GO Ugle NEW YORK UNIVERSITY

Factor Automata of

Automata and Applications

Mehryar Mohri'2, Pedro Moreno?, Eugene Weinstein'+?
mohri@cs.nyu.edu, pedro@google.com, eugenew(@cs.nyu.edu

I Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

Introduction

Obijective: construct full index for a large set of strings

® We want to efficiently search for factors (subwords)
Deterministic minimal factor automaton is a good option
® Optimal lookup speed (linear in size of query)

Set of strings might be given as an automaton

® Smaller representation

® Might be produced by another application

Hence, consider factor automata of automata

2

Past Work

® Factor automaton of a string x has at most 2|x| — 2 states,
and 3|z| — 4 transitions [Crochemore ’85; Blumer et al. '86]

® (Can be constructed by a linear-time online algorithm

® Size bounds for a set of strings U has also previously been
studied [Blumer et al.’87]

o If|[U|lis the sum of the lengths of all the strings in U

® Factor automaton of U has at most 2||U|| — 1 states and
3||U|| — 3 transitions

® We prove a substantially better bound here

3

Suffix & Factor Automata

We start out with an automaton A recognizing strings in U

Let S(A4) and F(A)be the deterministic minimal automata
recognizing the suffixes and factors of A4, respectively

To construct S(A) make each state of A initial (by adding
epsilons), determinize, minimize

To construct F(A4) make each state of S(A4) final, minimize

Consequence: [F(4)| < |S(A)]

FOX
0505094+ 0

Suffix & Factor Automata

We start out with an automaton A recognizing strings in U

Let S(A4) and F(A)be the deterministic minimal automata
recognizing the suffixes and factors of A4, respectively

To construct S(A) make each state of A initial (by adding
epsilons), determinize, minimize

To construct F(A4) make each state of S(A4) final, minimize

Consequence: [F(4)| < |S(A)]

Suffix & Factor Automata

We start out with an automaton A recognizing strings in U

Let S(A4) and F(A)be the deterministic minimal automata
recognizing the suffixes and factors of A4, respectively

To construct S(A) make each state of A initial (by adding
epsilons), determinize, minimize

To construct F(A4) make each state of S(A4) final, minimize

Consequence: [F(4)| < |S(A)]

Suffix & Factor Automata

We start out with an automaton A recognizing strings in U

Let S(A4) and F(A)be the deterministic minimal automata
recognizing the suffixes and factors of A4, respectively

To construct S(A) make each state of A initial (by adding
epsilons), determinize, minimize

To construct F(A4) make each state of S(A4) final, minimize

Consequence: [F(4)| < |S(A)]

Size Bound: Strategy

® Goal:a bound on |[F(4)|in terms of |A]
® Work on bounding |S(A)|— consider suffixes only for now

® |dea: each state in.S(A) accepts a distinct set of suffixes, so
count the number of possible sets of suffixes

® The suffix sets can be arranged in a hierarchy, which is
directly related in size to A

® Motivated by similar arguments for single-string case in
[Blumer et al.’86]; string sets in [Blumer et al.’87]

Suffix Sets

® Automaton A is k-suffix unique if no two strings accepted
by Ashare the same k-length suffix. Suffix-unique if £ =1

® Defineend-set(x): set of states in Areachable after reading =

® e.g., end-set(ac) =1{2,3,4,5}

® ==y denotes end-set(x) = end-set(y)
® This is a right-invariant equivalence relation

® [7] is the equivalence class of x

Notation

® N, is number of strings accepted by A
® |fqgis a state of S(A), suff(q)is set of suffixes accepted fromg
® e.g, suff(3) = {ab,ba}

® N(q)is the set of states in Afrom which a nhon-empty
string in suff(¢) can be read to reach a final state

® eg,N(3)={2,1}

Suffix Set Inclusion

Suffix Set Inclusion

® |emma:Let Abe a suffix-unique automaton and let ¢ and ¢’
be two states of S(A)such that N(¢) " N(¢') # 0, then

suff(¢) C suff(¢’) and N(q) C N(q')

suff(¢") C suff(q) and N(q') C N(q)

or

Suffix Set Inclusion

® |emma:Let Abe a suffix-unique automaton and let ¢ and ¢’
be two states of S(A)such that N(¢) " N(¢') # 0, then

suff(q) C suff(¢’) and N(q) C N(q)

suff(¢') C suff(q) and N(q') € N(q)

® Proof: Let paths in S(A)to gand ¢’ be labeled with v and «'.

or

Suffix Set Inclusion

® |emma:Let Abe a suffix-unique automaton and let ¢ and ¢’
be two states of S(A)such that N(¢) " N(¢') # 0, then

suff(q) C suff(¢’) and N(q) C N(q)

suff(¢') C suff(q) and N(q') € N(q)

® Proof: Let paths in S(A)to gand ¢’ be labeled with v and «'.

or

® ThusA must have a state p € N(¢) N N(¢)

u AL
L)

Suffix Set Inclusion

® |emma:Let Abe a suffix-unique automaton and let ¢ and ¢’
be two states of S(A)such that N(¢) " N(¢') # 0, then

suff(q) C suff(¢’) and N(q) C N(q)

suff(¢') C suff(q) and N(q') € N(q)

® Proof: Let paths in S(A)to gand ¢’ be labeled with v and «'.

or

® ThusA must have a state p € N(¢) N N(¢)

® Thus, exist pathsv € suff(¢) and v’ € suff(¢") from p to final

Suffix Set Inclusion

® Since A is suffix-unique, any string accepted by A and
ending in v must also end in uv

® Thus, any path from initial to p must end inu
® By same reasoning, it must also end in '
® Hence,uis a suffix of v/, or vice versa

Assume the former, then suff(¢’) C suff(q), thus N(¢') € N(q)
QED. 4

X

Suffix-unique Bound

® Theorem:If A is a suffix-unique deterministic and minimal
automaton, then the number of states of S(A)is bounded as

1S(A)lq <2/Alg -3
® Proof (sketch):

® | emma: For any two states of the suffix automaton,
either suffix sets are disjoint, or one includes the other

® We can show that each state ¢ of S(A)corresponds to a
distinct equivalence class |z], count these to get bound

® The equivalence sets induce a suffix sets hierarchy which
we will analyze

10

Suffix Sets: Non-branching

N

® Count non-branching, branching nodes separately

® Consider state in S(A)with equivalence class [z], z longest

® The only way to have a branching node is if there exist
factors ax,bx(a # b) (since=is a right-equivalence relation)

® Node is only non-branching whenz is a prefix or suffix

® |Alp — 2 distinct prefixes, suffix only when final state: N,

® Total non-branching nodes N, <|A]g —2+ N,

Suffix Sets: Non-branching
IncludNudes

Disjoint

® Count non-branching, branching nodes separately

® Consider state in S(A)with equivalence class [z], z longest

® The only way to have a branching node is if there exist
factors ax,bx(a # b) (since=is a right-equivalence relation)

® Node is only non-branching whenz is a prefix or suffix

® |Alp — 2 distinct prefixes, suffix only when final state: N,

® Total non-branching nodes N, <|A]g —2+ N,

Suffix Se1[:s: Branching

are the distinct final symbols of each string
accepted by Athen each [g;] is a child of the root]

Let tree rooted at [q;]have n,, leaves(n,, — 1branching nodes)
Total number of leaves is |A|, — 2 (not initial and super-final)
Total branching N, < SV (n,. — 1) +1 < |4|g — 2 — Ny

Total size of tree N,, + Ny < 2|A|g —4

Add “super-final” state, get |S(A4)|g <2|Alo —3 QED.

Final Size Result

Final Size Result

f Ais a prefix tree representing a set of strings U then
SW)le < 2[4l =2 [F(U)lg < 2[A|q —2
SWU)|le <3lAle—4 [F(U)|p <3|Alg —4

Final Size Result

f Ais a prefix tree representing a set of strings U then
SW)le < 2[4l =2 [F(U)lg < 2[A|q —2
SWU)|le <3lAle—4 [F(U)|p <3|Alg —4

1S(U)le < 2|[U]| =1

® Substantial improvement over previous:
[F(U)|e <3/|U|| -3

Final Size Result

S(U)lg <2|4|lq—2 |F({U)|g <2/Alg —2
SWU)|e <3lAlg—4 |[F(U)|g <3|Alg —4

Substantial improvement over previous:

1S(U)lq <2
F(U)|e <3
When A is k-suffix unique, deterministic and minima

f Ais a prefix tree representing a set of strings U then

Ul| -1
Ul -3
, and

accepts n strings and Ay, is the part of A after removing all

suffixes of length &

‘S(A)‘Q S Q‘Ak‘Q—I—an—S F(A)’Q S Z‘Ak‘Q—Fan—S
S(A)|p < 2|Aklp +3kn —3k — 1 |F(A)|p < 2|Ag|g + 3kn — 3k — 1
® Proof idea: add terminal symbols to make string set suffix-

unique, construct suffix automaton, remove symbols

13

Application

® Application: large-scale music identification
® Matching audio recording to a large song database

® Approach:learn inventory of music sounds (“‘phonemes”)
® A song is described by unique music phone sequence

® FEach song represented by unique string, set of music
phonemes is the alphabet

Music ID Experiments

® In our music ID application, we have |F'(A)|r ~ 2.1|A|g

® Factor automaton size scales linearly with # of songs

6e+07

States factor —e—
Arcs factor

56407 # States/Arcs Non-factor ——

4e+07

3e+07

_
_ g

2e+07 —
B

-
1e+07 /

0 L
0 2000 4000 6000 8000 10000120001400016000
Songs

Music ID Experiments

® For 15000+ songs, string set is 45-suffix unique

® Number of “collisions” among song suffixes/factors drops
off rapidly with increasing length

16000 - - - - - ; - - 50000

14000 45000
40000

12000

35000

10000

30000

8000 25000

20000

6000

Non-unique songs
Non-unique Factors

4000 15000
10000

2000

5000

0

15 20 25 30 35 40 45 0

k (suffix length) 60 80

Factor Length

Summary

® We have addressed the size of a factor automaton of a
set of strings, or more generally of another automaton

® We have proven substantially better size bounds

® This suggests factor automata are useful for indexing
potentially very large sets of strings

® Our conclusions are verified experimentally in our music
identification system

® |n the future, do a finer analysis

® Tighten thekn term in the k-suffix unique bound

17

GO Ugle NEW YORK UNIVERSITY

Factor Automata of

Automata and Applications

Mehryar Mohri'2, Pedro Moreno?, Eugene Weinstein'+?
mohri@cs.nyu.edu, pedro@google.com, eugenew(@cs.nyu.edu

I Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

