
Regulated Nondeterminism in
Pushdown Automata

Martin Kutrib Andreas Malcher Larissa Werlein

Institut für Informatik, Universität Giessen, Germany

Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt
Frankfurt am Main, Germany

CIAA 2007, Prague, Czech Republic

Nondeterministic models versus deterministic
models

Ü Models with unbounded nondeterminism

Ü Models with no nondeterminism, i.e., deterministic models

Ü Models with limited nondeterminism

Limited nondeterminism

Ü Turing machines

Ü pushdown automata

Ü finite automata

Nondeterministic PDAs versus deterministic PDAs

Context-free languages (context-free grammars, PDAs)

Ü parsing is possible in more than quadratic time, but less than
cubic time

Ü generative capacity

Ü many questions are undecidable

Deterministic context-free languages (LR(k) grammars, DPDAs)

Ü parsing is possible in linear time

Ü lower generative capacity

Ü better decidability results (e.g., equivalence, regularity)

Nondeterminism regulated by contexts

In case of limited nondeterminism only the total number of
nondeterministic steps is bounded, but not the point of time or a
certain situation in which a nondeterministic step may be applied.

Investigate DPDAs with context-dependent nondeterminism, i.e.,
DPDAs which are allowed to perform nondeterministic steps only
within certain situations or contexts.

Ü Consider the situations “initial state,” “empty stack,” and
combination.

Ü Consider PDAs with a finite and infinite amount of
nondeterminism.

Nondeterminism regulated by contexts 2

Ü Results (Kutrib, Malcher, DLT 2006)

Restriction Characterization

fin, (fin, q0), (fin, Z0), (fin, q0, Z0) Γ∪(DCFL)
∞, (∞, q0) CFL
(∞, Z0) ΓREG(DCFL)
(∞, q0, Z0) L∗

Ü ΓREG(DCFL) contains inherently ambiguous languages such
as {ambmcn | n ≥ 0} ∪ {ambncn | n ≥ 0}.

Ü The time complexity is of order O(n) (Bertsch, Nederhof 99).

Regulated rewriting

Ü Impose restrictions to some (context-free) grammar on how to
use the productions.

Ü The restrictions are usually realized by some control device.

Ü Extensive investigations of this concept in many areas of
formal language theory have been done.

Ü Cf. textbook of Dassow and Păun (1989) and Handbook of
Formal Languages (1997).

For automata, this concept has been adapted by Meduna and
Kolá̌r (2000,2002).

Ü Idea: limit the computations in such a way that the sequence
of transition steps has to form some words of a given control
language.

Ü Result: recursively enumerable languages are already
characterized by using very simple context-free control
languages for one-turn regulated pushdown automata.

Nondeterminism regulated by stack contents

Idea: Nondeterministic steps are only allowed when the current
content of the stack forms a word belonging to some control
language R.

Formally, M is called an R-PDA if

Ü M = 〈Q,Σ,Γ, δ, q0, Z0, F 〉 is a PDA,

Ü R ⊆ (Γ \ Z0)∗ is a control language,

Ü δ can be decomposed as δ(q, a, Z) = δd(q, a, Z) ∪ δn(q, a, Z),
where 〈Q,Σ,Γ, δd, q0, Z0, F 〉 is a DPDA and
〈Q,Σ,Γ, δn, q0, Z0, F 〉 is a PDA (q ∈ Q, a ∈ Σλ, and Z ∈ Γ).

Ü for all q, q′ ∈ Q, a ∈ Σλ, w ∈ Σ∗, Z ∈ Γ, and γ ∈ Γ∗,
I (q, aw, Zγ) ` (q′, w, γ′γ), if (q′, γ′) ∈ δn(q, a, Z) and

Zγ = γ′′Z0 with γ′′ ∈ R,
I (q, aw, Zγ) ` (q′, w, γ′γ), if δd(q, a, Z) = (q′, γ′) and

Zγ = γ′′Z0 with γ′′ 6∈ R.

Example

Let R = {bnan | n ≥ 1} and consider the following R-PDA M on
input a∗b∗c∗:

Ü Push all as read on the stack.

Ü First b is read: an a is popped and the following bs are pushed
on the stack.

Ü First c is read: check the stack content γ.

Ü γ ∈ R: match cs against bs

Ü Accept, if all bs are popped and the last c is matched against
the topmost a

Ü Reject otherwise.

M accepts the non-context-free language {anbncn | n ≥ 2}.

More examples

Ü R = ∅ means no nondeterminism. Thus,
L (∅-PDA) = DCFL.

Ü If R = (Γ \ Z0)∗, then L (R-PDA) = CFL.
Especially, L ({a, b}∗-PDA) = CFL.

Ü Recall: (∞, Z0)-PDAs characterize ΓREG(DCFL).
In other words, L ({λ}-PDA) = ΓREG(DCFL).

Ü The family of one-counter languages is a proper subset of
L ({a}∗-PDA).
Consider L = {anbwcwRban | n ≥ 1, w ∈ {a, b}∗}.

Theorem
Let R be a regular set and M be an R-PDA.
Then an equivalent PDA M′ can effectively be constructed.

Constructions

Theorem
Let R be a regular set and M be an R-PDA.
Then an equivalent PDA M′ can effectively be constructed.

Proof idea:

Ü Consider the state control/stack of M′ to have two
components.

Ü The first component simulates the state control/stack of M.

Ü The second component of the stack stores the history of a
computation of a DFA A. The second component of the state
stores the current state of A.

Ü Thus, it can be checked whether or not the current content of
the stack belongs to R.

Theorem
Let R 6= {λ} be not empty. Then the families L ((R ∪ {λ})-PDA)
and L ((R \ {λ})-PDA) are equal.

Finite control sets

Theorem
Let R be finite and not empty. Then the families L (R-PDA) and
L ({λ}-PDA) are equal.

Proof idea:

Ü W.l.o.g. λ ∈ R. Thus, L ({λ}-PDA) ⊆ L (R-PDA).
Ü W.l.o.g. we may assume that the second component of the

state indicates whether the current content of the stack is a
word of R.

Ü Simulate an equivalent {λ}-PDA M′:
I M′’s stack contains no word from R: M′ works as M.
I M′’s stack contains w ∈ R: store w in the state and empty

the stack via λ-transitions. If the stack is empty, M′ may
guess the nondeterministic step of M and the successor stack
content is pushed again on the stack.

Ü L (R-PDA) ⊆ L ({λ}-PDA)

Hierarchy

Consider the following four control sets: ∅, {λ}, {a}∗, {a, b}∗.
Since

∅ ⊂ {λ} ⊂ {a}∗ ⊂ {a, b}∗

we obtain

L (∅-PDA) ⊆ L ({λ}-PDA) ⊆ L ({a}∗-PDA) ⊆ L ({a, b}∗-PDA)

Goal: Show the properness of the inclusions.

Theorem

L (∅-PDA) ⊂ L ({λ}-PDA) ⊂ L ({a}∗-PDA) ⊂ L ({a, b}∗-PDA)

Ü L (∅-PDA) ⊂ L ({λ}-PDA), since L (∅-PDA) = DCFL and
L ({λ}-PDA) = ΓREG(DCFL).

Ü L ({λ}-PDA) ⊂ L ({a}∗-PDA) by the following lemma.

Lemma
The language L = {anbwbanb | n ≥ 1, w ∈ {a, b}∗} does not
belong to the family L ({λ}-PDA).

Ü L ({a}∗-PDA) ⊂ L ({a, b}∗-PDA) by the following lemma.

Lemma
The language L = {ambncwwRcbnam | m,n ≥ 1, w ∈ {a, b}∗}
does not belong to the family L ({a}∗-PDA).

Closure properties

Let R be a non-empty regular set.

Ü L (R-PDA) is closed under union.

Ü L (R-PDA) is closed under intersection with regular sets and
inverse homomorphism.

Ü L (R-PDA) is not closed under complementation.

Ü If L (R-PDA) 6= CFL, then it is not closed under
homomorphism.

Let R = {λ}.
Ü L (R-PDA) is closed under concatenation and Kleene star.

Summary

Hierarchy

L (∅-PDA) ⊂ L ({λ}-PDA) ⊂ L ({a}∗-PDA) ⊂ L ({a, b}∗-PDA)

Closure properties

Language Class ∪ • ∗ h h−1 ∩reg ∼
L (1-counter) + + + + + + −
L (∅-PDA) − − − − + + +

L ({λ}-PDA) + + + − + + −
L (R-PDA) + ? ? − + + −

CFL + + + + + + −

Table: Closure properties of pushdown automata languages with
regulated nondeterminism, where R is a non-empty regular set such that
L (R-PDA) 6= CFL.

Open questions

Ü Prove or disprove closure under concatenation and Kleene star.

Ü Investigate the equivalence of acceptance modes.

Ü Try to find conditions on the structure of regular sets R,S
such that R ⊂ S implies L (R-PDA) ⊂ L (S-PDA).

Ü Investigate parsing algorithms.

Ü Investigate context-free control sets R.

	Introduction
	Motivation and Definitions

	Nondeterminism regulated by stack contents
	Constructions
	Open questions

