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Ranked alphabets and treesA ranked alphabet is a �nite set ofsymbols
Σ =

⋃k∈N Σ(k) .The symbols in Σ(k) have rank k .The set of trees over Σ is written TΣ.A tree language w.r.t. Σ is simply asubset of TΣ.
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Finite tree automataA �nite tree automaton (fta) is a tuple (Q,Σ, δ,F ) where
◮ Q is a �nite set of states,
◮ Σ is a ranked input alphabet,
◮ δ is a �nite set of transition rules in the formf (q1, . . . , qn) → qn+1 ,where f ∈ Σ(n), and q1, . . . , qn+1 ∈ Q, for some n ∈ N.
◮ Finally, F ⊆ Q is a set of aepting states.
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Appliations
Finite tree automata . . .

◮ o�er a nie ombination of generative power and analytialtranspareny.
◮ are useful in areas suh as lexial analysis, model heking andnatural language proessing.To allow for e�ient omputations, we want to work with as smallfta as possible. This makes a minimisation algorithm a useful tool.
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Minimisation of tree automataThe ProblemGiven an fta, �nd a minimal language equivalent fta.The deterministi ase is e�iently solvable, and the solution isalways unique.The general ase, however,
◮ laks a unique solution,
◮ is PSPACE omplete [Meyer and Stokmeyer, 1972], and
◮ e�ient approximation within a onstant fator is not possibleunless P = NP .Any e�ient algorithm that searhes for a solution to the generalproblem, must thus use heuristis.



BisimulationThe notion of bisimularity is due to R. Milner.Intuitively, two states are bisimilar if they serve the same purpose.We adopt P. Buhholz de�nitions and extend these to trees:
◮ Bakward bisimulation Two states are bisimilar if every treethat is mapped to the one state is also mapped to the other.
◮ Forward bisimulation Two states are bisimilar if they analways be exhanged for eah other during a run on an inputtree t, without a�eting the way t is lassi�ed.



Bakward bisimulationLet A = (Q,Σ, δ,F ) be an fta. An equivalene relation ≃ on Q is abakward bisimulation if p ≃ q means thatf (p1, p2, . . . , pk ) → p ,implies that there exists a rulef (q1, q2, . . . , qk ) → q ,suh that pi ≃ qi , for every i ∈ {1, . . . , k}, and vie versa.
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Forward bisimulationLet A = (Q,Σ, δ,F ) be an fta. An equivalene relation ≃ on Q is aforward bisimulation if p ≃ q means that
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Partition re�nement algorithms in generalThe Coarsest Partition ProblemGiven a transition system (Q, δ) and a ondition  , �nd the oarsestpartition of Q that meets with  .1 Let the initial partition P0 be {Q}.2 Traverse the rules in δ, and
◮ reord the �behaviour� of eah q ∈ Q in the vetor v(q)i .3 The partition Pi+1 is obtained by buket sorting eah q in Qusing ([q]Pi , v(q)i ) as key.4 if Pi+1 and Pi oinide, then we are done, else, go to Step 2.



Time omplexityIf δ is deterministi, then we an use the �proess the smaller half�strategy by J. E. Hoproft. In this ase, we only have to onsider atotal of O(m log n) rules, ounting repetitions [Hoproft, 1971].If δ is nondeterministi, then we must also use a ounting argumentby Paige & Tarjan. [Paige and Tarjan, 1987].Time omplexityLet r be the maximum rank of the input alphabet, let m be thenumber of transitions, and let n be the number of states.
◮ The forward algorithm runs in time O(r m log n), and
◮ the bakward algorithm runs in time O(r2m log n).



AKH bisimulationAn equivalene relation ≃ is an AKH bisimulation if
◮ the relation respets the �nal states, and
◮ the fat that p ≃ q and there is a rulef (p1, . . . , pi−1, p, pi , . . . , pk ) → pk+1 ,where i ∈ {1, . . . , k}, implies that there is also a rulef (q1, . . . , qi−1, q, qi , . . . , qk ) → qk+1 ,s.t. pj ≃ qj , for every j ∈ {1, . . . , k + 1} \ {i}, and vie versa.



ComparisonForward bisimulation . . .
◮ oinides with the standard minimisation algorithm when theinput automaton is deterministi, and
◮ is a fator r easier to ompute than both AKH bisimulationand bakward bisimulation.Bakward bisimulation . . .
◮ is no harder to ompute than AKH bisimulation, and
◮ produes, in the general ase, smaller output automata thanboth forward and AKH bisimulation.
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An NLP appliationProblemCompile a large set of syntati trees into a language model.Instantiation
◮ Samples are taken from the Penn Treebank orpus ofsyntatially braketed English news text.
◮ Fta as language model.Solution1 First, onstrut a trivial automaton from the sample set,2 next, apply implementations of the minimisation algorithms.



Experimental results



Work in progressForward and bakward bisimulation an also be de�ned forweighted tree automata.
◮ Leads to O(mnr) minimisation algorithms for generalsemirings, but
◮ O(r2m log n), O(rm log n) if the underlying algebrai strutureis anellative.Future work inludes
◮ weight pushing, and
◮ a more thorough study of the interation between forward andbakward bisimulation.


