
Pointer-Machine Algorithms for
Fully-Online Construction of Suffix
Trees and DAWGs on Multiple Strings

Shunsuke Inenaga
Kyushu University, Japan

PSC 2020

Fully-Online Indexing of Multiple Strings

s1

s2

s3

index
usersensors

abcaabT1

ccT2

bcdaxT3

 Goal: Indexing multiple strings in a fully-online
manner where each string can grow any time.

 Motivation: Indexing multi online/streaming data.
 Sensing data, trajectory data, SNS, etc.

Fully-Online Indexing of Multiple Strings
 Goal: Indexing multiple strings in a fully-online

manner where each string can grow any time.
 Motivation: Indexing multi online/streaming data.
 Sensing data, trajectory data, SNS, etc.

s1

s2

s3

index
usersensors

abcaabT1

ccT2

bcdaxT3

a a

s1

s2

s3

index
usersensors

abcaabT1

ccaT2

bcdaxT3

c c

 Goal: Indexing multiple strings in a fully-online
manner where each string can grow any time.

 Motivation: Indexing multi online/streaming data.
 Sensing data, trajectory data, SNS, etc.

Fully-Online Indexing of Multiple Strings

s1

s2

s3

index
usersensors

abcaabcT1

ccaT2

bcdaxT3

bc?

 Goal: Indexing multiple strings in a fully-online
manner where each string can grow any time.

 Motivation: Indexing multi online/streaming data.
 Sensing data, trajectory data, SNS, etc.

Fully-Online Indexing of Multiple Strings

Overview of This Work

 We will consider suffix trees and DAWGs as indexing
structures for fully-online multiple strings.

 For suffix trees, we propose a Weiner-type algorithm
where strings grow from right to left.

 For DAWGs, we propose a Blumer et al.-type algorithm
where strings grow from left to right.

 Our model of computation is the pointer machine that
is strictly weaker than the word RAM.

Suffix Trees

T1 = cabaa$
T2 = abaab#

The suffix tree of multiple strings is a
path-compressed trie that represents
all suffixes of the strings.

a
$
#

a
a

$

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
b

a
c

b
a

a
$

[Weiner 1973]

Suffix Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
b

suffix links
a
c

b
a

a
$

If av is a node and a is a character,
then suffix_link(av) = v.

Suffix Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

#

#
b

a $

$
#
b

b

a
a

$

#
b

#

If av is a node and a is a character,
then suffix_link(av) = v.

b

cabaa$

abaa$

aa

a
suffix links

a
c

b
a

a
$

Hard Weiner Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

a

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
c

b
a

a
$

b

c

abaa$

aa

a

cabaa$

a

The reversed suffix links with
character labels are called
hard Weiner links.

hard Weiner links

Not all links are shown.

Soft Weiner Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

a

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
c

b
a

a
$

b

c

Soft Weiner links are
“generalized” Weiner links.

hard Weiner links

soft Weiner links

Not all links are shown.

a
c

There is no node
for cabaa.

Soft Weiner Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

a

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
c

b
a

a
$

b

c

Soft Weiner links are
“generalized” Weiner links.

hard Weiner links

soft Weiner links

Not all links are shown.

a

Soft Weiner link
of node v with
label c points to
the child node of
locus for cv.

c

Soft Weiner Links

a
$
#T1 = cabaa$

T2 = abaab#

a
a

$

a

#

#
b

a $

$
#
b

b

a
a

$

#
b

#
c

b
a

a
$

b

c

a

Soft Weiner links are
“generalized” Weiner links.

hard Weiner links

soft Weiner links

c

c

c

c

b

Not all links are shown.

DAWGs

S1 = $aabac
S2 = #baaba

The DAWG of multiple strings is a
linear-size automaton that recognizes
all substrings of the strings.

a

#

b
a

a
b

a

b

c

a

c

b

a

a

$

[Blumer et al. 1987]

c

b

a

c

c
a

b

a

a

Duality of Suffix Trees and DAWGs

S1 = $aabac
S2 = #baabaDAWG of T1 = cabaa$

T2 = abaab#Suffix Tree of

A) There is a one-to-one correspondence between
the nodes of the suffix tree of strings and
the nodes of the DAWG of the reversed strings.

19 nodes 19 nodes

Duality of Suffix Trees and DAWGs

S1 = $aabac
S2 = #baabaDAWG of T1 = cabaa$

T2 = abaab#Suffix Tree of

B) There is a one-to-one correspondence between
the Weiner links of the suffix tree of strings and
the edges of the DAWG of the reversed strings.

Previous and This Work (Suffix Trees)
Right-to-Left Fully-Online Suffix Tree Construction Time

algorithm single string multiple strings model

Weiner O(n log σ) Ω(n1.5) pointer
machine

Takagi et al. O(n log σ) O(n log σ) word RAM

This work O(n (log σ + log d)) O(n (log σ + log d)) pointer
machine

n : total string length , σ : alphabet size, d : max. # in-coming Weiner links

Both O(n log σ) ⊆ O(n log n) and O(n (log σ + log d)) ⊆ O(n log n) hold

 The new algorithm achieves the same worst-case complexity
on a weaker model of computation (pointer machine).

Previous and This Work (DAWGs)

n : total string length , σ : alphabet size, d : max. # in-coming Weiner links

Takagi et al.’s method only maintains an implicit representation of DAWG.

 The new algorithm is the first non-trivial algorithm that maintains
an explicit representation of DAWG for fully-online multiple stings.

Left-to-Right Fully-Online DAWG Construction Time
algorithm single string multiple strings model

Blumer et al. O(n log σ) Ω(n1.5) pointer
machine

Takagi et al. O(n log σ) O(n log σ) word RAM

This work O(n (log σ + log d)) O(n (log σ + log d)) pointer
machine

Pointer Machine [cf. Tarjan 1979]

 The pointer machine is an abstract model of computation
where the state of computation is stored as a digraph.
Each node contains a const. number of data and pointers.

 The pointer machine supports instructions (1)-(3):
(1) creating / deleting nodes and pointers;
(2) manipulating data;
(3) performing comparisons,
but it does NOT support word RAM instructions (4)-(5):
(4) address arithmetics;
(5) unit-cost bit-wise operations.

 Still, the pointer machine serves as a good basis for
modelling linked structures such as trees and graphs.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Find the lowest ancestor v of
leaf T that has Weiner link
with character a.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Find the lowest ancestor v of
leaf T that has Weiner link
with character a.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Find the lowest ancestor v of
leaf T that has Weiner link
with character a.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Follow the Weiner link
labeled a from v.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Follow the Weiner link
labeled a from v.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Follow the Weiner link
labeled a from v.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Follow the Weiner link
labeled a from v.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Split the incoming edge
at string depth |av| = |v|+1.

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Split the incoming edge
at string depth |av| = |v|+1.

av

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

va
a
a

a

Redirect soft Weiner links.

av

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

v
a
a

a
a

Redirect soft Weiner links.

av

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

v
a
a

a
a

Insert new leaf for aT
as a child of av.

av

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

v
a
a

a
a

Insert new leaf for aT
as a child of av.

av

aT

Weiner’s Algorithm (Blumer et al. version)

a

T

a

a

a

Update string T to aT.

v
a
a

a
a

av

aT

a

T

a

a

a

va
a
a

a

BEFORE AFTER

Weiner’s Algorithm (Blumer et al. version)

ri : # of redirected
Weiner links
at ith iteration.

Online single string : ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖 ∈ 𝑂𝑂(𝑛𝑛) [Blumer et al. 1985]
Fully-online multiple strings : ∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖 ∈ Ω(𝑛𝑛1.5) [Takagi et al. 2020]

Weiner’s Algorithm (Blumer et al. version)

ri : # of redirected
Weiner links
at ith iteration.

To avoid the Ω(n1.5) work, we reduce the sub-problem of
redirecting Weiner links to the ordered split-insert-find problem.

Ordered Split-Insert-Find
The ordered split-insert-find problem is to maintain
a data structure on ordered sets which supports the following
operations and queries efficiently:

• Make-set, which creates a new list that consists only of a
single element;

• Split, which splits a given set into two disjoint sets, so that
one set contains only smaller elements than the other set;

• Insert, which inserts a new single element to a given set;

• Find, which answers the name of the set that a given
element belongs to.

{s1, s2, s3, s4, s5, s6}

Reduction to Ordered Split-Insert-Find

s6

s5

s4

s3

s2

s1

Maintain the set of string depths of origin nodes of Weiner links

{s1, s2, s3, s4, s5, s6}

Reduction to Ordered Split-Insert-Find

{s4, s5, s6}

{s1, s2, s3}

Maintain the set of string depths of origin nodes of Weiner links

s6

s5

s4

s3

s2

s1

s6

s5

s4

s3

s2

s1

Reduction to Ordered Split-Insert-Find

b

b

c

c

b

b

c

c

av

BEFORE AFTER

av is the parent of new leaf aT

b b

Reduction to Ordered Split-Insert-Find

b

b

b c

c

b

b

b c

c

c
b

av

BEFORE AFTER

av is the parent of new leaf aT

New node av copies
out-going Weiner
links from its child.

Reduction to Ordered Split-Insert-Find

b

b

b c

c

b

b

b c

c

c
b

av

Insert |av|
Insert |av|

BEFORE AFTER

av is the parent of new leaf aT

Ordered Split-Insert-Find by AVL-trees
For each suffix tree node u, we maintain an AVL tree such that
each AVL tree node stores the string depth of the origin node of
an in-coming Weiner link.

AVL tree for node u

s6

s5

s4

s3

s2

s1

u

Works on the
pointer machine.

Ordered Split-Insert-Find by AVL-trees
Now, each Weiner link to a suffix tree node u points to
the corresponding node in the AVL tree for node u.
The root of this AVL tree is connected to suffix tree node u.

AVL tree for node u

a

a

a

a
a

a

a

u s6

s5

s4

s3

s2

s1

T

s3

s2

s1

s5

s4 s6

Ordered Split-Insert-Find by AVL-trees
An AVL tree of d elements supports operations
Make-set, Split, Inert, and Find in O(log d) time each.

 O(log d)-time maintenance of Weiner links.

a

aT

a
a

a
a

a

a

av

u

AVL tree
for node av

AVL tree for node u

BEFORE AFTER

s6

s5

s4

s3

s2

s1

T T

Splitting an AVL-tree

 Let X be an AVL tree for the set {s1, ..., sd} of integers.
 Given an element sj in the set, we split the AVL tree X into

two AVL trees, X1 for {s1, ..., sj} and X2 for {sj+1, ..., sd}.
 This split operation can be done in O(log d) time

(next slide).

X
X1

X2

Splitting an AVL-tree
 Consider the search path for sj in the AVL tree X．
 By splitting X with this path, we obtain

- green nodes and subtrees containing elements at most sj
- orange nodes and subtrees containing elements larger than sj

 Using monotonicity, we can merge each of them in O(log d) time.

X

sj

Main Results

There is a pointer-machine algorithm which builds the
suffix tree of right-to-left fully-online multiple strings in
O(n (log σ + log d)) time and O(n) space.
Each suffix-tree edge traversal takes O(log σ) time.

Theorem 1

There is a pointer-machine algorithm which builds the
DAWG of left-to-right fully-online multiple strings in
O(n (log σ + log d)) time and O(n) space.
Each DAWG-edge traversal takes O(log σ + log d) time.

Theorem 2

n : total string length , σ : alphabet size, d : max. # in-coming Weiner links

Conclusions and Open Question
We proposed pointer-machine algorithms for fully-online
construction of suffix trees and DAWGs on multiple strings
running in O(n (log σ + log d)) time and O(n) space.

We have not found an instance where the n log d term in
our time complexity becomes Θ(n log n) or ω(n).

We have only found a bad instance which requires
sub-linear Ω 𝑛𝑛 log𝑛𝑛 work to maintain the AVL trees.

Would it be possible to construct suffix trees / DAWGs for
fully-online multiple strings in O(n log σ) time on the
pointer machine?

	Pointer-Machine Algorithms for Fully-Online Construction of Suffix Trees and DAWGs on Multiple Strings
	Fully-Online Indexing of Multiple Strings
	Fully-Online Indexing of Multiple Strings
	Fully-Online Indexing of Multiple Strings
	Fully-Online Indexing of Multiple Strings
	Overview of This Work
	Suffix Trees
	Suffix Links
	Suffix Links
	Hard Weiner Links
	Soft Weiner Links
	Soft Weiner Links
	Soft Weiner Links
	DAWGs
	Duality of Suffix Trees and DAWGs
	Duality of Suffix Trees and DAWGs
	Previous and This Work (Suffix Trees)
	Previous and This Work (DAWGs)
	Pointer Machine [cf. Tarjan 1979]
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Weiner’s Algorithm (Blumer et al. version)
	Ordered Split-Insert-Find
	Reduction to Ordered Split-Insert-Find
	Reduction to Ordered Split-Insert-Find
	Reduction to Ordered Split-Insert-Find
	Reduction to Ordered Split-Insert-Find
	Reduction to Ordered Split-Insert-Find
	Ordered Split-Insert-Find by AVL-trees
	Ordered Split-Insert-Find by AVL-trees
	Ordered Split-Insert-Find by AVL-trees
	Splitting an AVL-tree
	Splitting an AVL-tree
	Main Results
	Conclusions and Open Question

