
0.5
setgray0

0.5
setgray1 On String Matching in Chunked Texts

Hannu Peltola and Jorma Tarhio

{hpeltola, tarhio}@cs.hut.fi

Department of Computer Science and Engineering

Helsinki University of Technology

P.O. Box 5400, FI-02015 HUT, Finland

On String Matching in Chunked Texts – p. 1

Overview

• Problem
• Data consists of chunks
• Brief history of previous solutions
• New algorithms
• Some experimental results
• Conclusions

On String Matching in Chunked Texts – p. 2

Problem

• Exact pattern matching on strings: find all
positions where a given pattern can be found in a
text

• Text of length n: T = t1t2 · · · tn

• Pattern of length m: P = p1p2 · · · pm

• Texts are special: chunked

On String Matching in Chunked Texts – p. 3

Texts are chunked

• Now texts consist of consecutive fixed-length
chunks: . . .

• Each byte position (, , ,) in every chunk
has a character distribution of its own

• A chunk can also be interpreted as a character of
a larger alphabet

• q is the probability that two randomly chosen
bytes from text and pattern match

• Thierry Lecroq: Experiments on string matching
in memory structures. SPE, 28(5):561–568, 1998.

On String Matching in Chunked Texts – p. 4

Some pattern matching algorithms

• Boyer–Moore (BM)
• Horspool (Hor) – shift is simplified: based on

character that is aligned with the end of the
pattern

• Sunday’s Quick Search (QS) – shift is based on
character that is after the end of the pattern

• Zhu–Takaoka, Baeza-Yates, etc. – shift is based
on two or more characters

On String Matching in Chunked Texts – p. 5

Implementation

• Already Boyer & Moore noticed that random text
character rarely matches with the corresponding
character in pattern

• So usually algorithms check one character and
move forward – skip loop

• TBM = Tuned Boyer–Moore uses ufast skip loop
(original implementation by Hume & Sunday)

• Guard : an additional test before comparison of
the entire pattern

On String Matching in Chunked Texts – p. 6

The speed of QS and Hor should be
almost equal

• If characters are statistically independent of each
other

• Expected shift length of Hor is 1−(1−q)m

q

• Expected shift length of QS is 1−(1−q)m+1

q

• When comparison is made forward; an example:

On String Matching in Chunked Texts – p. 7

Example of the behavior of QS

a a a a b a a a a b a a a a b

· · · · *
a a a a a

· · · *
a a a a a

· · *
a a a a a

· *
a a a a a

*
a a a a a

· · · · *
a a a a a

• m(m+1)
2 comparisons per 2m characters in text –

QS works here in O(nm)

On String Matching in Chunked Texts – p. 8

Peculiar behavior

• When comparison is made forward

• P = am, T = (am−1b)n/m — Hor works in O(n/m)
and QS in O(nm)

• P = am−4ca3, T = (bam−2cb)n/m — QS works in
O(n/m) but Hor in O(nm)

On String Matching in Chunked Texts – p. 9

Lecroq’s data / short integers

Shorts symbols max.freq. zeros 1/q

1 256 1564 1559 248.25
2 44 12500 12500 32.00

Overall 256 14064 14059 86.01

• 2 · 200000 = 400000 bytes
• Regularities: 5 + i · 32 ≡ ’\x00’;

21 + i · 32 ≡ ’\x40’; 13 + i · 64 ≡ 61 + i · 64 ≡ ’\x10’;
29 + i · 64 ≡ 45 + i · 64 ≡ ’\x90’

On String Matching in Chunked Texts – p. 10

Lecroq’s data / doubles

Doubles symbols max.freq. zeros 1/q

1 5 100152 3 2.00

2 215 6371 4 48.07

3 256 863 798 255.71

4 256 1344 1344 254.40

5 256 9667 9667 113.98

6 4 124889 124889 2.29

7 1 200000 200000 1.00

8 1 200000 200000 1.00

Overall 256 536705 536705 8.11

On String Matching in Chunked Texts – p. 11

Lecroq’s data and experiments

• Data was dumps from computer memory
• On shorts, TBM was fastest on short patterns and

QS on long patterns
• On doubles, BM was fastest
• Lecroq did not consider the effects caused by

chunks. He was more interested in the effect of
the alphabet size

• When a potential match was found, it was
checked that it ends on chunk border

On String Matching in Chunked Texts – p. 12

What would work better

• Positions with no or little variation are challenging
• We could use two bytes so that at least the other

byte would hit a position with rich varying content.
We could also peek forward greedily to get longer
shifts

• We could shift in a synchronized fashion (with
chunk borders) and check the content of the most
random byte position in the last chunk of the
pattern

On String Matching in Chunked Texts – p. 13

Fork(h, P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: for all c ∈ Σ do tmpd[c] ← m
2: for i ← 1 to m − 1 do tmpd[pi] ← m − i
3: shift ← tmpd[pm]; tmpd[pm] ← 0
4: for all c1 ∈ Σ do
5: if tmpd[c1] < h then
6: for all c2 ∈ Σ do d[c1, c2] ← tmpd[c1]
7: else
8: for all c2 ∈ Σ do d[c1, c2] ← m + h
9: for i ← 1 to h do d[c1, pi] ← m + h − i

10: for i ← 1 to m − h do
11: if tmpd[pi] ≥ h then d[pi, pi+h] ← m − i

/* Searching is on next slide */

On String Matching in Chunked Texts – p. 14

Fork(h, P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Searching */

12: tn+1 · · · tn+2∗m ← P + P /* Stopper */
13: j ← m
14: while j ≤ n do
15: repeat k ← d[tj , tj+h]; j ← j + k until k = 0

16: if j ≤ n then
17: if tj−m+1 · · · tj−1 = p1 · · · pm−1

and j is a multiple of w then
Report match

18: j ← j + shift

On String Matching in Chunked Texts – p. 15

Sync(h, P = p1p2 · · · pm, T = t1t2 · · · tn)

/* Preprocessing */
1: for all c ∈ Σ do d1[c] ← m
2: for i ← w − h step w to m − h − 1 do

d1[pi] ← (m − h) − i
/* Searching */

3: s ← pm−h

4: tn+1..tn+m ← sm /* Stopper for inner while */
5: j ← m
6: while j ≤ n do
7: while tj−h 6= s do j ← j + d1[tj−h]

8: if tj−m+1..tj = P then Report match
9: j ← j + d1[s]

On String Matching in Chunked Texts – p. 16

Results for shorts

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 100 1000

T
im

e
(s

ec
)

Pattern length (bytes)

Running times per pattern in seconds for shorts

Hor
TBM

Fork3
BM
QS

Sync3

On String Matching in Chunked Texts – p. 17

Results for shorts (long patterns)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 10 100 1000

T
im

e
(s

ec
)

Pattern length (bytes)

Running times per pattern in seconds for shorts

Hor
TBM

Fork3
BM
QS

Sync3

On String Matching in Chunked Texts – p. 18

Results for doubles

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 100 1000 10000

T
im

e
(s

ec
)

Pattern length (bytes)

Running times per pattern in seconds for doubles

TBM
Hor
QS
BM

Fork4
Sync4

On String Matching in Chunked Texts – p. 19

Concluding remarks

• Test runs were repeated on two architectures: on
Sparc and on AMD Athlon Thunderbird

• Library routine memcmp slower than explicit
comparison

• On Sync parameter h corresponding smallest q
works usually best

• On Fork the small values seem to be good for
parameter h

On String Matching in Chunked Texts – p. 20

Conclusions

• Choice of test position is sometimes crucial
• Skip loop improves speed in practice, if test

character is not too common
• Instead of maximizing the average shift length, it

is often faster to keep the skip loop running
• String matching results are data dependent
• e.g. chunked data can have very different effect

on different algorithms

On String Matching in Chunked Texts – p. 21

	Overview
	Problem
	Texts are chunked
	Some pattern matching algorithms
	Implementation
	The speed of QS and Hor should be almost equal
	Example of the behavior of QS
	Peculiar behavior
	Lecroq's data / short integers
	Lecroq's data / doubles
	Lecroq's data and experiments
	What would work better
	Fork($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Fork($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Sync($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Results for shorts
	Results for shorts (long patterns)
	Results for doubles
	Concluding remarks
	Conclusions

