
Introduction Runs Distinct squares A few remaining open problems Thanks

On periodicities in strings

Frantisek (Franya) Franek

Department of Computing and Software
McMaster University, Hamilton, Ontario, Canada

Invited talk at
Prague Stringology Conference 2025

Aug. 25-27, 2025

1 / 46



Introduction Runs Distinct squares A few remaining open problems Thanks

Outline

1 Introduction

2 Runs

3 Distinct squares

4 A few remaining open problems

2 / 46



Introduction Runs Distinct squares A few remaining open problems Thanks

Introduction

Tandem repetitions have been of interest to
researchers in stringology from the beginning

see for instance Fine & Wilf, Uniqueness theorems for
periodic functions, 1965, or Berstel & Perrin, The origins of
combinatorics on words, 2007

Tandem repetition
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The pioneering work of Crochemore in 1981 showed
that the optimal bound for the number of (maximal)
repetitions in a string of length n is of O(n log(n))
complexity and attained by Fibonacci strings

Crochemore,An optimal algorithm for computing the
repetitions in a word, 1981

maximal repetition in contemporary terminology
would be called primitively rooted leftmost maximal
repetition

maximal repetition

primitive

4 / 46



Introduction Runs Distinct squares A few remaining open problems Thanks

Followed closely by the seminal work by Apostolico
and Preparata, in 1983, and Main in 1989 giving an
O(n log(n)) algorithm to detect all primitively rooted
leftmost maximal repetitions.

Apostolico & Preparata, Optimal off-line detection of
repetitions in a string, 1983, Main, Detecting leftmost
maximal periodicities,1989

The log(n) factor in Main’s algorithm comes from
undetermined size of the alphabet. For a constant
alphabet, it is linear.
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This started intensive research in three areas:

Which extension of the leftmost maximal primitively
rooted repetition concept has a chance to be “linear”
(i.e. linear in numbers and detectable by a linear
algorithm) – this culminated in the concept of runs,
and the maximum number of runs conjecture (in short
runs conjecture).

How many “squares” and “distinct squares” can a
string contain – this culminated in the maximum
number of distinct squares conjecture (in short
distinct squares conjecture).
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Determining the combinatorial properties of many
squares clustering – i.e. squares with the starting
points in near proximity. Mostly with the aim to help
resolve either the runs conjecture or the distinct
squares conjecture.

Despite many interesting and important results
obtained, only the early results of Crochemore &
Ritter impacted indirectly the runs conjecture and
directly the distinct squares conjecture.

Crochemore & Rytter, Squares, cubes, and time-space
efficient strings searching,1995
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Runs

Generalization of leftmost maximal repetitions
(bundling them up).

The term “runs” was coined by Smyth & Iliopoulos

Iliopoulos & Moore & Smyth, A linear algorithm for
computing all the squares of a Fibonacci string, 1996

run

primitive
tail

No left extension

No right extension
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Formally: run in a string x = x [1 .. n] is a four-tuple of
integers (start , period , exponent , tail) where

1 ≤ s < n, and
1 ≤ p < n, and
2 ≤ e ≤ n, and
0 ≤ t < p, and
x [s .. ep−1+t ] has minimal period p,
either s = 1 or x [s−1 .. ep−1+t ] does not have
period p (no left extension), and
either ep−1+t = n or x [s .. ep+t ] does not have
period p (no right extension)
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Problem: bounding the number of occurrences of all
runs.

Runs may contain several squares bundled up, so
bounding the maximum number of occurrences of
squares is a different problem.

In 1998, Fraenkel & Simpson showed that the number
of occurrences of squares is bounded by
n logΦ(n) ≈ 1.441n log2(n) (Φ denotes the golden ratio)

Fraenkel & Simpson, How many squares can a string
contain?, 1998
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The bound was improved in 2020 by Bannai et al. to
n log2(n).

Bannai & Mieno & Nakashima, Lyndon Words, the Three
Squares Lemma, and Primitive Squares, 2020

The first significant jab at the problem of the maximum
number of runs in a string comes in 1999 by Kolpakov
& Kucherov: linear time in the length of the string.

Kolpakov & Kucherov, Finding maximal repetitions in a
word in linear time, 1999

They also formalized the runs conjecture: the number
of runs in a string is bounded by the length of the
string.
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Kolpakov & Kucherov results spurred on a fury of
research.

In 2012, Deza & Franek with their grad student
Andrew Baker introduced and investigated a d-step
conjecture for runs: the number of runs in a string of
length n with d distinct letters is bounded by n − d .

Baker & Deza & Franek, A parameterized formulation for
the maximum number of runs problem, On the structure of
run-maximal strings
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This is not just an “insignificant lowering of the
bound”, but something fundamental – the role of the
size of the alphabet, not just the length of the string.

The (d , n − d) table and investigation of the
relationship among the “neighbouring” entries of the
table gave several insights how other entries can be
computed in a linear-programming-like fashion.

This approach was inspired by d-step approach for
diameter-maximal polytopes connected to 1957 Hirsh
conjecture.
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∆(d , n) ≤ n − d , where ∆(d , n) denote the maximum
possible diameter over all (d , n)-polytopes, i.e. polytopes
of dimension d with n facets.

The values of ∆(d , n) presented in (d , n − d) table.

In 1967 Klee & Walkup showed the equivalency between
the Hirsch conjecture and the d-step conjecture stating
that ∆(d , 2d) ≤ d for all d ≥ 2.

The Hirsch conjecture was disproved by Santos in 2012 by
exhibiting a violation on the main diagonal with
(d , n) = (43, 86).

A continuous analogue of the Hirsch conjecture for the
curvature of polytopes was proposed by Deza et al. in
2009 considering the simplex and central-path following
primal-dual interior point methods.
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ρd(n) denotes the maximum number of runs over all
strings of length n with d distinct symbols.

runs conjecture: (∀n ≥ 2)(∀1 ≤ d ≤ n)(ρd(n) ≤ n)

d-step conjecture for runs:
(∀n ≥ 2)(∀1 ≤ d ≤ n)(ρd(n) ≤ n − d)

More interesting than ρd(n) ≤ n − d are the
relationships in the (d , n − d) table.
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The (d , n − d) table for ρd(n).

· · · n − d · · ·
· · · · · · · ·
· · · · · · · ·
d · · · ρd(n) · · ·
· · · · · · · ·
· · · · · · · ·
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n − d
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

d

2 2 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16
3 2 3 3 4 5 6 6 7 8 9 10 11 11 12 13 14 15 16 16
4 2 3 4 4 5 6 7 7 8 9 10 11 12 12 13 14 15 16 17
5 2 3 4 5 5 6 7 8 8 9 10 11 12 13 13 14 15 16 17
6 2 3 4 5 6 6 7 8 9 9 10 11 12 13 14 14 15 16 17
7 2 3 4 5 6 7 7 8 9 10 10 11 12 13 14 15 15 16 17
8 2 3 4 5 6 7 8 8 9 10 11 11 12 13 14 15 16 16 17
9 2 3 4 5 6 7 8 9 9 10 11 12 12 13 14 15 16 17 17

10 2 3 4 5 6 7 8 9 10 10 11 12 13 13 14 15 16 17 18
11 2 3 4 5 6 7 8 9 10 11 11 12 13 14 14 15 16 17 18
12 2 3 4 5 6 7 8 9 10 11 12 12 13 14 15 15 16 17 18
13 2 3 4 5 6 7 8 9 10 11 12 13 13 14 15 16 16 17 18
14 2 3 4 5 6 7 8 9 10 11 12 13 14 14 15 16 17 17 18
15 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 16 17 18 18
16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 17 18 19
17 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 17 18 19
18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 18 19
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ρd(n) ≤ ρd+1(n + 1) for n ≥ d ≥ 2

ρd(n) ≤ ρd(n + 1) for n ≥ d ≥ 2

ρd(n) < ρd+1(n + 2) for n ≥ d ≥ 2

ρd(n) = ρd+1(n + 1) for 2d ≥ n ≥ d ≥ 2

ρd(n) ≥ n − d , ρd(2d + 1) ≥ d and ρd(2d + 2) ≥ d + 1
for 2d ≥ n ≥ d ≥ 2

ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) and
0 ≤ ρd(2d)− ρd−1(2d − 1) ≤ 1 for d ≥ 5.
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ρd(n) ≤ n − d ⇐⇒ ρd(2d) ≤ d

ρd(2d) = ρd(2d + 1) =⇒ the string a1a1a2a2 · · · adad
is, up to a permutation of the alphabet, the unique
run-maximal string of length 2d with d distinct
symbols

ρd(2d + 1) = ρd(2d + 2) = ρd(2d + 3).

n − d is an optimal bound (in terms of n and d) as
strings of length n with d symbols having n − d runs
are known: string a1a1a2a2 · · · adad has length
n = 2d , has d distinct symbols, and has d runs.
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These relationships, together with R-cover, allowed
computing binary run-maximal strings of length < 60
in hours verifying computational results by Kolpakov &
Kucherov and extend it significantly to lengths < 73,
and to compute values for higher alphabets that would
be inaccessible by direct (brute force) approach.

see https://advol.cas.mcmaster.ca/
bakerar2/research/runmax/index.html

Runs conjecture was proven by Bannai & I & Inenaga
& Nakashima & Takeda & Tsuruta in 2015 mapping
runs to their L-roots

Bannai & I & Inenaga & Nakashima & Takeda & Tsuruta,
“Runs" Theorem, 2015
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Crochemore (& Rytter ?) knew that if two squares are
Lyndon (have Lyndon roots), they cannot share the
midpoint:

Lyndon

Lyndon

Thus each cube can be assigned the midpoint of the
Lyndon square that is guaranteed to exist in it, as a
consequence there are at most n cubes in a string of
length n.
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There always is a single Lyndon root in a square. But
the problem is that two Lyndon roots can start at the
same point.

The essence of Bannai et al. idea was the realization
that they cannot be both maximal Lyndon roots, and
they ingeniously came with the way to make them
maximal Lyndon with respect to the given order or its
inverse of the alphabet of the string.

Thus every ran has one or more maximal Lyndon
roots with respect to the given order or its inverse –
what Bannai et al. call L-roots, so the maximum
number of runs is bounded be the maximum number
of L-roots, hence by the length of the string.
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In the same year, 2015, Deza and myself realized that
the number of L-roots is bounded not by the length of
the string, but by the d-step bound, and hence we
proved the d-step conjecture for runs with all the
relationships following from it.

Deza & Franek, Bannai et al. method proves the d-step
conjecture for strings

Note that there is no wiggle room for (d , 2d), while for
binary strings the best upper bound is 22

23n < 0.957n,
due to Fischer & Holub & I & Lewenstein

Fischer & Holub & I & Lewenstein,Beyond the Runs
theorem, 2015
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Distinct squares

In maximum number of distinct squares problem, we
count not the occurrences of squares, but their types.

Thus aabaab has two distinct squares, aa and
aabaab, though it has three occurrences of squares –
aa is only counted once.

This is a kind of problem not well suited for structural
analysis, either one must decide which occurrence of
the multiple occurrences of a square to count, or one
must mapped all the squares to entities in a way that
the occurrences of the same type of a square are
mapped onto the same entity, and then count the
entities instead of the squares.
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The problem was brought into a sharp focus of
interest by the seminal work of Fraenkel & Simpson in
1997.

Fraenkel & Simpson, How Many Squares Can a String
Contain?, 1998

The decided to count the right-most occurrences of
squares. Employing a result of Crochemore & Rytter
(later became known as Three Square Lemma) they
showed that at most two right-most squares can start
at the same position.
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They showed if three squares start at the same
position, the smallest of the three squares would not
be right-most.

Thus concluded that the upper bound must be
smaller than twice the length.

They also introduced the distinct squares conjecture
– the number of distinct squares is bounded by the
length of the string and showed that it is
asymptotically optimal.

in 2005 Ilie simplified their proof eliminating need for a
direct application of the Three Square Lemma.

Ilie, A simple proof that a word of length n has at most 2n
distinct squares, 2005
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The combinatorial/structural investigation of
double-squares was initiated by Lam, and followed by
Deza & Franek & Thierry, improving the bound to 11

6 n.

Deza & Franek & Thierry, How many double squares can a
string contain?, 2015
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σd(n) denotes the maximum number of distinct
squares over all strings of length n with d distinct
symbols.

Deza & Franek & Jaing, A d-step approach for distinct
squares in strings, 2011, A Computational Framework for
Determining Square-maximal Strings, 2012

distinct square conjecture:
(∀n ≥ 2)(∀1 ≤ d ≤ n)(σd(n) ≤ n)

d-step conjecture for distinct squares:
(∀n ≥ 2)(∀1 ≤ d ≤ n)(σd(n) ≤ n − d)
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(d , n−d) table

n−d
1 2 3 4 5 6 7 8 9 10 11

d

1 1 1 1 1 1 1 1 1 1 1 σ1(12)
2 1 2 2 3 3 4 5 6 7 7 σ2(13)
3 1 2 3 3 4 4 5 6 7 8 σ3(14)
4 1 2 3 4 4 5 5 6 7 8 σ4(15)
5 1 2 3 4 5 5 6 6 7 8 σ5(16)
6 1 2 3 4 5 6 6 7 7 8 σ6(17)
7 1 2 3 4 5 6 7 7 8 8 σ7(18)
8 1 2 3 4 5 6 7 8 8 9 σ8(19)
9 1 2 3 4 5 6 7 8 9 9 σ9(20)

10 1 2 3 4 5 6 7 8 9 10 σ10(21)
11 σ11(12) σ11(13) · · · · · · · · ·

The main diagonal, the second diagonal
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For any 2 ≤ d ≤ n:
(a) σd(n) ≤ σd(n+1)

the values are non-decreasing when moving
left-to-right along a row

(b) σd(n) ≤ σd+1(n+1)
the values are non-decreasing when moving
top-to-bottom along a column

(c) σd(n) < σd+1(n+2)
the values are strictly increasing when moving
left-to-right and top-to-bottom along descending
diagonals
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(d) σd(2d) = σd(n) = σd+1(n+1) for n ≤ 2d
the values under and on the main diagonal along a
column are constant

(e) σd(n) ≥ n−d for n ≤ 2d
the values under and on the main diagonal are at
least as big as conjectured: σd(2d+1) ≥ d and
σd(2d+2) ≥ d+1

(f) σd(2d)−σd−1(2d−1) ≤ 1
the difference between the value on the main diagonal
and the value immediately above it is no more than 1
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Theorem (The main diagonal dominates)
σd(n) ≤ n−d holds true for all 2 ≤ d ≤ n iff
σd(2d) ≤ d for every d ≥ 2.

Theorem (If the main diagonal and the second one are
“close")
σd(n) ≤ n−d holds true for all 2 ≤ d ≤ n iff
σd(2d+1)−σd(2d) ≤ 1 for every d ≥ 2.
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Theorem (If second diagonal bounded, a stronger upper
bound)
If σd(2d+1) ≤ d for every d ≥ 2, then σd(n) ≤ n−d−1 for
n > 2d ≥ 4 and σd(n) = n−d for n ≤ 2d.

Theorem (If the main diagonal and the second one are
the same, a stronger upper bound)
If σd(2d) = σd(2d+1) for every d ≥ 2, then
σd(n) ≤ n−d−1 for n > 2d ≥ 4 and σd(n) = n−d for
n ≤ 2d.
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Thus, to prove the conjecture in general, it is sufficient
to prove it for the main diagonal.

The sets of square-maximal strings of length n and d
distinct symbols are irregular and unstructured, while
the square-maximal strings on the main diagonal are
regular and structured -- see Mei Jiang’s website
https://advol.cas.mcmaster.ca/jiangm5/
research/square.html
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The d-step conj. was recently proven by Brlek & Li
- Brlek & Li, On the number of squares in a finite word,
arXiv (2022)
- Brlek & Li: On the number of squares in a finite word. Comb.
Theory 5(1) (2025)

Their method, unlike the proof of d-step conjecture for
runs, clearly illustrates and illuminates the role of the
size of the alphabet.
For the distinct square problem, either you have to
decide which occurrences of squares to count
(Fraenkel & Simpson, Lam, Deza & Franek &
Thierry), or map all the occurrences of squares on
some entities so that the occurrences of the squares
of the same type are mapped to the same entity, and
count the entities instead (Brlek & Li).
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This is a joint work with grad student Holly Kopponen

Berge theorem: the cyclomatic number |A| − |V |+ 1
of a weakly connected directed graph G = (V ,A)
equals the number of independent directed cycles in
G (see any book on graph theory by Berge)

Map all occurrences of squares in a string x to
so-called small directed cycles in the Rauzy graph of
x .

Prove that the cycles in the set of small directed
cycles in the Rauzy graph of x are independent.

Apply the cyclomatic number theorem of Berge to the
individual components of the Rauzy graph of x [1 .. n]
to obtain the upper bound of n − d where d is the
number of distinct symbols of x .
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Rauzy graph of x = abcabcaaa, components
R1(x) .. R5(x):

Paper Submitted to PSC 2024

a

b

c

aa ab
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ca

R1(u)

aa ab

ca bc
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Figure 1: Rauzy graph for string abcabcaaa
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Rauzy graph of x = abcabcaaa, components
R6(x) .. R9(x):

Paper Submitted to PSC 2024
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Figure 1: Rauzy graph for string abcabcaaa
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Consider as square abc.abc in x , it corresponds to a
(canonical) cycle of length 3 in R3(x):

abc abca−−−−→ bca bcab−−−−→ cab cabc−−−−→abc

so we can map any occurrence of the square abc.abc
in x to this cycle.

But what if x contains somewhere else a square
cab.cab – it would map canonically to the same cycle.
But it can be mapped to a cycle of length 3 in the
dimension one up

cabc cabca−−−−−→ abca abcab−−−−−→ bcab bcabc−−−−−→cabc

in R4(x) (lifting via rank )
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But what if the square is not primitively rooted?
ab.ab.ab.ab

abab ababa−−−−−→ baba babab−−−−−→abab

a cycle of length 2 in R4(x).

Note all the cycles are of length ≤ the dimension of
the Rauzy component, i.e. so-called short cycles.
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To prove that the short cycles in a Rauzy component
are independent is quite involved. That’s what is in
Brlek & Li papers.
We opted for a more formal approach, defining a
mapping and proving that the set of ϕ-cycles in a
Rauzy component are independent, which is simpler.

Definition (Mapping ϕx )

Let uu be a square in a string x of rank r . Let |u| = k and
let the minimal period of u be ℓ. Let û be the leading root.
Then ϕx (uu) is defined as the directed cycle in Rk+r−1(x)
of length ℓ whose set of vertices is
{rs(ûûû, k+r−1, i) | 0 ≤ i < ℓ} and whose set of arcs is
{rs(ûûû, k+r , i) | 0 ≤ i < ℓ}.
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Hence the number of distinct squares with the
primitive root of their roots of length r is equal to the
number of ϕ-cycles in Rr (x) = ([x ]r , [x ]r+1), majorized
by |[x ]r+1| − |[x ]r |+ 1 by Berge theorem.

Thus, over all components R1(x) . . .Rn−1(x)):
(|[x ]2| − |[x ]1|+ 1) + (|[x ]3| − |[x ]2|+ 1) + ...+ (|[x ]n| −
|[x ]n−1|+ 1) = 1 + ...+ 1︸ ︷︷ ︸

n−1 times

+ |[x ]n|︸ ︷︷ ︸
=1

− |[x ]1|︸ ︷︷ ︸
=d

= n − d .
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A few remaining open problems

The conjecture of Jonoska & Manea & Seki for binary
strings is still unresolved: σ2(n) ≤ 2k−1

2k+2n
where k is the number of occurrences of the letter with the
smaller frequency of occurrence.

k ≤ n
2 , and so 2k−1

2k+2n < n − 2 and so it is stronger than
d-step conjecture.

Jonoska & Manea & Seki, A Stronger Square Conjecture
on Binary Words, 2014
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The computational work done on the (d , n−d) tables
for runs and for distinct squares indicated
σd(n) ≤ ρd(n).

see https://advol.cas.mcmaster.ca/
bakerar2/research/runmax/index.html

see https://advol.cas.mcmaster.ca/
jiangm5/research/square.html
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There is no relationship between r(x) and s(x): for
instance x = abcabcabc has 3 distinct squares
abcabc, bcabca and cabcab while it only has 1 run
abcabcabc.

x = ababxabab has 1 distinct square abab while it
has 2 runs abab starting at position 1 and abab
starting at position 6.

Nevertheless all computed values of σd(n) and ρd(n)
indicate that σd(n) ≤ ρd(n) which Deza and I
conjecture to be true for all admissible values of n and
d .
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T HANK YOU
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