compressed trie that represents all suffixes of the strings.

\[T_1 = \text{cabaa}$ \]
\[T_2 = \text{abaab}$ \]
Suffix Links

If \(av \) is a node and \(a \) is a character, then \(\text{suffix_link}(av) = v \).

\[
T_1 = \text{cabaa}\$
\]
\[
T_2 = \text{abaab}\#
\]
If av is a node and a is a character, then $\text{suffix}_\text{link}(av) = v$.

$T_1 = \text{cabaa}\$
$T_2 = \text{abaab}\#$
Hard Weiner Links

The reversed suffix links with character labels are called hard Weiner links.

\[T_1 = \text{cabaa}\$ \]
\[T_2 = \text{abaab}\# \]

Not all links are shown.
Soft Weiner Links

Soft Weiner links are “generalized” Weiner links.

\[T_1 = \text{cabaa}$ \]
\[T_2 = \text{abaab#} \]

There is no node for \text{cabaa}.

Not all links are shown.
Soft Weiner Links

$T_1 = cabaa\$$

$T_2 = abaab\#$

Soft Weiner link of node v with label c points to the child node of locus for cv.

Soft Weiner links are “generalized” Weiner links.

Not all links are shown.
Soft Weiner Links

Soft Weiner links are “generalized” Weiner links.

\[T_1 = \text{cabaa}$ \]
\[T_2 = \text{abaab}$\]

Not all links are shown.
DAWGs
[Blumer et al. 1987]

The **DAWG** of multiple strings is a linear-size automaton that recognizes all substrings of the strings.

\[
S_1 = \$aabac \\
S_2 = \#baaba
\]
Duality of Suffix Trees and DAWGs

A) There is a one-to-one correspondence between the nodes of the suffix tree of strings and the nodes of the DAWG of the reversed strings.

Suffix Tree of $T_1 = cabaa\#$
$T_2 = abaab\#$

DAWG of $S_1 = $aabac
$S_2 = \#baaba$
Duality of Suffix Trees and DAWGs

B) There is a one-to-one correspondence between the Weiner links of the suffix tree of strings and the edges of the DAWG of the reversed strings.

Suffix Tree of

\[
T_1 = \text{cabaa}$
\]
\[
T_2 = \text{abaab}$
\]

DAWG of

\[
S_1 = \text{aabc}$
\]
\[
S_2 = \text{baaba}$
\]
Previous and This Work (Suffix Trees)

<table>
<thead>
<tr>
<th>Right-to-Left Fully-Online Suffix Tree</th>
<th>Construction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm</td>
<td>single string</td>
</tr>
<tr>
<td>Weiner</td>
<td>$O(n \log \sigma)$</td>
</tr>
<tr>
<td>Takagi et al.</td>
<td>$O(n \log \sigma)$</td>
</tr>
<tr>
<td>This work</td>
<td>$O(n (\log \sigma + \log d))$</td>
</tr>
</tbody>
</table>

n: total string length, σ: alphabet size, d: max. # in-coming Weiner links

Both $O(n \log \sigma) \subseteq O(n \log n)$ and $O(n (\log \sigma + \log d)) \subseteq O(n \log n)$ hold

→ The new algorithm achieves the same worst-case complexity on a **weaker model** of computation (**pointer machine**).
Previous and This Work (DAWGs)

<table>
<thead>
<tr>
<th>Left-to-Right Fully-Online DAWG Construction Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm</td>
</tr>
<tr>
<td>Blumer et al.</td>
</tr>
<tr>
<td>Takagi et al.</td>
</tr>
<tr>
<td>This work</td>
</tr>
</tbody>
</table>

n: total string length, σ: alphabet size, d: max. # in-coming Weiner links

Takagi et al.’s method only maintains an implicit representation of DAWG.

→ The new algorithm is the **first non-trivial algorithm** that maintains an **explicit representation of DAWG** for fully-online multiple stings.
Pointer Machine [cf. Tarjan 1979]

- The **pointer machine** is an abstract model of computation where the state of computation is stored as a digraph. Each node contains a constant number of data and pointers.

- The pointer machine supports instructions (1)-(3):
 1. creating / deleting nodes and pointers;
 2. manipulating data;
 3. performing comparisons,

but it **does NOT support** word RAM instructions (4)-(5):
 4. address arithmetics;
 5. unit-cost bit-wise operations.

- Still, the pointer machine serves as a good basis for modelling linked structures such as trees and graphs.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Find the lowest ancestor ν of leaf T that has Weiner link with character a.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Find the lowest ancestor v of leaf T that has Weiner link with character a.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Find the lowest ancestor ν of leaf T that has Weiner link with character a.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Follow the Weiner link labeled a from v.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Follow the Weiner link labeled a from v.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Follow the Weiner link labeled a from v.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Follow the Weiner link labeled a from v.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Split the incoming edge at string depth $|av| = |v| + 1$.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Split the incoming edge at string depth $|av| = |v| + 1$.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Redirect soft Weiner links.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Redirect soft Weiner links.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Insert new leaf for aT as a child of av.

Diagram showing the process of updating the string T to aT and inserting a new leaf for aT as a child of av. The diagram includes arrows indicating the direction of the string updates and the location of the new leaf.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Insert new leaf for aT as a child of av.
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

BEFORE

AFTER
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

Before

Online single string

$$\sum_{i=1}^{n} r_i \in O(n)$$

[Blumer et al. 1985]

Fully-online multiple strings

$$\sum_{i=1}^{n} r_i \in \Omega(n^{1.5})$$

[Takagi et al. 2020]
Weiner’s Algorithm (Blumer et al. version)

Update string T to aT.

To avoid the $\Omega(n^{1.5})$ work, we reduce the sub-problem of redirecting Weiner links to the ordered split-insert-find problem.
Ordered Split-Insert-Find

The *ordered split-insert-find* problem is to maintain a data structure on ordered sets which supports the following operations and queries efficiently:

- **Make-set**, which creates a new list that consists only of a single element;
- **Split**, which splits a given set into two disjoint sets, so that one set contains only smaller elements than the other set;
- **Insert**, which inserts a new single element to a given set;
- **Find**, which answers the name of the set that a given element belongs to.
Reduction to Ordered Split-Insert-Find

Maintain the set of string depths of origin nodes of Weiner links

BEFORE

\{s_1, s_2, s_3, s_4, s_5, s_6\}
Reduction to Ordered Split-Insert-Find

Maintain the set of string depths of origin nodes of Weiner links

BEFORE

{\{s_1, s_2, s_3, s_4, s_5, s_6\}}

AFTER

{\{s_1, s_2, s_3\}}

{\{s_4, s_5, s_6\}}
Reduction to Ordered Split-Insert-Find

BEFORE

AFTER

av is the parent of new leaf aT
Reduction to Ordered Split-Insert-Find

BEFORE

AFTER

New node av copies out-going Weiner links from its child.

av is the parent of new leaf aT
Reduction to Ordered Split-Insert-Find

BEFORE

AFTER

\textit{av} is the parent of new leaf \textit{aT}
Ordered Split-Insert-Find by AVL-trees

For each suffix tree node u, we maintain an AVL tree such that each AVL tree node stores the string depth of the origin node of an in-coming Weiner link.

AVL tree for node u

Works on the pointer machine.
Ordered Split-Insert-Find by AVL-trees

Now, each Weiner link to a suffix tree node u points to the corresponding node in the AVL tree for node u. The root of this AVL tree is connected to suffix tree node u.

![AVL tree for node u]
Ordered Split-Insert-Find by AVL-trees

An AVL tree of d elements supports operations
Make-set, Split, Inert, and Find in $O(\log d)$ time each.

$\Rightarrow O(\log d)$-time maintenance of Weiner links.

BEFORE

AFTER

AVL tree for node u

AVL tree for node av

AVL tree for node u
Splitting an AVL-tree

- Let X be an AVL tree for the set $\{s_1, \ldots, s_d\}$ of integers.
- Given an element s_j in the set, we split the AVL tree X into two AVL trees, X_1 for $\{s_1, \ldots, s_j\}$ and X_2 for $\{s_{j+1}, \ldots, s_d\}$.
- This split operation can be done in $O(\log d)$ time (next slide).
Splitting an AVL-tree

- Consider the search path for s_j in the AVL tree X.
- By splitting X with this path, we obtain
 - green nodes and subtrees containing elements at most s_j
 - orange nodes and subtrees containing elements larger than s_j
- Using monotonicity, we can merge each of them in $O(\log d)$ time.
Main Results

Theorem 1

There is a pointer-machine algorithm which builds the **suffix tree** of **right-to-left** fully-online multiple strings in $O(n (\log \sigma + \log d))$ time and $O(n)$ space. Each suffix-tree edge traversal takes $O(\log \sigma)$ time.

Theorem 2

There is a pointer-machine algorithm which builds the **DAWG** of **left-to-right** fully-online multiple strings in $O(n (\log \sigma + \log d))$ time and $O(n)$ space. Each DAWG-edge traversal takes $O(\log \sigma + \log d)$ time.

n: total string length, σ: alphabet size, d: max. # in-coming Weiner links
Conclusions and Open Question

We proposed pointer-machine algorithms for fully-online construction of suffix trees and DAWGs on multiple strings running in \(O(n (\log \sigma + \log d)) \) time and \(O(n) \) space.

We have not found an instance where the \(n \log d \) term in our time complexity becomes \(\Theta(n \log n) \) or \(\omega(n) \).

We have only found a bad instance which requires sub-linear \(\Omega(\sqrt{n} \log n) \) work to maintain the AVL trees.

Would it be possible to construct suffix trees / DAWGs for fully-online multiple multiple strings in \(O(n \log \sigma) \) time on the pointer machine?