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Ranked alphabets and trees

A ranked alphabet is a finite set of
symbols

Y= Zw -

keN

The symbols in (4 have rank k.

The set of trees over ¥ is written Ty

A tree language w.r.t. ¥ is simply a
subset of Ty.
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Finite tree automata

A finite tree automaton (fta) is a tuple (Q, X, d, F) where

» @ is a finite set of states,
» Y is a ranked input alphabet,

» § is a finite set of transition rules in the form

f(qla"'7qn) — gdn+1

where f € Y(n), and q1,...,qnt1 € Q, for some n € N.
» Finally, F C Q is a set of accepting states.
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Applications

Finite tree automata ...

» offer a nice combination of generative power and analytical
transparency.

» are useful in areas such as lexical analysis, model checking and
natural language processing.

To allow for efficient computations, we want to work with as small
fta as possible. This makes a minimisation algorithm a useful tool.
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Minimisation of tree automata

The Problem
Given an fta, find a minimal language equivalent fta.

The deterministic case is efficiently solvable, and the solution is
always unique.

The general case, however,
» lacks a unique solution,

» is PSPACE complete [Meyer and Stockmeyer, 1972], and

» efficient approximation within a constant factor is not possible
unless P = NP.

Any efficient algorithm that searches for a solution to the general
problem, must thus use heuristics.



Bisimulation

The notion of bisimularity is due to R. Milner.
Intuitively, two states are bisimilar if they serve the same purpose.

We adopt P. Buchholz definitions and extend these to trees:

» Backward bisimulation Two states are bisimilar if every tree
that is mapped to the one state is also mapped to the other.

» Forward bisimulation Two states are bisimilar if they can
always be exchanged for each other during a run on an input
tree t, without affecting the way t is classified.



Backward bisimulation

Let A= (Q,X,d, F) be an fta. An equivalence relation ~ on Q is a
backward bisimulation if p ~ g means that

f(Pl,P2,--- 7pk) - P,
implies that there exists a rule

f(Q1,q2,---,Qk)—>q,

such that p; ~ g;, for every i € {1,...,k}, and vice versa.
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Forward bisimulation

Let A= (Q,X,J, F) be an fta. An equivalence relation ~ on Q is a
forward bisimulation if p ~ g means that

» ge Fifand only if g € F, and
» the fact that

f(pla"'ypi—lapapia"' 7pk) — Pk+1
where i € {1,..., k}, implies that there exists a rule

7((plw" s Pi—1,9,Piy- - 7pk) — qk+1

such that gx4+1 =~ gk+1, and vice versa.
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Partition refinement algorithms in general

The Coarsest Partition Problem

Given a transition system (Q,0) and a condition ¢, find the coarsest
partition of @ that meets with c.

1 Let the initial partition Py be {Q}.
2 Traverse the rules in §, and
» record the "behaviour” of each ¢ € @ in the vector v(q);.
3 The partition P;.; is obtained by bucket sorting each g in Q
using (gl v(q)y) as key.
4 if Pj;1 and P; coincide, then we are done, else, go to Step 2.



Time complexity

If § is deterministic, then we can use the “process the smaller half”
strategy by J. E. Hopcroft. In this case, we only have to consider a
total of O(mlog n) rules, counting repetitions [Hopcroft, 1971].

If 6 is nondeterministic, then we must also use a counting argument
by Paige & Tarjan. [Paige and Tarjan, 1987].
Time complexity

Let r be the maximum rank of the input alphabet, let m be the
number of transitions, and let n be the number of states.

» The forward algorithm runs in time O(r mlogn), and

» the backward algorithm runs in time O(r? mlog n).




AKH bisimulation

An equivalence relation ~ is an AKH bisimulation if

» the relation respects the final states, and

» the fact that p ~ g and there is a rule
f(Pl, <y Pi—1,PyPiy- - 7pk) — Pk+1

where i € {1,..., k}, implies that there is also a rule

f(q17-"7ql'717q7 q/'7-~~7(7k) — qk+1 >

s.t. pj ~ qj, for every j € {1,...,k+ 1} \ {i}, and vice versa.



Comparison

Forward bisimulation ...
» coincides with the standard minimisation algorithm when the
input automaton is deterministic, and

» is a factor r easier to compute than both AKH bisimulation
and backward bisimulation.

Backward bisimulation ...

» is no harder to compute than AKH bisimulation, and

» produces, in the general case, smaller output automata than
both forward and AKH bisimulation.
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An NLP application

Problem
Compile a large set of syntactic trees into a language model.

Instantiation

» Samples are taken from the Penn Treebank corpus of
syntactically bracketed English news text.

» Fta as language model.

Solution
1 First, construct a trivial automaton from the sample set,

2 next, apply implementations of the minimisation algorithms.




Experimental results
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Work in progress

Forward and backward bisimulation can also be defined for
weighted tree automata.

» Leads to O(mnr) minimisation algorithms for general
semirings, but

» O(r’mlogn), O(rmlog n) if the underlying algebraic structure
is cancellative.

Future work includes

» weight pushing, and
» a more thorough study of the interaction between forward and
backward bisimulation.



