On String Matching in Chunked Texts

Hannu Peltola and Jorma Tarhio

{hpeltola, tarhiol}@cs.hut.fi

Department of Computer Science and Engineering
Helsinki University of Technology
P.O. Box 5400, FI-02015 HUT, Finland

On String Matching in Chunked Texts — p. 1

Overview
I —

* Problem

» Data consists of chunks

* Brief history of previous solutions
* New algorithms

* Some experimental results

» Conclusions

On String Matching in Chunked Texts — p. 2

Problem

* Exact pattern matching on strings: find all
positions where a given pattern can be found in a
text

* Text of length n: T = t1t9-- - ¢y,
» Pattern of length m: P = pips-- - pm
* Texts are special: chunked

On String Matching in Chunked Texts — p. 3

Texts are chunked

Now texts consist of consecutive fixed-length

chunks:] e] | .

Each byte position (i, , |,) in every chunk
has a character distribution of its own

A chunk can also be interpreted as a character of
a larger alphabet

g 1S the probability that two randomly chosen
bytes from text and pattern match

Thierry Lecrog: Experiments on string matching
INn memory structures. SPE, 28(5):561-568, 1998.

On String Matching in Chunked Texts — p. 4

Some pattern matching algorithms
o —

* Boyer—Moore (BM)

» Horspool (Hor) — shift is simplified: based on
character that is aligned with the end of the
pattern

* Sunday’s Quick Search (QS) — shift is based on
character that is after the end of the pattern

» Zhu-Takaoka, Baeza-Yates, etc. — shift is based
on two or more characters

On String Matching in Chunked Texts — p. 5

Implementation

Already Boyer & Moore noticed that random text
character rarely matches with the corresponding
character in pattern

So usually algorithms check one character and
move forward — skip loop

TBM = Tuned Boyer—Moore uses ufast skip loop
(original implementation by Hume & Sunday)

Guard: an additional test before comparison of
the entire pattern

On String Matching in Chunked Texts — p. 6

The speed of QS and Hor should be

almost equal
e —h

 If characters are statistically independent of each
other

- Expected shift length of Hor is 1_(1;q>m

- Expected shift length of QS is 1=(=0""

q
* When comparison is made forward; an example:

On String Matching in Chunked Texts — p. 7

Example of the behavior of QS

a a a a b a a «a
. *
a a a a a
. *

a a a a a
. *
a a a a a

. %

a a a a a
*

a a a a

o m(m+1)

2
QS works here in O(nm)

3 ° 3 ° *
a a a a a

comparisons per 2m characters in text —

On String Matching in Chunked Texts — p. 8

Peculiar behavior

* When comparison is made forward

» P=a™ T = (a™)™ — Hor works in O(n/m)
and QS in O(nm)

* P=a""*a3,T = (ba™ 2cb)™™ — QS works in
O(n/m) but Hor in O(nm)

On String Matching in Chunked Texts — p. 9

Lecroqg’s data / short integers
O —_

SHORTS | symbols max.freq. zeros 1/q
1 256 1564 1559 248.25
2 44 12500 12500 32.00
Overall 256 14064 14059 86.01

* 2.200000 = 400000 bytes

* Regularities: 5+ -32 = ’\x00’;
21 +:-32="\x40";13+i-64=61+17-64 = >\x107’;
209417-64=45+1i-64 = *\x90°’

On String Matching in Chunked Texts — p. 10

Lecrog’s data / doubles

DoOUBLES | symbols max.freq. Zeros 1/q
1 5 100152 3 2.00

2 215 6371 4 48.07

3 256 863 798 255.71

4 256 1344 1344 254.40

5 256 9667 9667 113.98

6 4 124889 124889 2.29

7 200000 200000 1.00

8 1 200000 200000 1.00

Overall 256 536705 536705 8.11

On String Matching in Chunked Texts — p. 11

Lecrog’s data and experiments
o ———

Data was dumps from computer memory

On shorts, TBM was fastest on short patterns and
QS on long patterns

On doubles, BM was fastest

Lecrog did not consider the effects caused by
chunks. He was more interested in the effect of
the alphabet size

When a potential match was found, it was
checked that it ends on chunk border

On String Matching in Chunked Texts — p. 12

What would work better

Positions with no or little variation are challenging

We could use two bytes so that at least the other
byte would hit a position with rich varying content.
We could also peek forward greedily to get longer
shifts

We could shift in a synchronized fashion (with
chunk borders) and check the content of the most
random byte position in the last chunk of the
pattern

On String Matching in Chunked Texts — p. 13

Fork(h, P = pip2---pm, T = tity-- - 1)

T ——————————
[* Preprocessing */
for all c € ¥ do tmpd[c] — m
for i < 1to m —1do tmpd[p;] < m — i
shift < tmpd[p,,]; tmpd|pm,] < 0
forall c1 € ¥ do
If tmpd[cl] < h then
for all c2 € ¥ do dlcl, 2] < tmpd|cl]
else
for all c2 € ¥ do dcl,c2] «— m + h
for i <— 1to hdo del,p;] <« m+h —i
fori—1tom—hdo
It tmpd[p;] > h then dp;, piip] < m —i

[* Searching is on next slide */

On String Matching in Chunked Texts — p. 14

Fork(h, P = pipa -+ pm, T = tity---1,)

L — ,
[* Searching */

12: tpa1 - tpiowm <— P+ P I* Stopper */
3.] —m
4: while j <n do
5: repeat k «—d[tj,tj1p]; j—j+kuntil k=0
6: If j <nthen
7 If tj—m—|—1 T tj—l — P1° " Pm-—1
and j is a multiple of w then
Report match
8: 7« 7 + shift

On String Matching in Chunked Texts — p. 15

Sync(h, P = P1P2 " * Pm,; 1 =11ty - tn)

N

[* Preprocessing */

. for all ce ¥ do dlfc] «— m

fori—w-—hstepwtom—-h—-1do
dllp;] « (m —h) —1
[* Searching */
S < Pm—h
tna1--tnam < s™ [* Stopper for inner while */
J—=m
while j <n do
while t,_j # s do j «— 5+ d1[t;_p)]
If t;_m+1..t; = P then Report match
] +— 7+ dl[S]

On String Matching in Chunked Texts — p. 16

Results for shorts

Time (sec)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

Running times per pattern in seconds for shorts

IIIIIII 1 1 IIIIIII 1 1 IIIIIII
© Hor —+——

- TBM <]
| Forkg ---x--- |
" BM &
X QS _

Sync; o

Pattern length (bytes)

On String Matching in Chunked Texts — p. 17

Results for shorts (long patterns)

Time (sec)

0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

Running times per pattern in seconds for shorts

IIIIIII
Hor —+—

TBM <

Forkg ------
BM & -
QS

Sync; o -

I_‘/F_
RO R R)--m T “
Koo *
R, B S '__é El
S
Lol .] . AT B
10 100 1000

Pattern length (bytes)

On String Matching in Chunked Texts — p. 18

Results for doubles

Running times per pattern in seconds for doubles

1.8

1.6 -

1.4 -
12 F " y N -
é 1L Fok Ky ol T (OIS Koo e T T
Py TBM —+——

_q§) 08 - © Hor < 7
= Y QS ---*-- _
0.6 BM &

04 - O EEI SFyOrl;lé4 —
o BE O
02 Ce. T 4 _
e o o . Feeeeeoe R Fl
O] raa o gl - AT R BBy,
10 100 1000 10000
Pattern length (bytes)

On String Matching in Chunked Texts — p. 19

Concluding remarks
o —

* Test runs were repeated on two architectures: on
Sparc and on AMD Athlon Thunderbird

* Library routine memcmp slower than explicit
comparison

* On Sync parameter h corresponding smallest ¢
works usually best

* On Fork the small values seem to be good for
parameter h

On String Matching in Chunked Texts — p. 20

Conclusions
e ——

* Choice of test position is sometimes crucial

» Skip loop improves speed in practice, If test
character is not too common

* Instead of maximizing the average shift length, it
IS often faster to keep the skip loop running

 String matching results are data dependent

* e.g. chunked data can have very different effect
on different algorithms

On String Matching in Chunked Texts — p. 21

	Overview
	Problem
	Texts are chunked
	Some pattern matching algorithms
	Implementation
	The speed of QS and Hor should be almost equal
	Example of the behavior of QS
	Peculiar behavior
	Lecroq's data / short integers
	Lecroq's data / doubles
	Lecroq's data and experiments
	What would work better
	Fork($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Fork($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Sync($h,P = p_1 p_2 cdots p_m, T = t_1 t_2 cdots t_n$)

	Results for shorts
	Results for shorts (long patterns)
	Results for doubles
	Concluding remarks
	Conclusions

