
Factor Automata of
Automata and Applications

Mehryar Mohri1,2, Pedro Moreno2, Eugene Weinstein1,2

mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu

1 Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

Introduction

• Objective: construct full index for a large set of strings

• We want to efficiently search for factors (subwords)

• Deterministic minimal factor automaton is a good option

• Optimal lookup speed (linear in size of query)

• Set of strings might be given as an automaton

• Smaller representation

• Might be produced by another application

• Hence, consider factor automata of automata
2

Past Work

• Factor automaton of a string has at most states,
and transitions [Crochemore ’85; Blumer et al. ’86]

• Can be constructed by a linear-time online algorithm

• Size bounds for a set of strings has also previously been
studied [Blumer et al. ’87]

• If is the sum of the lengths of all the strings in

•

x 2|x|− 2

3|x|− 4

U

||U || U

U 2||U ||− 1

3||U ||− 3

• Factor automaton of has at most states and
transitions

• We prove a substantially better bound here

3

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] != ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F != ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. %&

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x|− 1 |S(A)|E ≤ 3|x|− 4
|F (A)|Q ≤ 2|x|− 2 |F (A)|E ≤ 3|x|− 4.

(1)

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] != ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F != ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. %&

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x|− 1 |S(A)|E ≤ 3|x|− 4
|F (A)|Q ≤ 2|x|− 2 |F (A)|E ≤ 3|x|− 4.

(1)

ε
εε

ε

ε

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] != ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F != ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. %&

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x|− 1 |S(A)|E ≤ 3|x|− 4
|F (A)|Q ≤ 2|x|− 2 |F (A)|E ≤ 3|x|− 4.

(1)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

ε
εε

ε

ε

A

4

Suffix & Factor Automata

• We start out with an automaton recognizing strings in

• Let and be the deterministic minimal automata
recognizing the suffixes and factors of , respectively

• To construct make each state of initial (by adding
epsilons), determinize, minimize

• To construct make each state of final, minimize

• Consequence:

A U

S(A) F (A)

S(A) A

F (A) S(A)

|F (A)| ≤ |S(A)|

0 1
a

2
c

3
a

4

b
5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] != ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F != ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. %&

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x|− 1 |S(A)|E ≤ 3|x|− 4
|F (A)|Q ≤ 2|x|− 2 |F (A)|E ≤ 3|x|− 4.

(1)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

ε
εε

ε

ε

A

4

Size Bound: Strategy

• Goal: a bound on in terms of

• Work on bounding – consider suffixes only for now

• Idea: each state in accepts a distinct set of suffixes, so
count the number of possible sets of suffixes

• The suffix sets can be arranged in a hierarchy, which is
directly related in size to

• Motivated by similar arguments for single-string case in
[Blumer et al. ’86]; string sets in [Blumer et al. ’87]

|F (A)| |A|

|S(A)|

S(A)

A

5

Suffix Sets

• Automaton is -suffix unique if no two strings accepted
by share the same -length suffix. Suffix-unique if

• Define : set of states in reachable after reading

• e.g.,

• denotes

• This is a right-invariant equivalence relation

• is the equivalence class of

kA

A k = 1k

0 1
a

2
c

3
a

4

b
5

b

a

Fig. 1. Finite automaton A accepting the strings ac, acab, acba.

Proposition 1. Assume that A is suffix-unique. Let SA = (QA, IA, FA, EA)
be the deterministic automaton whose states are the equivalence classes QA =
{[x] != ∅ : x ∈ Σ∗}, its initial state IA = {[ε]}, its final states FA = {[x] :
end -set(x) ∩ F != ∅} where F is the set of final states of A, and its transition
set E = {([x], a, [xa]) : [x], [xa] ∈ QA}. Then, SA is the minimal deterministic
suffix of A: SA = S(A).

Proof. By construction, SA is deterministic and accepts exactly the set of suffixes
of A. Let [x] and [y] be two equivalent states of SA. Then, for all z ∈ Σ∗,
[xz] ∈ FA iff [yz] ∈ FA, that is z is a suffix of A iff yz is a suffix of A. Since A
is suffix-unique, this implies that either x is a suffix of y or vice-versa, and thus
that [x] = [y]. Thus, SA is minimal. %&

In much of what follows, we will be interested in the case where the automa-
ton A is acyclic. We denote by |A|Q the number of states of A, by |A|E the
number of transitions of A, and by |A| the size of A defined as the sum of the
number of states and transitions of A.

3 Space Bounds for Factor Automata

The objective of this section is to derive new bounds on the size of S(A) and
F (A) in the case of interest for our applications where A is an acyclic automaton,
typically deterministic and minimal, representing a set of strings.

When A represents a single string, there are standard algorithms for con-
structing S(A) and F (A) from A in linear time [3, 4]. In the general case, S(A)
can be constructed from A as follows: add an ε-transition from the initial state
of A to each state of A, then apply an ε-removal algorithm, followed by deter-
minization and minimization to obtain S(A). F (A) can be obtained similarly by
further making all states final before applying ε-removal, determinization, and
minimization. It can also be obtained from S(A) by making all states of S(A) fi-
nal and applying minimization. Figure 1 shows a simple automaton A accepting
three strings and Figure 2 its suffix automaton S(A).

When A represents a single string x, the size of the automata S(A) and F (A)
can be proved to be linear in |x|. More precisely, the following bounds hold for
|S(A)| and |F (A)| [4, 3]:

|S(A)|Q ≤ 2|x|− 1 |S(A)|E ≤ 3|x|− 4
|F (A)|Q ≤ 2|x|− 2 |F (A)|E ≤ 3|x|− 4.

(1)

end -set(x) xA

end -set(ac) = {2, 3, 4, 5}

x ≡ y end -set(x) = end -set(y)

[x] x

6

• is number of strings accepted by

• If is a state of , is set of suffixes accepted from

• e.g.,

• is the set of states in from which a non-empty
string in can be read to reach a final state

• e.g.,

Notation

A

S(A)

N(q) A

suff(q)

N(3) = {2, 1}

suff(q)q qS(A)

suff(3) = {ab, ba}

0 1
a

2

b

3

c

b

c 4

a

5

a

6b

b

a

0 1
a

2c
4

b

b

3a

5a

b

7

Nstr A

Suffix Set Inclusion

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

Suffix Set Inclusion
q q

′

S(A)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

or

A

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

Suffix Set Inclusion
q q

′

S(A)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

or

A

S(A) q q
′

u u
′

S(A)
u

u
′

q

q
′

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

• Thus must have a state

Suffix Set Inclusion
q q

′

S(A)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

or

A

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

S(A) q q
′

u u
′

S(A)
u

u
′

p

A
u

u
′

q

q
′

A

• Lemma: Let be a suffix-unique automaton and let and
be two states of such that , then

• Proof: Let paths in to and be labeled with and .

• Thus must have a state

• Thus, exist paths and from to final

Suffix Set Inclusion
q q

′

S(A)

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

or

A

0

1

a

2

b

3
c

c

4

b

a

5
a

6

b

b

a

Fig. 2. Suffix automaton S(A) of the automaton A of Figure 1.

These bounds are tight for strings of length more than three. [2] gave similar
results for the case of a set of strings U by showing that the size of the factor
automaton F (U) representing this set is bounded as follows

|F (U)|Q ≤ 2‖U‖ − 1 |F (U)|E ≤ 3‖U‖E − 3, (2)

where ‖U‖ denotes the sum of the lengths of all strings in U .
In general, the size of an acyclic automaton A representing a finite set of

strings U can be substantially smaller than ‖U‖. In fact, |A| can be exponentially
smaller than ‖U‖. Thus, we are interested in bounding the size of S(A) or F (A)
in terms of the size of A, rather than the sum of the lengths of all strings accepted
by A.

For any state q of S(A), we denote by suff(q) the set of strings labeling the
paths from q to a final state. We also denote by N(q) the set of states in A from
which a non-empty string in suff(q) can be read to reach a final state.

Lemma 2. Let A be a suffix-unique automaton and let q and q′ be two states
of S(A) such that N(q) ∩N(q′) %= ∅, then

ą
suff(q) ⊆ suff(q′) and N(q) ⊆ N(q′)

ć
or

ą
suff(q′) ⊆ suff(q) and N(q′) ⊆ N(q)

ć
. (3)

Proof. Since S(A) is a minimal automaton, its states are accessible from the
initial state. Let u be the label of a path from the initial I of S(A) to q and
similarly u′ the label of a path from I to q′.

By assumption, there exists p ∈ N(q) ∩N(q′). Thus, there exist non-empty
strings v ∈ suff(q) and v′ ∈ suff(q′) such that both v and v′ label paths from p
to a final state.

By definition of u and u′, both uv and u′v′ are suffixes of A. Since A is
suffix-unique and v is non-empty, there exists a unique string accepted by A and
ending with v. There exists also a unique string accepted by A and ending with
uv. Thus, these two strings must coincide.

This implies that any string accepted by A and admitting v as suffix also
admits uv as suffix. In particular, the label of any path from an initial state to p
must admit u as suffix. Reasoning in the same way for v′ let us conclude that the
label of any path from an initial state to p must also admit u′ as suffix. Thus,

S(A) q q
′

u u
′

S(A)
v

v
′

u

u
′

p

A
u

u
′

q

q
′

v

v
′

v ∈ suff(q) v
′
∈ suff(q′) p

A

Suffix Set Inclusion

• Since is suffix-unique, any string accepted by and
ending in must also end in

• Thus, any path from initial to must end in

• By same reasoning, it must also end in

• Hence, is a suffix of , or vice versa

• Assume the former, then , thus
QED. x

vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. "#

Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. "#

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) & N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

A

u
′

A

v uv

p u

u
′

u

x
vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. "#

Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. "#

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) & N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

x
vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. "#

Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. "#

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) & N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

9

S(A)
v

v
′

u

u
′

p

A
u

u
′

q

q
′

v

v
′

Suffix-unique Bound

• Theorem: If is a suffix-unique deterministic and minimal
automaton, then the number of states of is bounded as

• Proof (sketch):

• Lemma: For any two states of the suffix automaton,
either suffix sets are disjoint, or one includes the other

• We can show that each state of corresponds to a
distinct equivalence class , count these to get bound

• The equivalence sets induce a suffix sets hierarchy which
we will analyze

x
vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. "#

Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. "#

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) & N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

A

S(A)

q S(A)

[x]

10

Suffix Sets: Non-branching

• Count non-branching, branching nodes separately

• Consider state in with equivalence class , longest

• The only way to have a branching node is if there exist
factors (since is a right-equivalence relation)

• Node is only non-branching when is a prefix or suffix

• distinct prefixes, suffix only when final state:

• Total non-branching nodes

[x] xS(A)

ax, bx(a != b) ≡

x

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a #= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a #= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. %&

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

|A|Q − 2 Nstr

Suffix Sets: Non-branching

• Count non-branching, branching nodes separately

• Consider state in with equivalence class , longest

• The only way to have a branching node is if there exist
factors (since is a right-equivalence relation)

• Node is only non-branching when is a prefix or suffix

• distinct prefixes, suffix only when final state:

• Total non-branching nodes

[x] xS(A)

ax, bx(a != b) ≡

x

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a #= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a #= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. %&

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

|A|Q − 2 Nstr

Disjoint

Includes Includes

Suffix Sets: Branching

• If are the distinct final symbols of each string
accepted by then each is a child of the root

• Let tree rooted at have leaves(branching nodes)

• Total number of leaves is (not initial and super-final)

• Total branching

• Total size of tree

• Add “super-final” state, get QED.

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a #= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a #= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. %&

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

A

a1, . . . , aNstr

[ai]

[a1] ...

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a #= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a #= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. %&

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

[a2] [aNstr
] ... [aNstr+k]

[ai] nai
nai

− 1

|A|Q − 2

Nb ≤
∑Nstr+k

i=1
(nai

− 1) + 1 ≤ |A|Q − 2 − Nstr

[x]. Let q be a state of S(A) distinct from F , and let [x] be its corresponding
equivalence class. Observe that since A is suffix-unique, end -set(x) coincides
with N(q).

We will show that the number of nodes of T is at most 2|A|Q− 4, which will
yield the desired bound on the number of states of S(A). To do so, we bound
separately the number of non-branching and branching nodes of T .

Let q be a node of T and let [x] be the corresponding equivalence class,
with x its longest member. The children of q are the nodes corresponding to the
equivalence classes [ax] where a ∈ Σ and ax is a factor of A.

By Lemma 1, if x is a non-suffix and non-prefix factor, then there exist factors
ax and bx with a #= b. Thus, q admits at least two children corresponding to [ax]
and [bx] and is thus a branching node. Thus non-branching nodes can only be
either nodes q where x is a prefix, or those where x is a suffix, that is when q is
a final state of S(A).

Since the strings accepted by A are not all of the form an for some a ∈ Σ, the
empty prefix ε occurs at least in two distinct left contexts a and b with a #= b.
Thus, the prefix ε, which corresponds to the root of T , is necessarily branching.
Also, let f be the unique final state of A with no outgoing transitions. The
equivalence class of the longest factor ending in f , that is the longest string
accepted by A corresponds to the state F in S(A) which is not included in the
tree T . Thus, there are at most |A|Q − 2 non-branching prefixes.

There can be at most one non-branching node for each string accepted by
A. Let Nstr denote the number of strings accepted by A, then, the number of
non-branching nodes Nnb of T is at most Nnb ≤ |A|Q − 2 + Nstr.

To bound the number of branching nodes Nb of T , observe that since A is
suffix-unique, each string accepted by A must end with a distinct symbol ai,
i = 1, . . . , Nstr. Each ai represents a distinct left context for the empty factor
ε, thus the root node [ε] admits all [ai]s, i = 1, . . . , Nstr, as children. Let Tai

represent the sub-tree rooted at [ai] and let nai represent the number of leaves
of Tai . Let aj , j = Nstr + 1, . . . , Nstr + k denote the other children of the root
and let Taj denote each of the corresponding sub-tree. A tree with nai leaves has
less than nai branching nodes. Thus, the number of branching nodes of Tai is at
most nai − 1. The total number of leaves of T is at most the number of disjoint
subsets of Q excluding the initial state and f .

Note however that when the root node [ε] admits only [ai]s, i = 1, . . . , Nstr,
as children, that is when k = 0, then there is at least one ai, say a1, that is
also a prefix of A since any other symbol would have been the root node’s child.
The node a1 will then have also a child since it corresponds to a suffix or final
state of S(A). Thus, a1 cannot be a leaf in that case. Thus, there are at most
as many as

∑Nstr+k
i=1 nai ≤ |A|Q − 2−min{1, k} leaves and the total number of

branching nodes of T , including the root is at most Nb ≤
∑Nstr+k

i=1 (nai−1)+1 ≤
|A|Q − 2 −min{1, k} − (Nstr + k) + 1 ≤ |A|Q − 2 − Nstr. The total number of
nodes of the tree T is thus at most Nnb + Nb ≤ 2|A|Q − 4. %&

In the specific case where A represents a single string x, the bound of Proposi-
tion 2 matches that of [4] or [3] since |A|Q = |x|+1. The bound of Proposition 2

x
vu

u’

Fig. 3. Illustration of the situation described in Lemma 2. uv and u′v are suffixes of
the same string x. Thus, u and u′ are also suffixes of the same string. Thus, u is a
suffix of u′ or vice-versa.

u and u′ are suffixes of the same string. Thus, u is a suffix of u′ or vice-versa.
Figure 3 illustrates this situation.

Assume without loss of generality that u is a suffix of u′. Then, for any
string w, if u′w is a suffix of A so is uw. Thus, suff(q′) ⊆ suff(q), which implies
N(q′) ⊆ N(q). When u′ is a suffix of u, we obtain similarly the other case of the
statement of the lemma. "#

Note that Lemma 2 holds even when A is a non-deterministic automaton.

Lemma 3. Let A be a suffix-unique deterministic automaton and let q and q′

be two distinct states of S(A) such that N(q) = N(q′), then either q is a final
state and q′ is not, or q′ is a final state and q is not.

Proof. Assume that N(q) = N(q′). By Lemma 2, this implies suff(q) = suff(q′).
Thus, the same non-empty strings label the paths from q to a final state or the
paths from q′ to a final state. Since S(A) is a minimal automaton, the distinct
states q and q′ are not equivalent. Thus, one must admit an empty path to a
final state and not the other. "#

The following proposition extends the results of [3] which hold for a set of
strings, to the case where A is an automaton.

Proposition 2. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
suffix automaton of A is bounded as follows

|S(A)|Q ≤ 2|A|Q − 3. (4)

Proof. If the strings accepted by A are all of the form an, S(A) can be derived
from A simply by making all its states final and the bound is trivially achieved.
In the remaining of the proof, we can thus assume that not all strings accepted
by A are of this form.

Let F be the unique final state of S(A) with no outgoing transitions. Lem-
mas 2-3 help define a tree T associated to all states of S(A) other than F by
using the ordering:

N(q) & N(q′) iff
{

N(q) ⊂ N(q′) or
N(q) = N(q′) and q′ final, q non-final. (5)

We will identify each node of T with its corresponding state in S(A). By Propo-
sition 1, each state q of S(A) can also be identified with an equivalence class

Final Size Result

13

Final Size Result

• If is a prefix tree representing a set of strings thenA U

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

13

Final Size Result

• If is a prefix tree representing a set of strings then

• Substantial improvement over previous:

A U

|S(U)|Q ≤ 2||U ||− 1
|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

|F (U)|E ≤ 3||U ||− 3

13

Final Size Result

• If is a prefix tree representing a set of strings then

• Substantial improvement over previous:

• When is -suffix unique, deterministic and minimal, and
accepts strings and is the part of after removing all
suffixes of length

• Proof idea: add terminal symbols to make string set suffix-
unique, construct suffix automaton, remove symbols

A U

|S(U)|Q ≤ 2||U ||− 1

A k

n Ak A

k

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting
strings of length more than three and let n be the number of strings accepted by A.
Then, the following bound holds for the number of states of the suffix automaton
of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)
where Ak is the part of the automaton of A obtained by removing the states and
transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k−1)-length suffix. Unfolding can
thus increase the number of states of A by as many as kn−n states in the worst
case. Marking the end of each suffix with a distinct $-sign further increases the
size by n. The resulting automaton A′ is deterministic and |A′|Q ≤ |Ak|Q + kn.
By Proposition 2, the size of the suffix automaton of A′ is bounded as follows:
|S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only appear
at the end of successful paths in S(A′), we can remove these transitions and
make their origin state final, and minimize the resulting automaton to derive a
deterministic automaton A′′ accepting the set of suffixes of A. The statement of
the proposition follows the fact that |A′′| ≤ |S(A′)|. #$

Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length
more than three. Then, the following bound holds for the factor automaton of A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [2].

Similar results can be obtained for the number of transitions of the suffix
automaton or factor automaton of a suffix-unique automaton (|S(A)|E ≤ 3|A|E−
4) and k-suffix-unique automaton (|S(A)|E ≤ 3|Ak|E + 3kn− 3k − 1), as in the
string case.

4 Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a music
identification system [9]. Music identification is the task of matching an audio

Proposition 3. Let A be a k-suffix-unique deterministic automaton accepting
strings of length more than three and let n be the number of strings accepted by A.
Then, the following bound holds for the number of states of the suffix automaton
of A:

|S(A)|Q ≤ 2|Ak|Q + 2kn− 3, (9)
where Ak is the part of the automaton of A obtained by removing the states and
transitions of all suffixes of length k.

Proof. Let A be a k-suffix-unique deterministic automaton accepting strings of
length more than three and let the alphabet Σ be augmented with n temporary
symbols $1, . . . , $n. By marking each string accepted by A with a distinct symbol
$i, we can turn A into a suffix-unique deterministic automaton A′.

To do that, we first unfold all k-length suffixes of A. In the worst case, all
these (distinct) suffixes were sharing the same (k−1)-length suffix. Unfolding can
thus increase the number of states of A by as many as kn−n states in the worst
case. Marking the end of each suffix with a distinct $-sign further increases the
size by n. The resulting automaton A′ is deterministic and |A′|Q ≤ |Ak|Q + kn.
By Proposition 2, the size of the suffix automaton of A′ is bounded as follows:
|S(A′)| ≤ 2|A′| − 3. Since transitions labeled with a $-sign can only appear
at the end of successful paths in S(A′), we can remove these transitions and
make their origin state final, and minimize the resulting automaton to derive a
deterministic automaton A′′ accepting the set of suffixes of A. The statement of
the proposition follows the fact that |A′′| ≤ |S(A′)|. #$

Since the size of F (A) is always less than or equal to that of S(A), we obtain
directly the following result.

Corollary 3. Let A be a k-suffix-unique automaton accepting strings of length
more than three. Then, the following bound holds for the factor automaton of A:

|F (A)|Q ≤ 2|Ak|Q + 2kn− 3. (10)

The bound given by the corollary is not tight for relatively small values of k in
the sense that in practice, the size of the factor automaton does not depend on
kn, the sum of the lengths of suffixes of length k, but rather on the number of
states of A used for their representation, which for a minimal automaton can
be substantially less. However, for large k, e.g., when all strings are of the same
length and k is as long as the length of the strings accepted by A, our bound
coincides with that of [2].

Similar results can be obtained for the number of transitions of the suffix
automaton or factor automaton of a suffix-unique automaton (|S(A)|E ≤ 3|A|E−
4) and k-suffix-unique automaton (|S(A)|E ≤ 3|Ak|E + 3kn− 3k − 1), as in the
string case.

4 Factor Automata for Music Identification

We have verified the above insights into factor automata in the context of a music
identification system [9]. Music identification is the task of matching an audio

|S(U)|E ≤ 3|A|E − 4 |F (U)|E ≤ 3|A|E − 4

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

is tight for strings of length more than three and thus is also tight for automata
accepting strings of length more than three. Note that the automaton of Figure 1
is suffix-unique, deterministic, and minimal and has |A|Q = 6 states. The number
of states of the minimal suffix automaton of A is |S(A)|Q = 7 < 2|A|Q − 3.

Corollary 1. Let A be a suffix-unique deterministic and minimal automaton
accepting strings of length more than three. Then, the number of states of the
factor automaton of A is bounded as follows

|F (A)|Q ≤ 2|A|Q − 3. (6)

Proof. As mentioned earlier, a factor automaton F (A) can be obtained from a
suffix automaton S(A) by making all states final and applying minimization.
Thus, |F (A)| ≤ |S(A)|. The result follows Proposition 2. #$

Blumer et al. (1987) showed that an automaton accepting all factors of a set
of strings U has at most 2‖U‖−1 states, where ‖U‖ is the sum of the lengths of
all strings in U . The following gives a significantly better bound on the size of
the factor automaton of a set of strings U as a function of the number of nodes of
a prefix-tree representing U , which is typically substantially smaller than ‖U‖.

Corollary 2. Let U = {x1, . . . , xm} be a set of strings of length more than three
and let A be a prefix-tree representing U . Then, the number of states of the factor
automaton F (U) and that of the suffix tree S(U) of the strings of U are bounded
as follows

|F (U)|Q ≤ 2|A|Q − 2 |S(U)|Q ≤ 2|A|Q − 2. (7)

Proof. Let B be a prefix-tree representing the set U ′ = {x1$1, . . . , xm$m}, ob-
tained by appending to each string of U a new symbol $i, i = 1, . . . , m, to make
their suffixes distinct and let B′ be the automaton obtained by minimization of
B. By construction, B has m more states than A, but since all final states of
B are equivalent and merged after minimization, B′ has at most one more state
than A.

By construction, B′ is a suffix-unique automaton and by Proposition 2,
|S(B′)|Q ≤ 2|B′|Q−3. Removing from S(B′) the transitions labeled with the ex-
tra symbols $i and connecting the resulting automaton yields the minimal suffix
automaton S(U). In S(B′), there must be a final state reachable by the tran-
sitions labeled with $i and only such transitions, which becomes non-accessible
after removal of the extra symbols. Thus, S(U) has at least one state less than
S(B′), which gives:

|S(U)|Q ≤ |S(B′)|Q − 1 ≤ 2|B′|Q − 4 = 2|A|Q − 2. (8)

A similar bound holds for the factor automaton F (U) following the argument
given in the proof of Corollary 1. #$

When A is k-suffix-unique with a relatively small k as in our applications of
interest, the following proposition provides a convenient bound on the size of
the suffix automaton.

|F (U)|E ≤ 3||U ||− 3

|S(A)|E ≤ 2|Ak|E + 3kn − 3k − 1 |F (A)|E ≤ 2|Ak|E + 3kn − 3k − 1

13

Application

• Application: large-scale music identification

• Matching audio recording to a large song database

• Approach: learn inventory of music sounds (“phonemes”)

• A song is described by unique music phone sequence

• Each song represented by unique string, set of music
phonemes is the alphabet

14

Music ID Experiments

• In our music ID application, we have

• Factor automaton size scales linearly with # of songs

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
o
n
-u

n
iq

u
e
 s

o
n
g
s

k (suffix length)

(a) (b)

Fig. 6. (a) Comparison of automaton sizes for different numbers of songs.
“#States/Arcs Non-factor” is the size of the automaton A accepting the entire song
transcriptions. “# States factor” and “# Arcs factor” is the number of states and
transitions in the weighted factor acceptor Fw(A), respectively. (b) Number of strings
in U for which the suffix of length k is also a suffix of another string in U .

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position or

the policy of the Government and no official endorsement should be inferred.

References

1. Cyril Allauzen, Mehryar Mohri, and Murat Saraclar. General Indexation of
Weighted Automata – Application to Spoken Utterance Retrieval. In Proceedings
of the Workshop on Interdisciplinary Approaches to Speech Indexing and Retrieval
(HLT/NAACL 2004), pages 33–40, Boston, Massachusetts, May 2004.

2. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34:578–
589, 1987.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985.

4. M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–
86, 1986.

5. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
6. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, Cambridge, UK., 1997.
7. M. Mohri. Finite-state transducers in language and speech processing. Computa-

tional Linguistics, 23(2):269–311, 1997.
8. M. Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied

Combinatorics on Words. Cambridge University Press, 2005.
9. E. Weinstein and P. Moreno. Music Identification with Weighted Finite-State Trans-

ducers. In Proceedings of ICASSP 2007, Honolulu, Hawaii, 2007.

|F (A)|E ≈ 2.1|A|E

Music ID Experiments

• For 15,000+ songs, string set is 45-suffix unique

• Number of “collisions” among song suffixes/factors drops
off rapidly with increasing length

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 0 2000 4000 6000 8000 10000 12000 14000 16000

S
iz

e

Songs

States factor
Arcs factor

States/Arcs Non-factor

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20 25 30 35 40 45

N
o

n
-u

n
iq

u
e
 s

o
n
g
s

k (suffix length)

(a) (b)

Fig. 6. (a) Comparison of automaton sizes for different numbers of songs.
“#States/Arcs Non-factor” is the size of the automaton A accepting the entire song
transcriptions. “# States factor” and “# Arcs factor” is the number of states and
transitions in the weighted factor acceptor Fw(A), respectively. (b) Number of strings
in U for which the suffix of length k is also a suffix of another string in U .

Chandler Street, Fort Detrick MD 21702-5014 is the awarding and administering ac-

quisition office. The content of this material does not necessarily reflect the position or

the policy of the Government and no official endorsement should be inferred.

References

1. Cyril Allauzen, Mehryar Mohri, and Murat Saraclar. General Indexation of
Weighted Automata – Application to Spoken Utterance Retrieval. In Proceedings
of the Workshop on Interdisciplinary Approaches to Speech Indexing and Retrieval
(HLT/NAACL 2004), pages 33–40, Boston, Massachusetts, May 2004.

2. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Complete
inverted files for efficient text retrieval and analysis. Journal of the ACM, 34:578–
589, 1987.

3. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M.T. Chen, and J. Seiferas.
The smallest automaton recognizing the subwords of a text. Theoretical Computer
Science, 40:31–55, 1985.

4. M. Crochemore. Transducers and repetitions. Theoretical Computer Science, 45:63–
86, 1986.

5. M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific, 2002.
6. Dan Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, Cambridge, UK., 1997.
7. M. Mohri. Finite-state transducers in language and speech processing. Computa-

tional Linguistics, 23(2):269–311, 1997.
8. M. Mohri. Statistical Natural Language Processing. In M. Lothaire, editor, Applied

Combinatorics on Words. Cambridge University Press, 2005.
9. E. Weinstein and P. Moreno. Music Identification with Weighted Finite-State Trans-

ducers. In Proceedings of ICASSP 2007, Honolulu, Hawaii, 2007.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 20 40 60 80 100 120

N
o

n
-u

n
iq

u
e

 F
a

c
to

rs

Factor Length

Figure 3. Number of factors occurring in more than one song in S for different factor lengths.

dorsement should be inferred.

7 REFERENCES

[1] E. Batlle, J. Masip, and E. Guaus. Automatic song
identification in noisy broadcast audio. In IASTED
International Conference on Signal and Image Pro-
cessing, Kauai, Hawaii, 2002.

[2] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A re-
view of audio fingerprinting. Journal of VLSI Signal
Processing Systems, 41:271–284, 2005.

[3] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, 20(3):273–297, 1995.

[4] M. Covell and S. Baluja. Audio fingerprinting:
Combining computer vision & data stream process-
ing. In International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Honolulu,
Hawaii, 2007.

[5] J. Haitsma, T. Kalker, and J. Oostveen. Robust au-
dio hashing for content identification. In Content-
Based Multimedia Indexing (CBMI), Brescia, Italy,
September 2001.

[6] Y. Ke, D. Hoiem, and R. Sukthankar. Computer vi-
sion for music identification. In IEEE Computer So-
ciety Conference on Computer Vision and Pattern
Recognition (CVPR), pages 597–604, San Diego,
June 2005.

[7] M.Bacchiani and M. Ostendorf. Joint lexicon,
acoustic unit inventory and model design. Speech
Communication, 29:99–114, November 1999.

[8] M. Mohri. Finite-state transducers in language
and speech processing. Computational Linguistics,
23(2):269–311, 1997.

[9] M. Mohri. Statistical Natural Language Processing.
In M. Lothaire, editor, Applied Combinatorics on
Words. Cambridge University Press, 2005.

[10] M. Mohri, F. C. N. Pereira, and M. Riley.
Weighted Finite-State Transducers in Speech Recog-
nition. Computer Speech and Language, 16(1):69–
88, 2002.

[11] Mehryar Mohri, Pedro Moreno, and Eugene Wein-
stein. Factor automata of automata and applications.
submitted, 2007.

[12] A. Park and T.J. Hazen. ASR dependent techniques
for speaker identification. In International Confer-
ence on Spoken Language Processing (ICSLP), Den-
ver, Colorado, September 2002.

[13] D. Pye. Content-based methods for the management
of digital music. In ICASSP, pages 2437–2440, Is-
tanbul, Turkey, June 2000.

[14] A. L. Wang. An industrial-strength audio search al-
gorithm. In International Conference on Music In-
formation Retrieval (ISMIR), Washington, DC, Oc-
tober 2003.

[15] E. Weinstein and P. Moreno. Music identification
with weighted finite-state transducers. In Interna-
tional Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Honolulu, Hawaii, 2007.

16

Summary

• We have addressed the size of a factor automaton of a
set of strings, or more generally of another automaton

• We have proven substantially better size bounds

• This suggests factor automata are useful for indexing
potentially very large sets of strings

• Our conclusions are verified experimentally in our music
identification system

• In the future, do a finer analysis

• Tighten the term in the -suffix unique bound

17

kn k

Factor Automata of
Automata and Applications

Mehryar Mohri1,2, Pedro Moreno2, Eugene Weinstein1,2

mohri@cs.nyu.edu, pedro@google.com, eugenew@cs.nyu.edu

1 Courant Institute of Mathematical Sciences
2 Google Inc.

mailto:mohri@cs.nyu.edu
mailto:mohri@cs.nyu.edu
mailto:pedro@google.com
mailto:pedro@google.com
mailto:eugenew@cs.nyu.edu
mailto:eugenew@cs.nyu.edu

