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Ranked alphabets and treesA ranked alphabet is a �nite set ofsymbols
Σ =

⋃k∈N Σ(k) .The symbols in Σ(k) have rank k .The set of trees over Σ is written TΣ.A tree language w.r.t. Σ is simply asubset of TΣ.
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Finite tree automataA �nite tree automaton (fta) is a tuple (Q,Σ, δ,F ) where
◮ Q is a �nite set of states,
◮ Σ is a ranked input alphabet,
◮ δ is a �nite set of transition rules in the formf (q1, . . . , qn) → qn+1 ,where f ∈ Σ(n), and q1, . . . , qn+1 ∈ Q, for some n ∈ N.
◮ Finally, F ⊆ Q is a set of a

epting states.
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Appli
ations
Finite tree automata . . .

◮ o�er a ni
e 
ombination of generative power and analyti
altransparen
y.
◮ are useful in areas su
h as lexi
al analysis, model 
he
king andnatural language pro
essing.To allow for e�
ient 
omputations, we want to work with as smallfta as possible. This makes a minimisation algorithm a useful tool.
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Minimisation of tree automataThe ProblemGiven an fta, �nd a minimal language equivalent fta.The deterministi
 
ase is e�
iently solvable, and the solution isalways unique.The general 
ase, however,
◮ la
ks a unique solution,
◮ is PSPACE 
omplete [Meyer and Sto
kmeyer, 1972], and
◮ e�
ient approximation within a 
onstant fa
tor is not possibleunless P = NP .Any e�
ient algorithm that sear
hes for a solution to the generalproblem, must thus use heuristi
s.



BisimulationThe notion of bisimularity is due to R. Milner.Intuitively, two states are bisimilar if they serve the same purpose.We adopt P. Bu
hholz de�nitions and extend these to trees:
◮ Ba
kward bisimulation Two states are bisimilar if every treethat is mapped to the one state is also mapped to the other.
◮ Forward bisimulation Two states are bisimilar if they 
analways be ex
hanged for ea
h other during a run on an inputtree t, without a�e
ting the way t is 
lassi�ed.
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Partition re�nement algorithms in generalThe Coarsest Partition ProblemGiven a transition system (Q, δ) and a 
ondition 
 , �nd the 
oarsestpartition of Q that meets with 
 .1 Let the initial partition P0 be {Q}.2 Traverse the rules in δ, and
◮ re
ord the �behaviour� of ea
h q ∈ Q in the ve
tor v(q)i .3 The partition Pi+1 is obtained by bu
ket sorting ea
h q in Qusing ([q]Pi , v(q)i ) as key.4 if Pi+1 and Pi 
oin
ide, then we are done, else, go to Step 2.



Time 
omplexityIf δ is deterministi
, then we 
an use the �pro
ess the smaller half�strategy by J. E. Hop
roft. In this 
ase, we only have to 
onsider atotal of O(m log n) rules, 
ounting repetitions [Hop
roft, 1971].If δ is nondeterministi
, then we must also use a 
ounting argumentby Paige & Tarjan. [Paige and Tarjan, 1987].Time 
omplexityLet r be the maximum rank of the input alphabet, let m be thenumber of transitions, and let n be the number of states.
◮ The forward algorithm runs in time O(r m log n), and
◮ the ba
kward algorithm runs in time O(r2m log n).



AKH bisimulationAn equivalen
e relation ≃ is an AKH bisimulation if
◮ the relation respe
ts the �nal states, and
◮ the fa
t that p ≃ q and there is a rulef (p1, . . . , pi−1, p, pi , . . . , pk ) → pk+1 ,where i ∈ {1, . . . , k}, implies that there is also a rulef (q1, . . . , qi−1, q, qi , . . . , qk ) → qk+1 ,s.t. pj ≃ qj , for every j ∈ {1, . . . , k + 1} \ {i}, and vi
e versa.



ComparisonForward bisimulation . . .
◮ 
oin
ides with the standard minimisation algorithm when theinput automaton is deterministi
, and
◮ is a fa
tor r easier to 
ompute than both AKH bisimulationand ba
kward bisimulation.Ba
kward bisimulation . . .
◮ is no harder to 
ompute than AKH bisimulation, and
◮ produ
es, in the general 
ase, smaller output automata thanboth forward and AKH bisimulation.



An NLP appli
ationProblemCompile a large set of synta
ti
 trees into a language model.



An NLP appli
ationProblemCompile a large set of synta
ti
 trees into a language model.Instantiation
◮ Samples are taken from the Penn Treebank 
orpus ofsynta
ti
ally bra
keted English news text.
◮ Fta as language model.



An NLP appli
ationProblemCompile a large set of synta
ti
 trees into a language model.Instantiation
◮ Samples are taken from the Penn Treebank 
orpus ofsynta
ti
ally bra
keted English news text.
◮ Fta as language model.Solution1 First, 
onstru
t a trivial automaton from the sample set,2 next, apply implementations of the minimisation algorithms.



Experimental results



Work in progressForward and ba
kward bisimulation 
an also be de�ned forweighted tree automata.
◮ Leads to O(mnr) minimisation algorithms for generalsemirings, but
◮ O(r2m log n), O(rm log n) if the underlying algebrai
 stru
tureis 
an
ellative.Future work in
ludes
◮ weight pushing, and
◮ a more thorough study of the intera
tion between forward andba
kward bisimulation.


