Simple KMP Pattern-Matching on Indeterminate Strings

Neerja Mhaskar and W. F. Smyth

Neerja Mhaskar

Dept. of Computing and Software, McMaster University, Canada

Prague Stringology Conference, August 31 – September 2, 2020
Outline

- Introduction
- Encoding
- KMP algorithm
- KMP style algorithm for indeterminate strings
- Open problems
Introduction

Given a fixed finite alphabet $\Sigma = \{\lambda_1, \lambda_2, \ldots, \lambda_\sigma\}$.

A **regular letter**, also called a **character**, is any single element of Σ.

For example, for the DNA alphabet $\Sigma_{DNA} = \{a, c, g, t\} = a, c, g, t$ are all regular letters.

An **indeterminate letter** is any subset of Σ of cardinality greater than one.

Some examples of an indeterminate letter over $\Sigma_{DNA} = \{a, c, g, t\}$ are $\{a, c\}$, $\{a, g, t\}$, and $\{a, c, g, t\}$.
Introduction

A regular string $x = x[1..n]$ on Σ is an array of regular letters drawn from Σ.

An indeterminate string $x[1..n]$ on Σ is an array of letters drawn from Σ, of which at least one is indeterminate.

Whenever entries $x[i]$ and $x[j]$, $1 \leq i, j \leq n$, both contain the same character (possibly other characters as well), we say that $x[i]$ matches $x[j]$ and write $x[i] \approx x[j]$.
Encoding for Indeterminate Strings

- We propose a new encoding for indeterminate strings using prime numbers and the GCD operation.

- We make use of a mapping $f : \Sigma \rightarrow P$, where P is the set of the first $|\Sigma| = \sigma$ prime numbers, such that each element of Σ uniquely maps to an element of P.

For example, for $\Sigma_{DNA} = \{a, c, g, t\}$, a possible mapping is $f : a \rightarrow 2, c \rightarrow 3, g \rightarrow 5, t \rightarrow 7$.
Then given $x = x[1..n]$ on Σ (the source string), we apply the mapping f to compute $y = y[1..n]$ (the mapped string) according to the following rule:

(R) For every $x[i] = \{\lambda_1, \lambda_2, \ldots, \lambda_k\}$, $1 \leq k \leq \sigma$, $1 \leq i \leq n$, where $\lambda_h \in \Sigma$, $1 \leq h \leq k$, set

$$y[i] \leftarrow \prod_{h=1}^{k} f(\lambda_h), \text{ where } \lambda_h \in x[i].$$

For example, consider a source string $x = a\{a, c\}g\{a, t\}t\{c, g\}$, over Σ_{DNA}, and $\sigma = 4$. Let the mapping be $f : a \rightarrow 2, c \rightarrow 3, g \rightarrow 5, t \rightarrow 7$.

Applying Rule (R) for $1 \leq k \leq 4$, we compute the mapped string $y = 2/6/5/14/7/15$.
The mapping f and Rule (R) allows an ordering on the indeterminate letters drawn from Σ.

For example, for the above example and mapping,

$$a = 2 < g = 5 < \{a, c\} = 6 < t = 7 < \{a, t\} = 14 < \{c, g\} = 15.$$

On the other hand, for the same example, a different mapping (say, $f : t \rightarrow 2, c \rightarrow 3, a \rightarrow 5, g \rightarrow 7$) yields $y = 5/15/7/10/2/21$ with a quite different ordering,

$$t = 2 < a = 5 < g = 7 < \{a, t\} = 10 < \{a, c\} = 15 < \{c, g\} < 21.$$
Lemma (1)

If \(y \) is computed from \(x \) by Rule (R), then for every \(i_1, i_2 \in 1..n \), \(x[i_1] \approx x[i_2] \) if and only if \(\gcd(y[i_1], y[i_2]) > 1 \).

Two strings \(x_1 \) and \(x_2 \) of equal length \(n \) are said to be **isomorphic** if and only if for every \(i, j \in \{1, \ldots, n\} \),

\[
x_1[i] \approx x_1[j] \iff x_2[i] \approx x_2[j].
\]

(1)

We thus have the following observations:

Observation (1)

If \(x \) is an indeterminate string on \(\Sigma \), and \(y \) is the numerical string constructed by applying Rule (R) to \(x \), then \(x \) and \(y \) are isomorphic.

Observation (2)

By virtue of Lemma 1 and (1), \(y \) can overwrite the space required for \(x \) (and vice versa) with no loss of information.
Observation (3)

Suppose ℓ_1 and ℓ_2 are integers representable in at most B bits. Then $\gcd(\ell_1, \ell_2)$ can be computed in $O(M_B \log B)$ time, where M_B denotes the maximum time required to compute $\ell_1 \ell_2$ over all such integers.

Then for example when $\sigma = 4$, corresponding to Σ_{DNA}, $2 \times 3 \times 5 \times 7 = 210 < 256$, and so $B = 8$ and the matching time is $O(M_8 \log 8) = O(3M_8)$. Similarly for $\sigma = 9$ the time required to match any two indeterminate letters is $O(5M_{32})$.

Observation (4)

We assume therefore that, for $\sigma \leq 9$, computing a match between $x[i_1]$ and $x[i_2]$ on Σ (that is, between $y[i_1]$ and $y[i_2]$ computed using Rule (R)) requires time bounded above by a (small) constant.
Pattern matching in strings

A **border array** \(\beta_x = \beta_x[1..n] \) of \(x \) is an integer array where for every \(i \in [1..n] \), \(\beta_x[i] \) is the length of the longest border of \(x[1..i] \).

A **prefix array** \(\pi_x = \pi_x[1..n] \) of \(x \) is an integer array where for every \(i \in [1..n] \), \(\pi_x[i] \) is the length of the longest substring starting at position \(i \) that matches a prefix of \(x \).

<table>
<thead>
<tr>
<th>1 2 3 4 5 6 7 8 9 10 11 12 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>x a a b a a b a a a {a, b} b a a a {a, c}</td>
</tr>
<tr>
<td>(\beta_x) 0 1 0 1 2 3 4 5 6 3 4 5 2</td>
</tr>
<tr>
<td>(\pi_x) 13 1 0 6 1 0 3 5 1 0 2 2 1</td>
</tr>
</tbody>
</table>

Figure 1: Border array \(\beta_x \) and prefix array \(\pi_x \) computed for the string \(x = aabaabaa\{a, b\}baa\{a, c\} \).
Lemma ([AHU74])

The border array and prefix array of a regular string of length n can be computed in $O(n)$ time.

Lemma ([Smy03, SW08])

The border array and prefix array of an indeterminate string of length n can be computed in $O(n^2)$ time in the worst-case, $O(n)$ in the average case.

Lemma ([IR16])

The prefix array of an indeterminate string of length n over a constant-sized alphabet can be computed in $O(n\sqrt{n})$ time and $O(n)$ space.
The Knuth-Morris-Pratt (KMP) Algorithm

- The most famous pattern-matching algorithm.
- It computes the **border** of every prefix of p; that is, computes the border array of p (BA_p) to compute the shift.

![Diagram of KMP algorithm](image)

```
1    i    n
x . . . a . . .
1    j    m
p   b . . .
match
```
The KMP Algorithm - 2

The Longest border of $p[1..j-1]$ equals $x[i..n]$.

Diagram shows:
- String x with characters i to n.
- Pattern p with characters j to m.
- Longest border of $p[1..j-1]$ is shaded.
The KMP Algorithm - 3
KMP\textsubscript{Indet} - Simple KMP style algorithm for indeterminate strings

- KMP\textsubscript{Indet} is a hybrid algorithm - works for both regular and indeterminate strings.
- If input is regular, KMP\textsubscript{Indet} is the classical KMP algorithm, and uses the border array of p to compute shifts.
- Otherwise, it checks if the matched prefix of p and the matched substring of x are regular.
 - If yes, it uses the border array of p to compute the shift.
 - Otherwise, it constructs a new string p' from the longest proper prefix of the matched pattern p and the longest proper suffix of the matched substring of the text x, and computes the prefix array of p' to compute the shift.
If the matched prefix of p and the matched substring of x are both regular, KMP_Indet uses the border array of p (β_p) to compute the shift.
If \(p' \) is indeterminate, \texttt{KMP_INDET} constructs the prefix array of \(p' \) (\(\pi_{p'} \)) to compute the shift.

The shift is the maximum value in the second half of the prefix array (\(\pi_{p'} \)), say at position \(k \), such that a prefix of \(p' \) matches the entire suffix at \(k \).
The example below simulates the execution of KMP\textsubscript{Indet} on the text $x = aabaabaa\{a, b\}baa\{a, c\}$ and pattern $p = aabaa$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td></td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td></td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

When pattern is aligned at positions 1 and 4, KMP\textsubscript{Indet} uses the BA_p to compute the shift.

When pattern is aligned at position 7, a mismatch occurs at index 10. Also, $p' = aba\{a, b\}$ is indeterminate. Therefore, we compute the prefix array of p' ($\pi_{p'} = (4, 0, 2, 1)$). Since the shift is 2, pattern is aligned at position 8.

After execution, KMP\textsubscript{Indet} returns the list of positions $\{1, 4, 8\}$ at which p occurs in x.
Running time of KMP_Indet

Theorem (1)

Given text $y = y[1..n]$ and pattern $q = q[1..m]$ on an alphabet of constant size σ, KMP_Indet executes in $O(n)$ time when y and q are both regular; otherwise, when both are indeterminate, the worst-case upper bound is $O(m^2n)$. The algorithm’s additional space requirement is $O(m)$, for the pattern q' and corresponding arrays $\beta_{q'}$ and $\pi_{q'}$.

Using Lemma [IR16] we restate Theorem (1) resulting in an improved run time complexity for KMP_Indet.

Theorem (1)

Given text $y = y[1..n]$ and pattern $q = q[1..m]$ on an alphabet of constant size σ, KMP_Indet executes in $O(n)$ time when y and q are both regular; otherwise, when both are indeterminate, the worst-case upper bound is $O(nm^2\sqrt{m})$. The algorithm’s additional space requirement is $O(m)$, for the pattern q' and corresponding arrays $\beta_{q'}$ and $\pi_{q'}$.
Pattern matching in conservative indeterminate strings

A **conservative indeterminate string** is an indeterminate string in which the number of indeterminate letters is bounded above by a constant \(k \geq 0 \).

- Crochemore et. al in [CIK+16] proposed an \(O(nk) \) algorithm which uses suffix trees and other auxiliary data structures to search for pattern \(p \) in the text \(x \). The number of indeterminate letters in \(x \) and \(p \) is bounded by a constant \(k \).

- Daykin et. al in [DGG+19], proposed a pattern matching algorithm by first constructing the Burrows Wheeler Transform (BWT) of \(x \) in \(O(mn) \) time, and use it to find all occurrences of \(p \) in \(x \) in \(O(km^2 + q) \) time, where \(q \) is the number of occurrences of the pattern in \(x \).

- \texttt{KMP_Indet} on the other hand, requires \(O(n + km^2) \) time in the best case and requires \(O(nm^2) \) in the worst case.
In the paper, we present a simple KMP style pattern matching algorithm (KMP\textsubscript{Indet}) for indeterminate strings that is very efficient in cases that arise in practice.

Further, the algorithm uses negligible $\Theta(m)$ space in all cases.

We conjecture that a similar approach is feasible for the Boyer-Moore algorithm [BM77], together with its numerous variants (BM-Horspool, BM-Sunday, BM-Galil, Turbo-BM): see [Smy03, Ch. 8] and

https://www-igm.univ-mlv.fr/~lecroq/string/

As a future research problem, we intend to optimize KMP\textsubscript{Indet} for the conservative indeterminate strings.

We also intend to perform experimental comparison of the running times of existing indeterminate pattern-matching algorithms with those of KMP\textsubscript{Indet}, assuming various frequencies of indeterminate letters.
References I

The Design and Analysis of Computer Algorithms.

A fast string searching algorithm.

Linear algorithm for conservative degenerate pattern matching.
References II

In CPM, 2016.

References III

New perspectives on the prefix array.

Thank you!