
String Partition for Building Long

Burrows-Wheeler Transforms

Enno Adler, Stefan Böttcher, Rita Hartel

Paderborn University

Enno Adler

Prag, 25.08.2025

Why is the BWT important?

• Main component of FM-Index:
• text compression, indexing, pattern search

• Key to many applications in bioinformatics:
• de novo assembly and read alignment
• BWA, Bowtie2, MICA, and SOAP2

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 2

Existing Approaches

S W = [W0; . . . ;Wk]

BWT(S) BWT(W)

S := W0$0W1$1 . . .Wk$kk = 0;W0 = Spartition (our result)

single-string

construction
multi-string

construction

==our result

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 3

Existing Approaches

S W = [W0; . . . ;Wk]

BWT(S) BWT(W)

S := W0$0W1$1 . . .Wk$kk = 0;W0 = Spartition (our result)

single-string

construction
multi-string

construction

==our result

• single-string construction: divsufsort, libsais, grlBWT, eGap, ropebwt3,

gsufsort, BigBWT, and r-pfbwt

• multi-string construction: BCR, ropebwt, ropebwt2, and IBB

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 3

Existing Approaches

S W = [W0; . . . ;Wk]

BWT(S) BWT(W)

S := W0$0W1$1 . . .Wk$kk = 0;W0 = Spartition (our result)

single-string

construction
multi-string

construction

==our result

• single-string construction: divsufsort, libsais, grlBWT, eGap, ropebwt3,

gsufsort, BigBWT, and r-pfbwt

• multi-string construction: BCR, ropebwt, ropebwt2, and IBB

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 3

Our Approach

S W = [W0; . . . ;Wk]

BWT(S) BWT(W)

S := W0$0W1$1 . . .Wk$kk = 0;W0 = Spartition (our result)

single-string

construction
multi-string

construction

==our result

Key takeaway:

partDNA + IBB is pareto-optimal (time-RAM trade-off) for BWT(S) construction.

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 3

A Second Motivation

k = 0, BWT Construction using LF-Mapping

k = 1, ?k = 2 as value for the following example

k = n, BWT Construction using Suffix Arrays

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 4

A Second Motivation

k = 0, BWT Construction using LF-Mapping

k = 1, ?k = 2 as value for the following example

k = n, BWT Construction using Suffix Arrays

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 4

Multi-String and Single-String BWTs

BWT([AT$, ATGC$, C$])

T

C

C

$

$

G

$

T

A

A

last char of 1st word AT$

last char of 2nd word ATGC$

last char of 3rd word C$

BWT(CATGCAT$)

T

C

C

G

$

T

A

A

1st smallest suffix

2nd smallest suffix

3rd smallest suffix

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 5

Multi-String and Single-String BWTs

BWT([AT$, ATGC$, C$])

T

C

C

$

$

G

$

T

A

A

last char of 1st word AT$

last char of 2nd word ATGC$

last char of 3rd word C$

BWT(CATGCAT$)

T

C

C

G

$

T

A

A

1st smallest suffix

2nd smallest suffix

3rd smallest suffix

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 5

Idea of Partition

• Last chars of word i is at position i in

BWT(S) and BWT(W)

• Chars to the left until next colored

char belong to the same word

BWT(C ATG C A T $)

T

C

C

G

$

T

A

A

last char of 1st word

last char of 2nd word

last char of 3rd word

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 6

Idea of Partition

• Last chars of word i is at position i in

BWT(S) and BWT(W)

• Chars to the left until next colored

char belong to the same word

BWT(C ATGC AT $)

T

C

C

G

$

T

A

A

last char of 1st word

last char of 2nd word

last char of 3rd word

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 6

Number and Length of Words

• Last chars of word i is at position i

• Chars to the left until next belong to

the word

→ Number of words is the

number of smallest suffixes

→ Length of words depends on the

number of smallest suffixes

BWT(C ATGC AT $)

T

C

C
…

last char of 1st word

last char of 2nd word

last char of 3rd word

BWT(CATGC AT $)

T

C

C
…

last char of 1st word

last char of 2nd word

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 7

Equality of Construction

BWT([AT$, ATGC$, C$])

T

C

C

$

$

G

$

T

A

A

BWT(C ATGC AT $)

T

C

C

A

A

G

$

T

A

A

1st smallest suffix

2nd smallest suffix

3rd smallest suffix

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 8

Towards a Procedure

• Take k smallest suffixes of S

• Partition S at these positions

• Wi is the word before the ith smallest

suffix

• Find the position of smallest

suffixes

• Sort the resulting words accordingly

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 9

Towards a Procedure

• Take k smallest suffixes of S

• Partition S at these positions

• Wi is the word before the ith smallest

suffix

• Find the position of smallest

suffixes

• Sort the resulting words accordingly

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 9

On Sorting the Words

Chars before Sorted Suffixes

C ATGC AT $

C ATGC AT $

C ATGC AT $

• Suffixes are composed of words Wi

• Name words by their rank (W1 is the smallest word → 1)

Chars before Sorted Suffixes

W3 W2 W1 $

W3 W2 W1 $

W3 W2 W1 $

Chars before Sorted Suffixes

W3 W2 W1 $

W3 W2 1 $

W3 2 1 $

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 10

partDNA

1. Split S before runs with at least h A

symbols and before A∗$ into words Sj

2. recursively Bucket-sort the Sj

3. Resolve order of equal Sj by small SA

construction

4. Obtain W from Sj by induced suffix

sorting

• Find the position of smallest

suffixes

• Sort the resulting words accordingly

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 11

1. Split S

1. Split S before runs with at least h A

symbols and before A∗$ into words Sj

recursively Bucket-sort the Sj

Resolve order of equal Sj by small SA

construction

Obtain W from Sj by induced suffix

sorting

• S = $ C A TGC A T

• h = 1

• S0 = C , S1 = TGC , and S2 = T

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 12

2. The Recursive Bucket Sort

TGC

T

TGC

Tε

T

TGC
T-Bucket

ε-Bucket

G-Bucket

Stop if leave is of size 1 or if ε-bucket

Sort within ε-bucket according to number of following As in S = $ C A TGC A T

The order is top-down the leaves: $C < AT < ATGC

Assign names to words: $C 7→ 1 , AT 7→ 2 , and ATGC 7→ 3

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 13

3. Small SA Construction

S = $ S0 A S1 A S2

R = 1 2 3

SA(R) = 123

$C 7→ 1

AT 7→ 2

ATGC 7→ 3

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 14

4. Induce the Words

S = $ S0 A S1 A S2 $
SA(R) = 123

Smallest suffixes:

1. $ / $ S0 S1 A S2

2. A S1 A S2

3. A S2

Word before the suffix:

• A S2

• $ S0

• A S1

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 15

4. Induce the Words

S = $ S0 A S1 A S2 $
SA(R) = 123

Smallest suffixes:

1. $ / $ S0 S1 A S2

2. A S1 A S2

3. A S2

Word before the suffix:

• A S2

• $ S0

• A S1

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 15

4. Induce the Words

S = $ S0 A S1 A S2 $
SA(R) = 123

Smallest suffixes:

1. $ / $ S0 S1 A S2

2. A S1 A S2

3. A S2

Word before the suffix:

• A S2

• $ S0

• A S1

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 15

4∗. Induce a Complex Word

S = $ S0 AA A S1 A A S2 $
SA(R) = 123

Smallest suffixes:

1. $

2. AA A S1 A A S2

3. A A S1 A A S2

4. A A S2

5. A S1 A A S2

6. A S2

Word before the suffix:

• A S2

• $ S0

• A A

• A S1

• A A

• A A

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 16

4∗. Induce a Complex Word

S = $ S0 AA A S1 A A S2 $
SA(R) = 123

Smallest suffixes:

1. $

2. AA A S1 A A S2

3. A A S1 A A S2

4. A A S2

5. A S1 A A S2

6. A S2

Word before the suffix:

• A S2

• $ S0

• A A

• A S1

• A A

• A A

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 16

4∗. Induce a Complex Word

S = $ S0 AA A S1 A A S2 $
SA(R) = 123

Smallest suffixes:

1. $

2. AA A S1 A A S2

3. A A S1 A A S2

4. A A S2

5. A S1 A A S2

6. A S2

Word before the suffix:

• A S2

• $ S0

• A A

• A S1

• A A

• A A

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 16

4∗. Induce a Complex Word

S = $ S0 AA A S1 A A S2 $
SA(R) = 123

Smallest suffixes:

1. $

2. AA A S1 A A S2

3. A A S1 A A S2

4. A A S2

5. A S1 A A S2

6. A S2

Word before the suffix:

• A S2

• $ S0

• A A

• A S1

• A A

• A A

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 16

partDNA

1. Split S before runs with at least h A

symbols and before A∗$ into words Sj

2. recursively Bucket-sort the Sj

3. Resolve order of equal Sj by small SA

construction

4. Obtain W from Sj by induced suffix

sorting

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 17

Datasets

datasets GRCh38 JAGHKL01

word count word length word count word length

original 1 > 3 billion 1 > 14 billion

partition at AAAAA > 20 million 151 > 39 million 364

partition at AAAA > 46 million 67 > 118 million 121

partition at AAA > 116 million 26 > 356 million 40

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 18

Approaches

S

BWT(S)

S

W

BWT(W)

BWT(S)

single-string

construction (black bullet)

• libsais

• divsufsort

…

partition (shape)

4 AAA

� AAAA

multi-string construction (color)

IBB

…

delete $

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 19

Construction Time and RAM Usage

100 1000

1

10

ropebwt
ropebwt2
IBB

r-pfbwteGap

divsufsort

grlBWT

libsais

Time in seconds (logarithmic)

m
ax

R
A
M

in
G
B

(l
og
ar
it
h
m
ic
)

GRCh38

original
h = 3
h = 4
h = 5

1000 10000

1

10

100

ropebwt
ropebwt2
IBB

grlBWT

gsufsort

libsais

Time in seconds (logarithmic)

m
ax

R
A
M

in
G
B

(l
o
g
ar
it
h
m
ic
)

JAGHKL01

original
h = 3
h = 4
h = 5

Key takeaway:

partDNA + IBB is pareto-optimal (time-RAM trade-off) for BWT(S) construction.

| Enno Adler – String Partition for Building Long BWTs – Prag, 25.08.2025 20

Thank you very much for your attention.

I look forward to an exciting discussion.

Enno Adler | eadler@mail.upb.de

