Context Outline

On-the-fly Stuttering in the Construction of Deterministic ω -Automata

Joachim Klein, Christel Baier

Institute of Theoretical Computer Science Dresden University of Technology, Germany

http://www.ltl2dstar.de/

CIAA 2007

Context

Goal

 Deterministic ω-Automata (automata on infinite words) from LTL formulas

Problem

- LTL to nondeterministic Büchi automata: Exponential blow-up
- Determinization of nondet. Büchi automata: 2^{O(n log n)}

In practice

- Implementation Itl2dstar, several heuristics
- Used e.g. by *LiQuor*, LTL model checker for Markov Decision Processes

Context Outline

Overview

Idea

 Use knowledge about insensitiveness to stuttering to avoid intermediate automata states during construction of deterministic automaton

Algorithm

- On-the-fly
- Can be used for deterministic automata with Rabin, Streett, Parity, Büchi acceptance
- During determinization, but also union, etc.
- Heuristic

Context Outline

Outline

Introduction

- LTL, ω-Automata
- 2
- Stuttering deterministic ω -automata
- Stuttering
- Stuttered Construction
- Partial Stuttering
- Experimental Results

LTL, ω -Automata

Outline

Introduction • LTL, ω-Automata

- Stuttering deterministic ω -automata
 - Stuttering
 - Stuttered Construction
 - Partial Stuttering
 - Experimental Results

3 Summary

LTL, ω -Automata

Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL)

- over set of Atomic Propositions AP ($\Sigma = 2^{AP}$)
- Propositional Logic: \neg , \lor , \land , \rightarrow , ...
- Temporal Operators:
 - U Until
 - F Finally, Eventually
 - G Globally, Always
 - X Nextstep

try U success F success G¬error try ∧ X success

LTL, ω -Automata

Deterministic ω -Automaton

Deterministic ω -Automaton

- $\mathcal{A} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \Omega)$, with
 - Q: Set of states
 - Σ: Alphabet
 - δ : Transition function (deterministic, $Q \times \Sigma \rightarrow Q$)
 - q₀: Starting state
 - Ω: Acceptance condition

Acceptance/Language

- Accepts/rejects infinite words $\alpha \in \Sigma^{\omega}$
- $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^{\omega}$

LTL, ω -Automata

Rabin acceptance (k acceptance pairs)

- Acc = $\{ \bigcirc, \bigcirc, \bigcirc \}$
- Every state has acceptance signature: k-tuple acc ∈ Acc^k

 Run π over α is accepting iff ∃*i*: *acc*[*i*] = ○ infinitely often and *acc*[*i*] = ○ not infinitely often

LTL, ω -Automata

Rabin acceptance (k acceptance pairs)

- Acc = $\{ \bigcirc, \bigcirc, \bigcirc \}$
- Every state has acceptance signature: k-tuple acc ∈ Acc^k
- Run π over α is accepting iff ∃*i*: *acc*[*i*] = ○ infinitely often and *acc*[*i*] = ○ not infinitely often
- Ordering: O < O < O
- max{acceptance signatures}: maximum element-wise max{OO, OO} = OO
- Calculate $acc_{inf} = max\{acc(inf(\pi))\}$
- Run π is accepting iff $\exists \bigcirc$ in acc_{inf}

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Outline

Introduction

LTL, ω-Automata

2 Stuttering deterministic ω -automata

Stuttering

- Stuttered Construction
- Partial Stuttering
- Experimental Results

3 Summary

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttering

Stutter Equivalence

Stutter equivalent words differ only by finite repetition (stuttering) of symbols.

Closure under stuttering

Language \mathcal{L} is closed under stuttering iff any two stutter equivalent words are both accepted or both rejected.

Joachim Klein, Christel Baier Stuttering Deterministic ω -Automata

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stutter Insensitiveness

Stuttering Insensitiveness

- LTL formula, ω-automaton insensitive iff language is closed under stuttering
- Important property for e.g. partial-order reduction in model checking

How can we known?

- In general: PSPACE-complete in formula size
- All formulas without NextStep (X) are insensitive

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Run in stutter insensitive DRA

Input word $\alpha = ab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Run in stutter insensitive DRA

Input word $\alpha = aab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Run in stutter insensitive DRA

Input word $\alpha = aaab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Run in stutter insensitive DRA

Input word $\alpha = aaaab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Input word $\alpha = aaaaab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Input word $\alpha = aaaaaab\beta$

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Outline

Introduction

- LTL, ω-Automata
- 2 Stuttering deterministic ω -automata
 - Stuttering

Stuttered Construction

- Partial Stuttering
- Experimental Results

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered automaton

Stuttered Construction

Original DRA $\mathcal{A} = (Q, \Sigma, \delta, q_0, \Omega)$

Stuttered DRA $\mathcal{B} = (\mathbf{Q}', \Sigma, \delta', \mathbf{q}'_0, \Omega')$

•
$$Q' = Q \times Acc^k$$

•
$$q_0' = < q_0, acc(q_0) >$$

 Ω': according to the acceptance signature stored in the state

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(q, a^i)$$
 in $\mathcal{A}, i = 1, 2, ...$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ^\prime

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

•
$$\delta(\boldsymbol{q}, \boldsymbol{a}^i)$$
 in $\mathcal{A}, i = 1, 2, \dots$

- Prefix and cycle
- Pick a canonical cycle state
- Stutter as far as possible and then to canonical state
- Merge acc. signatures with max operator

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

- δ'(< q, acc >, a) =?
- If acc. sig. of cycle "dominates" the prefix acc. sig., prefix and cycle states collapse
- Prefix state can not always be avoided

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Stuttered transition function δ'

- δ'(< q, acc >, a) =?
- If acc. sig. of cycle "dominates" the prefix acc. sig., prefix and cycle states collapse
- Prefix state can not always be avoided
- \mathcal{B} can be larger than \mathcal{A}

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Outline

Introduction

LTL, ω-Automata

2 Stuttering deterministic ω -automata

- Stuttering
- Stuttered Construction
- Partial Stuttering
- Experimental Results

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Using Partial Stuttering

Partial Stuttering

- Only stuttering of certain symbols from Σ is allowed.
- For formula, determine stutter insensitive symbols $S \subseteq \Sigma$
- Use stutter construction only on transitions with $\sigma \in S$

Determining Stutter Insensitiveness

- Prototypical implementation
- Checking each $\sigma \in \Sigma$
- NBA emptiness check of product automaton of stutter closure NBA and complement formula NBA

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Outline

Introduction

LTL, ω-Automata

2 Stuttering deterministic ω -automata

- Stuttering
- Stuttered Construction
- Partial Stuttering
- Experimental Results

3 Summary

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Benchmark

Formulas

- Literature 39 Formulas (25 without X)
 - Etessami, Holzmann: Optimizing Büchi Automata
 - Somenzi, Bloem: Efficient Büchi automata from LTL formulae
 - Pattern 55 Formulas (30 without X)
 - http://patterns.projects.cis.ksu.edu/
 - Random 1000 Random Formulas (415 without X) Generated with the Test-Bench lbtt
- LTL to NBA translator: ltl2ba
- Generating det. Rabin automata (Safra's algorithm)

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Results (without *X*)

Formulas	DRA	stuttered DRA	Tin	ne
25 Literature	278	168 (-40%)	0.3s /	0.3s
30 Patterns	311	189 (-39%)	0.3s /	0.3s
415 Random	1,820	1,499 (-18%)	3.9s /	4.0s

Sum of the number of states of the automata, running time

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Results (with partial stuttering)

Formulas	DRA	stuttered DRA	Time	е
14 Literature	107	79 (-26%)	0.3s /	6.8s
25 Patterns	103,318	17,731 (-83%)	207.5s /	99.4s
585 Random	3,441	3,081 (-11%)	5.6s /	10.6s

Sum of the number of states of the automata, running time

Stuttering Stuttered Construction Partial Stuttering Experimental Results

Results (with partial stuttering)

Formulas	DRA	stuttered DRA	Tim	е
14 Literature	107	79 (-26%)	0.3s /	6.8s
25 Patterns	103,318	17,731 (-83%)	207.5s /	99.4s
585 Random	3,441	3,081 (-11%)	5.6s /	10.6s

Sum of the number of states of the automata, running time

Formulas	Calc. S	Calc. DRA	Avg. S / Σ
14 Literature	6.5s	0.3s	75.9%
25 Patterns	15.5s	83.9s	92.7%
585 Random	3.8s	6.8s	49.6%

Summary

- Use stutter insensitiveness to generate smaller deterministic ω-automata in practice
- Partial stuttering where not all symbols are stutter insensitive
- Calculating set S for formulas with X operator is expensive but feasible in practice

http://www.ltl2dstar.de/