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Overview of This Work

 We will consider suffix trees and DAWGs as indexing 
structures for fully-online multiple strings.

 For suffix trees, we propose a Weiner-type algorithm 
where strings grow from right to left.

 For DAWGs, we propose a Blumer et al.-type algorithm
where strings grow from left to right.

 Our model of computation is the pointer machine that 
is strictly weaker than the word RAM.



Suffix Trees

T1 = cabaa$
T2 = abaab#

The suffix tree of multiple strings is a 
path-compressed trie that represents 
all suffixes of the strings.
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Suffix Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
b

suffix links
a
c

b
a

a
$

If av is a node and a is a character,
then suffix_link(av) = v.
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Hard Weiner Links 
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hard Weiner links.
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Soft Weiner Links 
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Soft Weiner Links 
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Soft Weiner Links 
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DAWGs

S1 = $aabac
S2 = #baaba

The DAWG of multiple strings is a 
linear-size automaton that recognizes 
all substrings of the strings.
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Duality of Suffix Trees and DAWGs

S1 = $aabac
S2 = #baabaDAWG of T1 = cabaa$

T2 = abaab#Suffix Tree of 

A) There is a one-to-one correspondence between 
the nodes of the suffix tree of strings and 
the nodes of the DAWG of the reversed strings.

19 nodes 19 nodes



Duality of Suffix Trees and DAWGs

S1 = $aabac
S2 = #baabaDAWG of T1 = cabaa$

T2 = abaab#Suffix Tree of 

B) There is a one-to-one correspondence between
the Weiner links of the suffix tree of strings and
the edges of the DAWG of the reversed strings.



Previous and This Work (Suffix Trees)
Right-to-Left Fully-Online Suffix Tree Construction Time

algorithm single string multiple strings model

Weiner O(n log σ) Ω(n1.5) pointer 
machine

Takagi et al. O(n log σ) O(n log σ) word RAM

This work O(n (log σ + log d)) O(n (log σ + log d)) pointer 
machine

n : total string length ,  σ : alphabet size,  d : max. # in-coming Weiner links

Both O(n log σ) ⊆ O(n log n) and O(n (log σ + log d)) ⊆ O(n log n) hold

 The new algorithm achieves the same worst-case complexity 
on a weaker model of computation (pointer machine).



Previous and This Work (DAWGs)

n : total string length ,  σ : alphabet size,  d : max. # in-coming Weiner links

Takagi et al.’s method only maintains an implicit representation of DAWG. 

 The new algorithm is the first non-trivial algorithm that maintains
an explicit representation of DAWG for fully-online multiple stings.

Left-to-Right Fully-Online DAWG Construction Time
algorithm single string multiple strings model

Blumer et al. O(n log σ) Ω(n1.5) pointer 
machine

Takagi et al. O(n log σ) O(n log σ) word RAM

This work O(n (log σ + log d)) O(n (log σ + log d)) pointer 
machine



Pointer Machine [cf. Tarjan 1979]

 The pointer machine is an abstract model of computation 
where the state of computation is stored as a digraph.
Each node contains a const. number of data and pointers.

 The pointer machine supports instructions (1)-(3):
(1)  creating / deleting nodes and pointers;
(2)  manipulating data;
(3)  performing comparisons,
but it does NOT support word RAM instructions (4)-(5):
(4)  address arithmetics;
(5)  unit-cost bit-wise operations.

 Still, the pointer machine serves as a good basis for 
modelling linked structures such as trees and graphs.



Weiner’s Algorithm (Blumer et al. version)
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Weiner’s Algorithm (Blumer et al. version)
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Weiner’s Algorithm (Blumer et al. version)
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Weiner’s Algorithm (Blumer et al. version)
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Weiner’s Algorithm (Blumer et al. version)
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Weiner’s Algorithm (Blumer et al. version)

ri : # of redirected
Weiner links
at ith iteration.

Online single string                :  ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖 ∈ 𝑂𝑂(𝑛𝑛) [Blumer et al. 1985]
Fully-online multiple strings :  ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖 ∈ Ω(𝑛𝑛1.5) [Takagi et al. 2020]



Weiner’s Algorithm (Blumer et al. version)

ri : # of redirected
Weiner links
at ith iteration.

To avoid the Ω(n1.5) work, we reduce the sub-problem of 
redirecting Weiner links to the ordered split-insert-find problem. 



Ordered Split-Insert-Find
The ordered split-insert-find problem is to maintain 
a data structure on ordered sets which supports the following 
operations and queries efficiently:

• Make-set, which creates a new list that consists only of a 
single element;

• Split, which splits a given set into two disjoint sets, so that 
one set contains only smaller elements than the other set;

• Insert, which inserts a new single element to a given set;

• Find, which answers the name of the set that a given 
element belongs to.
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Reduction to Ordered Split-Insert-Find
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Reduction to Ordered Split-Insert-Find
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Reduction to Ordered Split-Insert-Find
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Reduction to Ordered Split-Insert-Find
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Ordered Split-Insert-Find by AVL-trees
For each suffix tree node u, we maintain an AVL tree such that 
each AVL tree node stores the string depth of the origin node of 
an in-coming Weiner link.

AVL tree for node u
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Ordered Split-Insert-Find by AVL-trees
Now, each Weiner link to a suffix tree node u points to 
the corresponding node in the AVL tree for node u.
The root of this AVL tree is connected to suffix tree node u.

AVL tree for node u
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Ordered Split-Insert-Find by AVL-trees
An AVL tree of d elements supports operations 
Make-set, Split, Inert, and Find in O(log d) time each.

 O(log d)-time maintenance of Weiner links.
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Splitting an AVL-tree

 Let X be an AVL tree for the set {s1, ..., sd} of integers.
 Given an element sj in the set, we split the AVL tree X into 

two AVL trees, X1 for {s1, ..., sj} and X2 for {sj+1, ..., sd}. 
 This split operation can be done in O(log d) time 

(next slide).

X
X1

X2



Splitting an AVL-tree
 Consider the search path for sj in the AVL tree X．
 By splitting X with this path, we obtain

- green nodes and subtrees containing elements at most sj
- orange nodes and subtrees containing elements larger than sj

 Using monotonicity, we can merge each of them in O(log d) time.

X

sj



Main Results

There is a pointer-machine algorithm which builds the 
suffix tree of right-to-left fully-online multiple strings in 
O(n (log σ + log d)) time and O(n) space. 
Each suffix-tree edge traversal takes O(log σ) time.

Theorem 1

There is a pointer-machine algorithm which builds the 
DAWG of left-to-right fully-online multiple strings in 
O(n (log σ + log d)) time and O(n) space. 
Each DAWG-edge traversal takes O(log σ + log d) time.

Theorem 2

n : total string length ,  σ : alphabet size,  d : max. # in-coming Weiner links



Conclusions and Open Question
We proposed pointer-machine algorithms for fully-online 
construction of suffix trees and DAWGs on multiple strings 
running in O(n (log σ + log d)) time and O(n) space.

We have not found an instance where the n log d term in 
our time complexity becomes Θ(n log n) or ω(n).

We have only found a bad instance which requires 
sub-linear Ω 𝑛𝑛 log𝑛𝑛 work to maintain the AVL trees.

Would it be possible to construct suffix trees / DAWGs for 
fully-online multiple strings in O(n log σ) time on the 
pointer machine?
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