Approximate Longest Common Substring of Multiple Strings: Experimental Evaluation

Hamed Hasibi ¹ Neerja Mhaskar ¹ William F. Smyth ¹

¹McMaster University

The Prague Stringology Conference 2025 Prague, Czech Republic, August 25–26

Overview

- Preliminaries
- Problem Definition
- $O(N^2/p)$ time by CPU
- Further speedup by GPU
- Results
- Future work

- Preliminaries
- 2 Problem Definition
- 3 $\mathcal{O}(N^2/p)$ time by CPU
- 4 Further speedup by GPU
- 6 Results
- 6 Future work

Definitions

- s[1...] and s[..n] are **prefix** and **suffix**, respectively.
- For equal-length strings s_1 and s_2 , **Hamming distance** $d_H(s_1, s_2)$ is the number of positions i such that $s_1[i] \neq s_2[i]$, $1 \leq i \leq |s_1|$.
- For $1 \leq i' \leq |s_1|$ and $1 \leq j' \leq |s_2|$, we define $\mathbf{LCP^{H,k}_{(s_1,s_2)}[i',j']} = l$ as the length of the longest common prefix between the suffixes $s_1[i'..|s_1|]$ and $s_2[j'..|s_2|]$, such that $d_h(s_1[i'..i'+l-1], s_2[j'..j'+l-1]) \leq k$.
- $MaxLCP_{(s_i,s_j)}^{H,k}$ is defined as an array of length $|s_i|$, where each entry $MaxLCP_{(s_i,s_j)}^{H,k}[i']$ stores the maximum value of $LCP_{(s_i,s_j)}^{H,k}[i',j']$ over all $1 \leq j' \leq |s_j|$.

Example

Table: $LCP_{(s_1,s_2)}^{H,1}$ and $MaxLCP_{(s_1,s_2)}^{H,1}$ for $s_1 = ACGTA$ (rows) and $s_2 = ACGACA$ (columns).

	Α						$MaxLCP_{(s_1,s_2)}^{H,1}$
Α	4	1	1	3	1	1	4
C	4 1 1 1	3	1	1	2	1	3
G	1	1	2	1	1	1	2
Т	1	1	2	1	2	1	2
Α	1	1	1	1	1	1	1

- Preliminaries
- 2 Problem Definition
- 4 Further speedup by GPU
- 6 Results
- 6 Future work

Rkt-LCS problem

Given integers $k, t, m \in \mathbb{N}$ with $1 \le t \le m$ and a set $\mathbf{S} = \{s_1, s_2, \dots, s_m\}$ of strings,

Problem

[Restricted k-t Longest Common Substring (Rkt-LCS) [2]] Find a longest substring u taken from any string in \boldsymbol{S} such that there exist t distinct strings $s'_1,\ldots,s'_t\in \boldsymbol{S}$ with corresponding substrings u_1,\ldots,u_t satisfying $d_{\delta}(u,u_j)\leq k$ for every $j=1,\ldots,t$.

Figure: Rkt-LCS for m=6, t=4 , and $\delta=H$ (not necessarily substring of s_1)

Arxiv Results

Parameters: $N = m\ell$, k, t

Theorem

The k-t LCS problem is NP-hard for $\delta = H$ [2].

Theorem

The Rkt-LCS for $\mathbf{S} = \{s_1, s_2, \dots, s_m\}$ for $\delta = H$ can be computed in $\mathcal{O}(N^2)$ time and $\mathcal{O}(m\ell^2)$ additional space [2].

Theorem

The Rkt-LCS problem for $\mathbf{S} = \{s_1, s_2, \dots, s_m\}$ and t = m can be computed in $\mathcal{O}(mN\log^k \ell)$ time with $\mathcal{O}(N)$ additional space, for any $\delta = \{H, L, E\}$ [2].

Arxiv Results

Theorem

The Rkt-LCS for $\delta = \{L, E\}$ and $\mathbf{S} = \{s_1, s_2, \dots, s_m\}$ can be computed in $\mathcal{O}(k\ell N^2)$ time [2].

Lemma

The Strong Exponential Time Hypothesis (**SETH**): for every $\varepsilon > 0$, there exists an integer q such that SAT on q-CNF formulas with m clauses and n variables cannot be solved in $m^{O(1)}2^{(1-\varepsilon)n}$ time.

Theorem

Suppose there is a $\varepsilon > 0$ such that Rkt-LCS for any t = m and $\delta = H$ can be solved in $\mathcal{O}(N^{2-\varepsilon})$ time on binary strings for $k = \Omega(\log \ell)$. Then SETH is false [2].

LENGTHSTAT Data structure

Definition (LENGTHSTAT [2])

Let $\mathbf{S} = \{s_1, s_2, \dots, s_m\}$ be a set of strings. For every (i, x) pair with $1 \le i \le m$ and $1 \le x \le |s_i|$, define the $LengthStat_{(i,x)}^k$ table as follows:

$$LengthStat_{(i,x)}^{H,k}[I,j] = \begin{cases} 1, & \text{if } MaxLCP_{(s_i,s_j)}^{H,k}[x] \ge I \\ 0, & \text{otherwise} \end{cases}$$

where $1 \le j \le m$ indexes the strings **S** and $1 \le l \le |s_i| - x + 1$ is the prefix length.

The matrix is augmented with a final column $LengthStat_{(i,x)}^{H,k}[I,m+1]$ storing, for each row I, the sum of its first m entries, i.e. the number of strings in \boldsymbol{S} that share with $s_i[x..]$ a prefix of length at least I under k-mismatch Hamming distance.

Example

Table: The $lengthStat_{(1,3)}^{H,1}$ table for $\mathbf{S} = \{TTGAC, CGAAAT, TGGTA\}$, where k = 1. The $lengthStat_{(1,3)}^{H,1}[3,2] = 1$ indicates the 1-approximate occurrence of the length-3 prefix of $s_1[3..5]$ (GAC), somewhere in s_2 ($s_2[2..4] = GAA$).

	$1 (s_1)$	2 (s ₂)	3 (s ₃)	4 (Frequency)
1	1	1	1	3
2	1	1	1	3
3	1	1	0	2

LS key-values and C_i

We formulate **last** column of $LengthStat^{H,k}$ in LS key-value (i,p,l),count:

- i: the string index of the string $s_i \in S$
- p: the starting position of s_i
- 1: the prefix length of the p-th suffix of s_i
- count: the number of the strings in which $s_i[i..i + l 1]$ has k-approximate occurrences.

For instance, the entry ((1,2,4),5) in LS states that the substring $s_1[2..2+4-1]$ occurs with at most k mismatches in five strings of the set \boldsymbol{S} .

 C_i , $1 \le i \le m$: **Longest** substring of s_i that has k-approximate occurrences in t strings of the set S.

- Preliminaries
- 2 Problem Definition
- $O(N^2/p)$ time by CPU
- 4 Further speedup by GPU
- 6 Results
- 6 Future work

CPU Computation Model

Suppose we have 2 processors (P_1 and P_2):

- P_1 sequentially computes $MaxLCP_{(s_i,s_j)}^{H,k}$, ls(i,p,l) and C_i for $i = \{1,2,3\}$ (first for i = 1, then i = 2, and finally i = 3).
- P_2 sequentially computes $MaxLCP_{(s_i,s_j)}^{H,k}$, Is(i,p,l) and C_i for $i = \{4,5,6\}$ (first for i = 4, then i = 5, and finally i = 6).

Figure: String set distribution across processors

Time Complexity & Runtime

 $N=m\ell$: m is the number of strings in set ${\bf S}$, ℓ is the length of each string P: number of processors

• Sequential: $\mathcal{O}(N^2)$ [2]

• Parallel: $\mathcal{O}(N^2/P)$

Cores	k = 1		k	= 3	k = 10	
	Time	RSU	Time	RSU	Time	RSU
4	138	1.00×	242	1.00×	705	1.00×
8	71	$1.94\times$	122	$1.98\times$	352	$2.00 \times$
16	40	$3.45\times$	63	$3.84\times$	181	$3.89 \times$
32	19	$7.26 \times$	42	$5.76 \times$	112	$6.29 \times$

Figure: Runtime for m = 5000

- Preliminaries
- 2 Problem Definition
- $O(N^2/p)$ time by CPU
- Further speedup by GPU
- 6 Results
- 6 Future work

Introduction to GPU Computing

- **GPU** (**Graphics Processing Unit**) originally designed for graphics rendering.
- Now widely used for general-purpose parallel computing.
- Consists of thousands of lightweight cores optimized for parallel tasks.
- Excellent for data-parallel problems (e.g., matrix multiplication, deep learning).

CPU vs GPU

CPU

- Few powerful cores.
- Optimized for sequential processing.
- Large caches, complex control logic.
- Suited for diverse, branching workloads.

GPU

- Thousands of simple cores.
- Optimized for massive parallelism.
- High memory bandwidth.
- Suited for uniform, data-parallel workloads.

Why Big-O is Not Enough on GPU

- ullet C captures **asymptotic growth**, but ignores hardware-level factors.
- On GPUs, performance depends on:
 - Parallelism: how well the problem maps to thousands of threads.
 - Warp divergence: different branches reduce efficiency.
 - PCIe transfer costs: moving data CPU \leftrightarrow GPU.
- Two algorithms with the same $\mathcal{O}(N^2)$ complexity may run **orders of magnitude apart** on a GPU.
- Hence, GPU complexity is better described by work, depth, and parallelism efficiency, not just \mathcal{O} .

GPU Computation Model

GPU computes $MaxLCP_{(s_i,s_j)}^{H,k}$ of given i and all j in $\mathcal{O}(m\ell)$ kernel call.

Figure: $MaxLCP_{(s_i,s_j)}^{H,k}$ cells with similar colors are computed by one GPU kernel call.

GPU Computation Model

```
\begin{cases} P_1 \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_1,S_{\mathit{buffer}})} \text{ at } t_1^1 \\ P_1 \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_2,S_{\mathit{buffer}})} \text{ at } t_2^1 \\ \vdots \\ P_1 \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_{m/p},S_{\mathit{buffer}})} \text{ at } t_{m/p}^1 \end{cases}
\begin{cases} P_p \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_{m-m/p+1},S_{buffer})} \text{ at } t_1^p \\ P_p \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_{m-m/p+2},S_{buffer})} \text{ at } t_2^p \\ \vdots \\ P_p \text{ invokes } \mathcal{O}(m\ell) \text{ threads for } \mathit{MaxLCP}^{H,k}_{(s_m,S_{buffer})} \text{ at } t_{m/p}^p \end{cases}
```

- Preliminaries
- 2 Problem Definition
- $O(N^2/p)$ time by CPU
- 4 Further speedup by GPU
- 6 Results
- 6 Future work

System Configuration

- 2x 4.1 GHz 16-core Intel Xeon Gold 6426Y processors
- 250 GB of main memory
- 4x NVIDIA H100 GPUs, each with 80 GB of memory
- REHL 9 operating system
- Dataset consists of two files, each containing 1,077,820 nucleotide sequences ($\Sigma = \{A, T, C, G\}$) of uniform length 51, formatted in FASTQ.

Results

Implementation for *Rkt*-LCS under $\delta = H$:

• GPU implementation: 179× speed-up

Table 3: Runtime (in seconds) and Relative SpeedUp (RSU — relative to Cores = 4) comparison for m = 5000

(a) Parallel CPU, t = 1000, $\tau = 15$

k = 3

 $242\ 1.00 \times$

 $122\ 1.98 \times$

 $63\ \, 3.84 \times$

 $42\ 5.76 \times$

RSU Time

 $112\ 6.29 \times$

<i>k</i> =	= 10	
lime	RSU	
705	1.00×	
352	$2.00\times$	
181	$3.89 \times$	

(b) Parallel CPU,
$$t = 100$$
, $\tau = 30$

Cores	k	= 1	k = 3		k = 10	
	Time	RSU	Time	RSU	Time	RSU
4	82	1.00×	146	1.00×	358	1.00×
8	44	$1.86\times$	75	$1.94 \times$	182	$1.96 \times$
16	30	$2.73\times$	39	$3.74\times$	94	$3.80 \times$
32	17	$4.94 \times$	26	$5.61 \times$	66	$5.42 \times$

(c) Parallel GPU, t = 1000, $\tau = 15$

Cores	k = 1		k	= 3	k = 10	
	Time	RSU	Time	RSU	Time	RSU
4	4	1.00×	3	1.00×	72	1.00×
8	5	$0.80\times$	4	$0.75\times$	37	$1.94 \times$
16	6	$0.66 \times$	6	$0.50\times$	22	$3.27\times$
32	12	$0.33\times$	11	$0.27\times$	21	$3.42\times$

(d) Parallel GPU, t = 100, $\tau = 30$

Cores	k	= 1	k = 3		k = 10	
	Time	RSU	Time	RSU	Time	RSU
4	2	1.00×	2	1.00×	2	1.00×
8	3	$0.66 \times$	3	$0.66 \times$	2	$1.00 \times$
16	4	$0.50\times$	5	$0.40\times$	5	$0.40 \times$
32	9	$0.22\times$	9	$0.22\times$	9	$0.22\times$

Cores

4

16

32

k = 1

 $138 \ 1.00 \times$

 $71\ 1.94 \times$

 $40 \ 3.45 \times$

19 7.26×

Time RSU Time

Results

Figure: Runtime comparison for CPU and GPU-accelerated implementations with varying k on different sequence set sizes, t=1000, $\tau=15$, and p=32

Results

Figure: GPU-accelerated implementation runtime (in whole minutes) for different (k,p) settings, t=1000, and $\tau=15$

- Preliminaries
- 2 Problem Definition
- $O(N^2/p)$ time by CPU
- 4 Further speedup by GPU
- 6 Results
- 6 Future work

Future work

- Implementation for other distance metrics (like affine gap edit distance)
- Further speed up using FFT (Fast Fourier Transform)
- Adapting Flouri et el. [1] LCPH,k computation to GPU

Thank You!

References I

- T. Flouri, E. Giaquinta, K. Kobert, and E. Ukkonen. Longest common substrings with k mismatches. <u>Inf. Process. Lett.</u>, 115(6-8):643–647, 2015.
- [2] H. Hasibi, N. Mhaskar, and W. F. Smyth. On the complexity of finding approximate LCS of multiple strings, 2025. https://arxiv.org/abs/2505.15992.