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Abstract. We consider labeled directed graphs where each vertex is labeled with a
non-empty string. Such labeled graphs are also known as non-linear texts in the litera-
ture. In this paper, we introduce a new problem of comparing two given labeled graphs,
called the SEQ-IC-LCS problem on labeled graphs. The goal of SEQ-IC-LCS is to com-
pute the the length of the longest common subsequence (LCS) Z of two target labeled
graphs G1 = (V1, E1) and G2 = (V2, E2) that includes some string in the constraint
labeled graph G3 = (V3, E3) as its subsequence. Firstly, we consider the case where G1,
G2 and G3 are all acyclic, and present algorithms for computing their SEQ-IC-LCS in
O(|E1||E2||E3|) time and O(|V1||V2||V3|) space. Secondly, we consider the case where
G1 and G2 can be cyclic and G3 is acyclic, and present algorithms for computing their
SEQ-IC-LCS in O(|E1||E2||E3| + |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space,
where Σ is the alphabet.

1 Introduction

We consider labeled (directed) graphs where each vertex is labeled with a non-empty
string. Such labeled graphs are also known as non-linear texts or hypertexts in
the literature. Labeled graphs are a natural generalization of usual (unary-path)
strings, which can also be regarded as a compact representation of a set of strings.
After introduced by the Database community [13], labeled graphs were then
considered by the string matching community [21,23,2,22,16,17,10]. Recently, graph
representations of large-scale string sets appear in the real-world applications
including graph databases [3] and pan-genomics [14]. For instance, elastic degenerate
strings [18,4,8,19,7], which recently gain attention with bioinformatics background,
can be regarded as a special case of labeled graphs. In the best case, a single labeled
graph can represent exponentially many strings. Thus, efficient string algorithms
that directly work on labeled graphs without expansion are of significance both in
theory and in practice.

Shimohira et al. [24] introduced the problem of computing the longest common
subsequence (LCS ) of two given labeled graphs, which, to our knowledge, the first and
the only known similarity measure of labeled graphs. Since we can easily convert any
labeled graph with string labels to an equivalent labeled graph with single character
labels (see Figure 1), in what follows, we evaluate the size of a labeled graph by the
number of vertices and edges in the (converted) graph. Given two labeled graphs
G1 = (V1, E1) and G2 = (V2, E2), Shimohira et al. [24] showed how to solve the LCS
problem on labeled graphs in O(|E1||E2|) time and O(|V1||V2|) space when both G1

and G2 are acyclic, and in O(|E1||E2| + |V1||V2| log |Σ|) time and O(|V1||V2|) space
when G1 and G2 can be cyclic, where Σ is the alphabet. It is noteworthy that their
solution is almost optimal since the quadratic O((|A||B|)1−ϵ)-time conditional lower
bound [1,9] with any constant ϵ > 0 for the LCS problem on two strings A,B also
applies to the LCS problem on labeled graphs.

Yuki Yonemoto, Yuto Nakashima, Shunsuke Inenaga: Computing SEQ-IC-LCS of Labeled Graphs, pp. 3–17.
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The constrained LCS problems on strings, which were first proposed by Tsai [25]
and then extensively studied in the literature [25,12,6,11,15,27,28], use a third input
string P which introduces a-priori knowledge of the user to the solution string Z to
output. The task here is to compute the longest common subsequence Z of two target
strings A and B that meets the condition w.r.t. P , such that

STR-IC-LCS: Z includes (contains) P as substring;
STR-EC-LCS: Z excludes (does not contain) P as substring;
SEQ-IC-LCS: Z includes (contains) P as subsequence;
SEQ-EC-LCS: Z excludes (does not contain) P as subsequence.

While STR-IC-LCS can be solved in O(|A||B|) time [15], the state-of-the-art solutions
to STR-EC-LCS and SEQ-IC/EC-LCS run in O(|A||B||P |) time [12,6,11,27].

In this paper, we consider the SEQ-IC-LCS problems on labeled graphs, where
the inputs are two target labeled graphs G1 = (V1, E1) and G2 = (V2, E2), and a
constraint text G3 = (V3, E3), and the output is (the length of) a longest common
subsequence of G1 and G2 such that Z includes as subsequence some string that
is represented by G3. Firstly, we consider the case where G1, G2 and G3 are all
acyclic, and present algorithms for computing their SEQ-IC-LCS in O(|E1||E2||E3|)
time and O(|V1||V2||V3|) space. Secondly, we consider the case where G1 and G2 can
be cyclic and G3 is acyclic, and present algorithms for computing their SEQ-IC-LCS
in O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space, where Σ is the
alphabet. The time complexities of our algorithms and related work are summarized
in Table 1. Our algorithms for solving SEQ-IC-LCS on labeled graphs are based
on the solutions to SEQ-IC-LCS of usual strings proposed by Chin et al. [12]. We
emphasize that a faster o(|E1||E2||E3|)-time solution to the SEQ-IC-LCS problems
implies a major improvement over the SEQ-IC-LCS problems for strings whose best
known solutions require cubic time.

A related work is the regular language constrained sequence alignment (RLCSA)
problem [5] for two input strings A and B in which the constraint is given as an NFA.
It is known that this problem can be solved in O(|A||B||V |3/ log |V |) time [20], where
|V | denotes the number of states in the NFA.

problem text-1 text-2 text-3 time complexity

LCS

string string - O(|E1||E2|) [26]

DAG DAG - O(|E1||E2|) [24]

graph graph - O(|E1||E2|+ |V1||V2| log |Σ|) [24]

SEQ-IC-LCS

string string string O(|E1||E2||E3|) [12,6]

DAG DAG DAG O(|E1||E2||E3|) [this work]

graph graph DAG O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) [this work]

SEQ-EC-LCS string string string O(|E1||E2||E3|) [11]

STR-IC-LCS string string - O(|E1||E2|) [15]

STR-EC-LCS string string - O(|E1||E2|) [27]

RLCSA string string NFA O(|E1||E2||V3|3/ log |V3|) [20]

Table 1. Time complexities of algorithms for labeled graph/usual string comparisons, for inputs
text-1 G1 = (V1, E1), text-2 G2 = (V2, E2), and text-3 G3 = (V3, E3). Here, a string input of length
n is regarded as a unary path graph G = (V,E) with |E| = n.
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2 Preliminaries

2.1 Strings and Graphs

Let Σ be an alphabet. An element of Σ∗ is called a string. The length of a string
w is denoted by |w|. The empty string, denoted by ε, is a string of length 0. Let
Σ+ = Σ∗ \ {ε}. For a string w = xyz with x, y, z ∈ Σ∗, strings x, y, and z are called
a prefix, substring, and suffix of string w, respectively. The ith character of a string
w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring of w that begins at position
i and ends at position j is denoted by w[i..j] for 1 ≤ i ≤ j ≤ |w|. For convenience,
let w[i..j] = ε for i > j. A string u is a subsequence of another string w if u = ε or
there exists a sequence of integers i1, . . . , i|u| such that 1 ≤ i1 < · · · < i|u| ≤ |w| and
u = w[i1] · · ·w[i|u|].

A directed graph G is an ordered pair (V,E) of the set V of vertices and the set
E ⊆ V × V of edges. The in-degree of a vertex v is denoted by in deg(v) = |{u |
(u, v) ∈ E}|. A path in a (directed) graph G = (V,E) is a sequence v0, . . . , vk of
vertices such that (vi−1, vi) ∈ E for every i = 1, . . . , k. A path π = v0, . . . , vk in graph
G is said to be left-maximal if its left-end vertex v0 has no in-coming edges, and π
is said to be right-maximal if its right-end vertex vk has no out-going edges. A path
π is said to be maximal if π is both left-maximal and right-maximal. For any vertex
v ∈ V , let P(v) denote the set of all paths ending at vertex v, and LMP(v) denote the
set of left-maximal paths ending at v. The set of all paths in G = (V,E) is denoted
by P(G) = {P(v) | v ∈ V }. Let MP(G) denote the set of maximal paths in G.

2.2 Longest Common Subsequence (LCS) of Strings

The longest common subsequence (LCS) problem for two given strings A and B is to
compute (the length of) the longest string Z that is a subsequences of both A and
B. It is well-known that LCS can be solved in O(|A||B|) time by using the following
recurrence [26]:

Ci,j =


0 if i = 0 or j = 0;

1 + Ci−1,j−1 if i, j > 0 and x[i] = y[j];

max(Ci−1,j, Ci,j−1) if i, j > 0 and x[i] ̸= y[j],

where Ci,j is the LCS length of A[1..i] and B[1..j].

2.3 SEQ-IC-LCS of Strings

Let A, B, and P be strings. A string Z is said to be an SEQ-IC-LCS of two target
strings A and B including the pattern P if Z is a longest string such that P is a
subsequence of Z and that Z is a common subsequence of A and B. Chin et al. [12]
solved this problem in O(|A||B||P |) time by using the following recurrence:

Ci,j,k =



0 if k = 0 and (i = 0 or j = 0);

−∞ if k ̸= 0 and (i = 0 or j = 0);

Ci−1,j−1,k−1 + 1 if i, j, k > 0 and A[i] = B[j] = P [k];

Ci−1,j−1,k + 1 if i, j > 0 and A[i] = B[j] ̸= P [k];

max(Ci−1,j,k, Ci,j−1,k) if i, j > 0 and A[i] ̸= B[j],

(1)

where Ci,j,k is the SEQ-IC-LCS length of A[1..i], B[1..j], and P [1..k].
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Figure 1. A labeled graph G = (V,E,L) with L : V → Σ+ and its corresponding atomic labeled
graph G′ = (V ′, E′,L′) with L′ : V ′ → Σ.

2.4 Labeled Graphs

A labeled graph is a directed graph with vertices labeled by strings, namely, it is a
directed graph G = (V,E,L) where V is the set of vertices, E is the set of edges,
and L : V → Σ+ is a labeling function that maps nodes v ∈ V to non-empty strings
L(v) ∈ Σ+. For a path π = v0, . . . , vk ∈ P(G), let L(π) denote the string spelled out
by w, namely L(π) = L(v0) · · ·L(vk). The size |G| of a labeled graph G = (V,E,L) is
|V |+ |E|+

∑
v∈V |L(v)|. Let Subseq(G) = {Subseq(L(π)) | π ∈ P(G)} denote the set

of subsequences of a labeled graph G = (V,E,L). For a set P ∈ P(G) of paths in G,
let L(P ) = {L(π) | π ∈ P} denote the set of string labels for the paths in P .

For a labeled graph G = (V,E,L), consider an “atomic” labeled graph G′ =
(V ′, E ′,L′) such that L′ : V ′ → Σ,

V ′ = {vi,j | L′(vi,j) = L(vi)[j], vi ∈ V, 1 ≤ j ≤ |L(vi)|}, and

E ′ = {(vi,|L(vi)|, vk,1) | (vi, vk) ∈ E} ∪ {(vi,j, vi,j+1) | vi ∈ V, 1 ≤ j < |L(vi)|},

that is, G′ is a labeled graph with each vertex being labeled by a single character,
which represents the same set of strings as G. An example is shown in Figure 1. Since
|V ′| =

∑
v∈V |L(v)|, |E ′| = |E|+

∑
v∈V (|L(v)|− 1), and

∑
v′∈V ′ |L(v′)| =

∑
v∈V |L(v)|,

we have |G′| = O(|G|). We remark that given G, we can easily construct G′ in O(|G|)
time. Observe that Subseq(G) = Subseq(G′) also holds.

In the sequel we only consider atomic labeled graphs where each vertex is labeled
with a single character.

2.5 LCS of Acyclic Labeled Graphs

The problem of computing the length of longest common subsequence of two input
acyclic labeled graphs is formalized by Shimohira et al. [24] as follows.

Problem 1 (Longest common subsequence problem for acyclic labeled graphs).

Input: Labeled graphs G1 = (V1, E1,L1) and G2 = (V2, E2,L2).
Output: The length of a longest string in Subseq(G1) ∩ Subseq(G2).

This problem can be solved in O(|E1||E2|) time and O(|V1||V2|) space by sorting
G1 and G2 topologically and using the following recurrence:

C ′
i,j =
1+max({C ′

k,ℓ | (v1,k, v1,i)∈E1, (v2,ℓ, v2,j)∈E2} ∪ {0}) if L1(v1,i)=L2(v2,j);

max

(
{C ′

k,j | (v1,k, v1,i)∈E1} ∪
{C ′

i,ℓ | (v2,ℓ, v2,j)∈E2} ∪ {0}

)
otherwise,

(2)
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where v1,i and v2,j are respectively the ith and jth vertices of G1 and in G2 in topo-
logical order, for 1 ≤ i ≤ |V1| and 1 ≤ j ≤ |V2|, and C ′

i,j is the length of a longest
string in Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j))).

2.6 LCS of Cyclic Labeled Graphs

Here we consider a generalized version of Problem 1 where the input labeled graphs
G1 and/or G2 can be cyclic. In this problem, the output is ∞ if there is a string
s ∈ Subseq(G1) ∩ Subseq(G2) such that |s| = ∞, and that is the length of a longest
string in Subseq(G1) ∩ Subseq(G2). Shimohira et al. [24] proposed an O(|E1||E2| +
|V1||V2| log |Σ|) time and O(|V1||V2|) space algorithm solving this problem. Their al-
gorithm judges whether the output is ∞ by using a balanced tree, and computes the
length of the solution by using Equation (2) and the balanced tree if the output is
not ∞.

3 The SEQ-IC-LCS Problem for Labeled Graphs

In this paper, we tackle the problem of computing the SEQ-IC-LCS length of three
labeled graphs, which formalized as follows:

Problem 2 (SEQ-IC-LCS problem for labeled graphs).

Input: Labeled graphs G1 = (V1, E1,L1), G2 = (V2, E2,L2), and G3 = (V3, E3,L3).
Output: The length of a longest string in the set

{z | ∃ q ∈ L3(MP(G3)) such that q ∈ Subseq(z) and z ∈ Subseq(G1)∩Subseq(G2)}.

Intuitively, Problem 2 asks to compute a longest string z such that z is a subse-
quence occurring in both G1 and G2 and that there exists a string q which corresponds
to a maximal path of G3 and is a subsequence of z.

For a concrete example, see the labeled graphs G1, G2 and G3 of Figure 2. String
cdba is a common subsequence of G1 and G2 and that contains an element ba of a
maximal path string in L3(MP(G3)). Since cdba is such a longest string, we ouput
the SEQ-IC-LCS length |cdba| = 4 as the solution to this instance.

In the sequel, Section 4 presents our solution to the case where the all input
labeled graphs are acyclic, and Section 5 presents our solutions case where G1 and/or
G2 can be cyclic and G3 is acyclic.

4 Computing SEQ-IC-LCS of Acyclic Labeled Graphs

In this section, we present our algorithm which solves Problem 2 in the case where
all of G1, G2 and G3 are acyclic. The following is our result:

Theorem 3. Problem 2 with acyclic labeled graphs G1, G2 and G3 can be solved in
O(|E1||E2||E3|) time and O(|V1||V2||V3|) space.

Proof. We perform topological sort to the vertices of G1, G2, and G3 in O(|E1| +
|E2| + |E3|) time and O(|V1| + |V2| + |V3|) space. For 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2|, and
1 ≤ k ≤ |V3|, let v1,i, v2,j, v3,k denote the ith, jth, and kth vertices in G1, G2, and G3

in topological order, respectively. Let

SIC(v1,i, v2,j, v3,k) =

{
z

∣∣∣∣ ∃q ∈ L3(LMP(v3,k)) such that q ∈ Subseq(z)

and z ∈ Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j)))

}
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be the set of candidates of SEQ-IC-LCS strings for the maximal induced graphs of
G1, G2, and G3 whose sinks are v1,i, v2,j, and v3,k, respectively. Let Di,j,k denote the
length of a longest string in SIC(v1,i, v2,j, v3,k). The solution to Problem 2 (the SEQ-
IC-LCS length) is the maximum value of Di,j,k for which v3,k does not have out-going
edges (i.e. v3,k is the end of a maximal path in G3).

When k = 0, then the problem is equivalent to Problem 1 of computing SEQ-IC-
LCS of strings. In that follows, we show how to compute Di,j,k for k > 0:

1. If L1(v1,i) = L2(v2,j) = L3(v3,k), there are three cases to consider:
(a) If v1,i does not have in-coming edges or v2,j does not have in-coming edges,

and if v3,k does not have in-coming edges (i.e., in deg(v1,i) = in deg(v3,k) = 0,
or in deg(v2,j) = in deg(v3,k) = 0), then clearly Di,j,k = 1.

(b) If v1,i does not have in-coming edges or v2,j does not have in-coming edges, and
if v3,k has some in-coming edge(s) (i.e., in deg(v1,i) = 0 and in deg(v3,k) ≥ 1,
or in deg(v2,j) = 0 and in deg(v3,k) ≥ 1), then clearly Di,j,k = −∞.

(c) If both v1,i and v2,j have some in-coming edge(s) and v3,k does not have in-
coming edges (i.e., in deg(v1,i) ≥ 1, in deg(v2,j) ≥ 1, and in deg(v3,k) = 0), then
let v1,x and v2,y be any nodes s.t. (v1,x, v1,i) ∈ E1, and (v2,y, v2,j) ∈ E2, respec-
tively. Let s be a longest string in Subseq(L1(P(v1,i))) ∩ Subseq(L2(P(v2,j))).
Assume on the contrary that there exists a string t ∈ Subseq(L1(P(v1,x))) ∩
Subseq(L2(P(v2,y))) such that |t| > |s| − 1. This contradicts that s is a longest
common subsequence of L1(P(v1,i)) and L2(P(v2,j)), since L1(v1,i) = L2(v2,j).
Hence |t| ≤ |s| − 1. If v1,x and v2,y are vertices satisfying C ′

x,y,0 = |s| − 1, then
C ′

i,j,k = C ′
x,y,0 + 1. Note that such nodes v1,x and v2,y always exist.

(d) Otherwise (all v1,i, v2,j, and v3,k have some in-coming edge(s)), let v1,x, v2,y
and v3,z be any nodes s.t. (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2 and (v3,z, v3,k) ∈ E3,
respectively. Let s be a longest string in SIC(v1,i, v2,j, v3,k). Assume on the
contrary that there exists a string t ∈ SIC(v1,x, v2,y, v3,z) such that |t| > |s| −
1. This contradicts that s is a SEQ-IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and
L3(LMP(v3,k)), since L1(v1,i) = L2(v2,j) = L3(v3,k). Hence |t| ≤ |s| − 1. If v1,x,
v2,y and v3,z are vertices satisfying Dx,y,z = |s| − 1, then Di,j,k = Dx,y,z + 1.
Note that such nodes v1,x, v2,y and v3,z always exist.

2. If L1(v1,i) = L2(v2,j) ̸= L3(v3,k), there are two cases to consider:
(a) If v1,i does not have in-coming edges or v2,j does not have-incoming edges (i.e.,

in deg(v1,i) = 0 or in deg(v2,j) = 0), then clearly Di,j,k does not exist and let
Di,j,k = −∞.

(b) Otherwise (both v1,i and v2,j have in-coming edge(s)), let v1,x and v2,y be any
nodes s.t. (v1,x, v1,i) ∈ E1 and (v2,y, v2,j) ∈ E2, respectively. Let s be a longest
string in SIC(v1,i, v2,j, v3,k). Assume on the contrary that there exists a string
t ∈ SIC(v1,x, v2,y, v3,k) such that |t| > |s| − 1. This contradicts that s is a SEQ-
IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and L3(LMP(v3,k)), since L1(v1,i) = L2(v2,j).
Hence |t| ≤ |s| − 1. If v1,x, v2,y and v3,k are vertices satisfying Dx,y,k = |s| − 1,
then Di,j,k = Dx,y,k + 1. Note that such nodes v1,x, v2,y and v3,k always exist.

3. If L1(v1,i) ≠ L2(v2,j), there are two cases to consider:
(a) If v1,i does not have in-coming edges and v2,j does not have in-coming edges

(i.e., in deg(v1,i) = in deg(v2,j) = 0), then clearly Di,j,k does not exist and let
Di,j,k = −∞.

(b) Otherwise (v1,i has some in-coming edge(s) or v2,j has some in-coming edge(s)),
let v1,x and v2,y be any nodes such that (v1,x, v1,i) ∈ E1 and (v2,y, v2,j) ∈ E2, re-
spectively. Let s be a SIC(v1,i, v2,j, v3,k). Assume on the contrary that there
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exists a string t ∈ SIC(v1,i, v2,j, v3,k) such that |t| > |s|. This contradicts
that s is a SEQ-IC-LCS of L1(P(v1,i)), L2(P(v2,j)) and L3(LMP(v3,k)), since
SIC(v1,x, v2,y, v3,k) ⊆ SIC(v1,i, v2,j, v3,k). Hence |t| ≤ |s|. If v1,x is a vertex satis-
fying Dx,j,k = |z|, then Di,j,k = Dx,j,k. Similarly, if v2,y is a vertex satisfying
Di,y,k = |s|, then Di,j,k = Di,y,k. Note that such node v1,x or v2,y always exists.

Consequently we obtain the following recurrence:

Di,j,k =

Recurrence in Equation (2) if k = 0;

1 + max


Dx,y,z

∣∣∣∣∣∣∣∣∣
(v1,x, v1,i) ∈ E1,

(v2,y, v2,j) ∈ E2,

(v3,z, v3,k) ∈ E3,

or z = 0

 ∪ {γ}


if k > 0 and

L1(v1,i) = L2(v2,j)

= L3(v3,k);

max

({
1 +Dx,y,k

∣∣∣∣∣ (v1,x, v1,i)∈E1,

(v2,y, v2,j)∈E2

}
∪ {−∞}

) if k > 0 and

L1(v1,i) = L2(v2,j)

̸= L3(v3,k);

max

(
{Dx,j,k | (v1,x, v1,i) ∈ E1} ∪
{Di,y,k | (v2,y, v2,j) ∈ E2} ∪ {−∞}

)
otherwise.

(3)

where

γ =

0
if v1,i does not have in-coming edges at all or v2,j does not have

in-coming edges at all, and v3,k does not have in-coming edges;

−∞ otherwise.

We compute Di,j,k for all 1 ≤ i ≤ |V1|, 1 ≤ j ≤ |V2| and 0 ≤ k ≤ |V3|, using a
dynamic programming table of size O(|V1||V2||V3|).

Below we analyze the time complexity for computing Di,j,k with the recurrence:

– The first case with Equation (2) takes O(|E1||E2|) time (Section 2.5).
– Second, let us analyze the time cost for computing

Mi,j,k = max{Dx,y,z | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2, (v3,z, v3,k) ∈ E3, or z = 0}

in the second case of the recurrence for all i, j, k. For each fixed pair of (v1,x, v1,i) ∈
E1 and (v2,y, v2,j) ∈ E2, we refer the value of Dx,y,z for all 1 ≤ z < k such that
(v3,z, v3,k) ∈ E3, in O(|E3|) time. For each fixed (v1,x, v1,i) ∈ E1, we refer the value
of Dx,y,z for all 1 ≤ y < j such that (v2,y, v2,j) ∈ E2 and all 1 ≤ z < k such
that (v3,z, v3,k) ∈ E3, in O(|E2||E3|) time. Therefore, the total time complexity for
computing all Mi,j,k for all i, j, k is O(|E1||E2||E3|).

– Third, let us analyze the time cost for computing

M ′
i,j,k = max{Dx,y,k | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2}

in the third case of the recurrence for all i, j, k. For each fixed pair of (v1,x, v1,i) ∈ E1

and (v2,y, v2,j) ∈ E2, we refer the value of Dx,y,k for all 1 ≤ k ≤ |V3|, in O(|V3|)
time. For each fixed (v1,x, v1,i) ∈ E1, we refer the value of Dx,y,k for all 1 ≤ y < j
such that (v2,y, v2,j) ∈ E2 and all 1 ≤ k ≤ |V3|, in O(|E2||V3|) time. Therefore,
the total time complexity for computing M ′

i,j,k for all i, j, k is O(|E1||E2||V3|) ⊆
O(|E1||E2||E3|).
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Figure 2. Example of dynamic programming table D for computing the SEQ-IC-LCS length of
acyclic labeled graphs G1, G2 and G3. Each vertex is annotated with its topological order. In this
example, v3,2 and v3,4 with k ∈ {2, 4} in G3 are vertices with no out-going edges. The maximum
value of Di,j,k with k ∈ {2, 4} is D6,6,2 = 4, and the corresponding SEQ-IC-LCS is cdba of length 4.

– Fourth, let us analyze the time cost for computing

M ′′
i,j,k = max{Dx,j,k, Di,y,k | (v1,x, v1,i) ∈ E1, (v2,y, v2,j) ∈ E2}

in the fourth case of the recurrence for all i, j, k. For each fixed (v1,x, v1,i) ∈ E1,
we refer the value of Dx,j,k for all 1 ≤ j ≤ |V2| and all 1 ≤ k ≤ |V3| in O(|V2||V3|)
time. Similarly, for each fixed (v2,y, v2,j) ∈ E2, we refer the value of Di,y,k for all
1 ≤ i ≤ |V1| and all 1 ≤ k ≤ |V3| in O(|V1||V3|) time. Therefore, the total time cost
for computing M ′′

i,j,k for all i, j, k is O(|V3|(|V2||E1|+ |V1||E2|)) ⊆ O(|E1||E2||E3|).
Thus the total time complexity is O(|E1||E2||E3|). ⊓⊔

An example of computing Di,j,k using dynamic programming is show in Figure 2.
We remark that the recurrence in Equation (3) is a natural generalization of the
recurrence in Equation (1) for computing the SEQ-IC-LCS length of given two strings.

5 Computing SEQ-IC-LCS of Cyclic Labeled Graphs

In this section, we present an algorithm to solve Problem 2 in case where G1 and/or
G2 can be cyclic and G3 is acyclic. We output ∞ if the set of output candidates in
Problem 2 contains a string of infinite length, and outputs the (finite) SEQ-IC-LCS
length otherwise.

To deal with cyclic graphs, we follow the approach by Shimohira et al. [24] which

transforms a cyclic labeled graph G = (V,E,L) into an acyclic labeled graph Ĝ =

(V̂ , Ê, L̂) based on the strongly connected components.
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For each vertex v ∈ V , let [v] denote the set of vertices that belong to the same

strongly connected component. Formally, Ĝ = (V̂ , Ê, L̂) is defined by

V̂ = {[v] | v ∈ V },
Ê = {([v], [u]) | [v] ̸= [u], (v̂, û) ∈ E for some v̂ ∈ [v], û ∈ [u]} ∪ {(v, v) | |[v]| ≥ 2},

and L̂([v]) = {L(v) | v ∈ [v]} ⊆ Σ. We regard each [v] as a single vertex that is

contracted from vertices in [v]. Observe that Subseq(Ĝ) = Subseq(G). An example of
transformed acyclic labeled graphs is shown in Figure 3.

It is possible that a vertex v̂ ∈ V̂ in the transformed graph Ĝ has a self-loop. We
regard that a self-loop (v̂, v̂) is also an in-coming edge of vertex v̂. We say that vertex
v̂ does not have in-coming edges at all, if v̂ does not have in-coming edges from any
vertex in V̂ (including v̂).

Our main result of this section follows:
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Figure 3. Example of dynamic programming table D̂ for computing the SEQ-IC-LCS length of
cyclic labeled graphs G1 and G2, and acyclic labeled graph G3. Ĝ1 and Ĝ2 are the labeled graphs
which are transformed from G1 and G2 by grouping vertices into strongly connected components.
Each vertex is annotated with its topological order. In this example, v3,2 and v3,4 with k ∈ {2, 4} in

G3 are vertices with no out-going edges. The maximum value of D̂i,j,k with k ∈ {2, 4} is D̂4,3,2 = 3,
and the corresponding SEQ-IC-LCS is aab of length 3.
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Theorem 4. Problem 2 with G1 and/or G2 cyclic and G3 acyclic can be solved in
O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|) space.

Proof. We first transform cyclic labeled graphs G1 and G2 into corresponding acyclic
labeled graphs Ĝ1 and Ĝ2, as described previously. For 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|,
let v̂1,i and v̂2,j respectively denote the ith and jth vertices in Ĝ1 and Ĝ2 in topological
order. Let v3,k denote the k-th vertex in topological ordering in G3 for 1 ≤ k ≤ |V3|.

Let

ŜIC(v̂1,i, v̂2,j, v3,k) =

{
z

∣∣∣∣ ∃q ∈ L3(MP(v3,k)) such that q ∈ Subseq(z)

and z ∈ Subseq(L̂1(P(v̂1,i))) ∩ Subseq(L̂2(P(v̂2,j)))

}
.

Let D̂i,j,k denote the length of a longest string in ŜIC(v̂1,i, v̂2,j, v3,k). For convenience,

we let D̂i,j,k = −∞ if ŜIC(v̂1,i, v̂2,j, v3,k) = ∅. The solution to Problem 2 (the SEQ-

IC-LCS length) is the maximum value of D̂i,j,k for which v3,k has no out-going edges
(i.e. v3,k is the end of a maximal path in G3).

D̂i,j,k can be computed as follows:

1. If both v̂1,i and v̂2,j are cyclic vertices (i.e. |[v̂1,i]| ≥ 2 and |[v̂2,j]| ≥ 2), then remark
that both v̂1,i and v̂2,j have some self-loop(s). There are four cases to consider:
(a) If k = 0, there are two cases to consider:

i. If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, then clearly D̂i,j,k = ∞.
ii. Otherwise, there are two cases to consider:

A. If the in-coming edges of v̂1,i are v̂2,j only self-loops, then clearly D̂i,j,k =
0.

B. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or
v̂2,j has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y
be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respec-

tively. Let s be a longest string in the set Subseq(L̂1(LMP(v̂1,i))) ∩
Subseq(L̂2(LMP(v̂2,j))). Assume on the contrary that there is a string t ∈
Subseq(L̂1(LMP(v̂1,x)))∩Subseq(L̂2(LMP(v̂2,j))) such that |t| > |s|. This
contradicts that s is a longest common subsequence of L̂1(LMP(v̂1,i)) and

L̂2(LMP(v̂2,j)), since Subseq(L̂1(LMP(v̂1,x))) ∩ Subseq(L̂2(LMP(v̂2,j))) ⊆
Subseq(L̂1(LMP(v̂1,i))) ∩ Subseq(L̂2(LMP(v̂2,j))). Hence |t| ≤ |s|. If v̂1,x
is a vertex satisfying D̂x,j,k = |s|, then D̂i,j,k = D̂x,j,k. Similarly, if v̂2,y is

a vertex satisfying D̂i,y,k = |s|, then D̂i,j,k = D̂i,y,k. Note that such v̂1,x
or v̂2,y always exists.

(b) If k > 0 and L̂1(v̂1,i)∩ L̂2(v̂2,j)∩{L3(v3,k)} ̸= ∅, there are two cases to consider:
i. If v3,k has no in-coming edges, let v̂1,x and v̂2,y be any nodes such that

(v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively (these edges may be self-

loops). If D̂x,y,0 = −∞ for all 1 ≤ x < i and 1 ≤ y < j, then clearly

D̂i,j,k = −∞. Otherwise, clearly D̂i,j,k = ∞.
ii. Otherwise (v3,k has some in-coming edge(s)), let v̂1,x, v̂2,y and v3,z be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1, (v̂2,y, v̂2,j) ∈ Ê2 and (v3,z, v3,k) ∈ E3,

respectively (the first two edges may be self-loops). If D̂x,y,z = −∞ for all

1 ≤ x < i and 1 ≤ y < j, then clearly D̂i,j,k = −∞. Otherwise, D̂i,j,k = ∞.

(c) If k > 0 and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} = ∅ and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅,
there are two cases to consider:
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i. If the in-coming edges of v̂1,i are v̂2,j only self-loops, then clearly D̂i,j,k =
−∞.

ii. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or v̂2,j
has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. If all

D̂x,y,k = −∞, then clearly D̂i,j,k = −∞. Otherwise, clearly D̂i,j,k = ∞.

(d) If k > 0 and L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅, there are two cases to consider:

i. If the in-coming edges of v̂1,i and v̂2,j are only self-loops, then clearly D̂i,j,k =
−∞.

ii. Otherwise (v̂1,i has some in-coming edge(s) other than self-loops, or v̂2,j
has some in-coming edge(s) other than self-loops), let v̂1,x and v̂2,y be any

nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a

longest string in ŜIC(v̂1,i, v̂2,j, v3,k). Assume on the contrary that there exists

a string t ∈ ŜIC(v̂1,i, v̂2,j, v3,k) such that |t| > |s|. This contradicts that s

is a SEQ-IC-LCS of L̂1(LMP(v̂1,i)), L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since

ŜIC(v̂1,x, v̂2,y, v3,k) ⊆ ŜIC(v̂1,i, v̂2,j, v3,k). Hence |t| ≤ |s|. If v̂1,x is a vertex

satisfying D̂x,j,k = |z|, then D̂i,j,k = D̂x,j,k. Similarly, if v̂2,y is a vertex

satisfying D̂i,y,k = |s|, then D̂i,j,k = D̂i,y,k. Note that such v̂1,x or v̂2,y always
exists.

2. Otherwise (v1,i is not a cyclic vertex and/or v2,j is not a cyclic vertex), there are
four cases to consider:
(a) If k = 0, there are two cases to consider:

i. If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, there are two cases to consider:
A. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, then clearly D̂i,j,k = 1.
B. Otherwise (both v̂1,i and v̂2,j have some in-coming edge(s) including

self-loops), let v̂1,x and v̂2,y be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1

and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a longest string in the set

Subseq(L̂1(LMP(v̂1,i)))∩Subseq(L̂2(LMP(v̂2,j))). Assume on the contrary

that there is a string t ∈ Subseq(L̂1(LMP(v̂1,x)))∩Subseq(L̂2(LMP(v̂2,y)))
such that |t| > |s|−1. This contradicts that s is a longest common subse-

quence of L̂1(LMP(v̂1,i)) and L̂2(LMP(v̂2,j)), since L̂1(v̂1,i)∩ L̂2(v̂2,j) ̸= ∅.
Hence |t| ≤ |s|−1. If v̂1,x and v̂2,y are vertices satisfying D̂x,y,k = |s|−1,

then D̂i,j,k = D̂x,y,k + 1. Note that such v̂1,x and v̂2,y always exist.
ii. Otherwise, then this case is the same as Case 1(a)ii.

(b) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} ̸= ∅, there are three cases to consider:
i. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, and if v3,k does not have in-coming edges, then clearly D̂i,j,k = 1.
ii. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edge at all, and if v3,k has some in-coming edge(s), then clearly D̂i,j,k = −∞.
iii. If both v̂1,i and v̂2,j have some in-coming edge(s) including self-loops and

v3,k does not have in-coming edges, let v̂1,x and v̂2,y be any nodes such

that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈ Ê2, respectively. Let s be a longest

string in the set Subseq(L̂1(LMP(v̂1,i))) ∩ Subseq(L̂2(LMP(v̂2,j))). Assume

on the contrary that there exists a string t ∈ Subseq(L̂1(LMP(v̂1,x))) ∩
Subseq(L̂2(LMP(v̂2,y))) such that |t| > |s| − 1. This contradicts that s is
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a longest common subsequence of L̂1(LMP(v̂1,i)) and L̂2(LMP(v̂2,j)), since

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅. Hence |t| ≤ |s| − 1. If v̂1,x and v̂2,y are vertices

satisfying D̂x,y,0 = |s| − 1, then D̂i,j,k = D̂x,y,0 + 1. Note that such v̂1,x and
v̂2,y always exist.

iv. Otherwise (all v̂1,i, v̂2,j, and v̂3,k have some in-coming edge(s) including

self-loops), let v̂1,x, v̂2,y and v3,z be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1,

(v̂2,y, v̂2,j) ∈ Ê2, and (v3,z, v3,k) ∈ E3, respectively. Let s be a longest string

in ŜIC(v̂1,i, v̂2,j, v3,k). Assume on the contrary that there exists a string t ∈
ŜIC(v̂1,x, v̂2,y, v3,z) such that |t| > |s| − 1. This contradicts that s is a SEQ-

IC-LCS of L̂1(LMP(v̂1,i)), L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since L̂1(v̂1,i) ∩
L̂2(v̂2,j) ∩ L3(v3,k) ̸= ∅. Hence |t| ≤ |s| − 1. If v̂1,x, v̂2,y and v3,z are vertices

satisfying D̂x,y,z = |s| − 1, then D̂i,j,k = D̂x,y,z + 1. Note that such v̂1,x, v̂2,y
and v3,z always exist.

(c) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)} = ∅ and L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅, there are two
cases to consider:

i. If v̂1,i does not have in-coming edges at all or v̂2,j does not have in-coming

edges at all, then clearly D̂i,j,k = −∞.
ii. Otherwise (both v̂1,i and v̂2,j have some in-coming edges including self-

loops), let v̂1,x and v̂2,y be any nodes such that (v̂1,x, v̂1,i) ∈ Ê1 and (v̂2,y, v̂2,j) ∈
Ê2, respectively. Let s be a longest string in ŜIC(v̂1,i, v̂2,j, v3,k). Assume

on the contrary that there exists a string t ∈ ŜIC(v̂1,x, v̂2,y, v3,k) such that

|t| > |s| − 1. This contradicts that s is a SEQ-IC-LCS of L̂1(LMP(v̂1,i)),

L̂2(LMP(v̂2,j)) and L3(MP(v3,k)), since L̂1(v̂1,i] ∩ L̂2(v̂2,j) ̸= ∅. Hence |t| ≤
|s| − 1. If v̂1,x, v̂2,y and v3,k are vertices satisfying D̂x,y,k = |s| − 1, then

D̂i,j,k = D̂x,y,k + 1. Note that such v̂1,x, v̂2,y and v3,k always exist.

(d) If L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅, then this case is the same as Case 1d.

The above arguments lead us to the following recurrence:

D̂i,j,k =

δ+max

({
D̂x,y,k

∣∣∣∣∣ (v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2

}
∪{0}

)
if k = 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ̸= ∅;

max

(
{D̂x,j,k | (v̂1,x, v̂1,i)∈ Ê1} ∪
{D̂i,y,k |(v̂2,y, v̂2,j)∈ Ê2} ∪ {0}

)
if k = 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅;

δ+max


D̂x,y,z

∣∣∣∣∣∣∣∣∣
(v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2,

(v3,z, v3,k)∈E3

or z = 0

 ∪ {γ}


if k > 0 and

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3([v3,k])}
̸= ∅;

max

({
δ + D̂x,y,k

∣∣∣∣∣ (v̂1,x, v̂1,i)∈ Ê1,

(v̂2,y, v̂2,j)∈ Ê2

}
∪ {−∞}

) if k > 0,

L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ {L3(v3,k)}
= ∅, and L̂1(v̂1,i)∩L̂2(v̂2,j) ̸=∅;

max

(
{D̂x,j,k | (v̂1,x, v̂1,i)∈ Ê1} ∪
{D̂i,y,k |(v̂2,y, v̂2,j)∈ Ê2} ∪ {−∞}

)
otherwise,
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where

δ =

{
∞ if both L̂1(v̂1,i) and L̂2(v̂2,j) are cyclic vertices;

1 otherwise,

γ =

0
if v̂1,i does not have in-coming edges at all or v̂2,j does not have

in-coming edges at all, and v3,k does not have in-coming edges;

−∞ otherwise.

In the above recurrence, we use a convention that ∞+ (−∞) = −∞.

We perform preprocessing which transforms G1 and G2 into Ĝ1 and Ĝ2 in O(|E1|+
|E2|) time with O(|V1|+ |V2|) space, based on strongly connected components.

To examine the conditions in the above recurrence, we explicitly construct the
intersection of the character labels of the given vertices v̂1,i ∈ V̂1, v̂2,j ∈ V̂2, and
v̂3,k ∈ V3 by using balanced trees, as follows:

– Checking whether L̂1(v̂1,i) ∩ L̂2(v̂2,j) = ∅ or ̸= ∅: Let Σ1 and Σ2 be the sets

of characters that appear in G1 and G2, respectively. For every node v̂1,i ∈ V̂1

of the transformed graph Ĝ1, we build a balanced tree Ti which consists of the
characters in L̂1(v̂i). Since the total number of characters in the original graph
G1 = (V1, E1) is equal to |V1|, we can build the balanced trees Ti for all i in a

total of O(|V1| log |Σ1|) time and O(|V1|) space. Then, for each fixed L̂1(v̂1,i) ∈ V̂1,

by using its balanced tree, the intersection L̂1(v̂1,i) ∩ L̂2(v̂2,j) can be computed

in O(|V2| log |Σ1|) time for all L̂2(v̂2,j) ∈ V2. Therefore, L̂1(v̂1,i) ∩ L̂2(v̂2,j) for all

1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2| can be computed in O(|V1||V2| log |Σ1|) total time.

– Checking whether L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ L3(v3,k) = ∅ or ̸= ∅: While computing

Σi,j = L̂1(v̂1,i) ∩ L̂2(v̂2,j) in the above, we also build another balanced tree Ti,j

which consists of the characters in Σi,j for every 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|.
This can be done in O(|V1||V2| log |Σ1|) total time and O(|V1||V2|) space. Then,

for each fixed 1 ≤ i ≤ |V̂1| and 1 ≤ j ≤ |V̂2|, L̂1(v̂1,i) ∩ L̂2(v̂2,j) ∩ L3(v3,k) can be

computed in a total of O(|V3| log |Σi,j|) time. Therefore, L̂1(v̂1,i)∩L̂2(v̂2,j)∩L3(v3,k)

for all 1 ≤ i ≤ |V̂1|, 1 ≤ j ≤ |V̂2| and, 1 ≤ k ≤ |V3| can be computed in
O(|V1||V2||V3| log |Σ|) time.

Assuming that the above preprocessing for the conditions in the recurrence are all
done, we can compute D̂i,j,k for all 1 ≤ i ≤ |V̂1|, 1 ≤ j ≤ |V̂2| and 1 ≤ k ≤ |V3| using
dynamic programming of size O(|V̂1||V̂2||V3|) in O(|Ê1||Ê2||E3|) time, in a similar way
to the acyclic case for Theorem 3.

Overall, the total time complexity is O(|E1| + |E2| + |E3| + |V̂1||V̂2| log |Σ1| +
|V̂1||V̂2||V3| log |Σ|+ |Ê1||Ê2||E3|) ⊆ O(|E1||E2||E3|+ |V1||V2||V3| log |Σ|).

The total space complexity is O(|V1||V2|+ |V̂1||V̂2||V3|) ⊆ O(|V1||V2||V3|). ⊓⊔

An example of computing D̂i,j,k using dynamic programming is shown in Figure 3.

6 Conclusions and Open Questions

In this paper, we introduced the new problem of computing the SEQ-IC-LCS on
labeled graphs. We showed that when the all the input labeled graphs are acyclic, the
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problem can be solved in O(|E1||E2|||E3) time and O(|V1||V2||V3|) space by a dynamic
programming approach. Furthermore, we extend our algorithm to a more general case
where the two target labeled graphs can contain cycles, and presented an efficient
algorithm that runs in O(|E1||E2||E3| + |V1||V2||V3| log |Σ|) time and O(|V1||V2||V3|)
space.

Interesting open questions are whether one can extend the framework of our meth-
ods to the other variants STR-IC/EC-LCS and SEQ-EC-LCS of the constrained LCS
problems in the case of labeled graph inputs. We believe that SEQ-EC-LCS for la-
beled graphs can be solved by similar methods to our SEQ-IC-LCS methods, within
the same bounds.
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