
Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Efficient Computation of Throughput Values of
Context-Free Languages

Didier Caucal1 Jurek Czyzowicz2 Wojciech Fraczak2

Wojciech Rytter3

IGM-CNRS, Marne-la-Vallée, France

Dépt d’informatique, Université du Québec en Outaouais, Gatineau PQ, Canada

Inst. of Informatics, Warsaw University, Warsaw, Poland

CIAA 2007, Prague, Czech Republic

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Introduction and Motivation

In the context of system-performance analysis:

Throughput
=

the measure of the worst case speed of processing data
=

the lower bound (the infimum) of the greatest ratio of the length
of processed input to its processing time, taken over all possible

computations

very important in the context of network packet processing

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Introduction and Motivation

In the context of system-performance analysis:

Throughput
=

the measure of the worst case speed of processing data
=

the lower bound (the infimum) of the greatest ratio of the length
of processed input to its processing time, taken over all possible

computations

very important in the context of network packet processing

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Introduction and Motivation

In the context of system-performance analysis:

Throughput
=

the measure of the worst case speed of processing data
=

the lower bound (the infimum) of the greatest ratio of the length
of processed input to its processing time, taken over all possible

computations

very important in the context of network packet processing

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Introduction and Motivation

In the context of system-performance analysis:

Throughput
=

the measure of the worst case speed of processing data
=

the lower bound (the infimum) of the greatest ratio of the length
of processed input to its processing time, taken over all possible

computations

very important in the context of network packet processing

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Introduction and Motivation

In the context of system-performance analysis:

Throughput
=

the measure of the worst case speed of processing data
=

the lower bound (the infimum) of the greatest ratio of the length
of processed input to its processing time, taken over all possible

computations

very important in the context of network packet processing

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I System seen as a set L representing all its execution traces.

I One trace, w ∈ L, can be:

• task 1−−−−−−−→
3bits/1sec

• task 2−−−−−−−→
0bits/2sec

• task 3−−−−−−−→
10bits/1sec

• task 4−−−−−−−→
2bits/1sec

•

The throughput of a trace is its mean weight, i.e.:

ρ(w)
def
=

ρ(w)

|w |
=

3 + 0 + 10 + 2

1 + 2 + 1 + 1
= 3bits/sec

I The throughput of the system is defined as the infimum of the
mean weight of all traces of L:

throughput(L)
def
= inf {ρ(w) | w ∈ L}.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I System seen as a set L representing all its execution traces.

I One trace, w ∈ L, can be:

• task 1−−−−−−−→
3bits/1sec

• task 2−−−−−−−→
0bits/2sec

• task 3−−−−−−−→
10bits/1sec

• task 4−−−−−−−→
2bits/1sec

•

The throughput of a trace is its mean weight, i.e.:

ρ(w)
def
=

ρ(w)

|w |
=

3 + 0 + 10 + 2

1 + 2 + 1 + 1
= 3bits/sec

I The throughput of the system is defined as the infimum of the
mean weight of all traces of L:

throughput(L)
def
= inf {ρ(w) | w ∈ L}.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I System seen as a set L representing all its execution traces.

I One trace, w ∈ L, can be:

• task 1−−−−−−−→
3bits/1sec

• task 2−−−−−−−→
0bits/2sec

• task 3−−−−−−−→
10bits/1sec

• task 4−−−−−−−→
2bits/1sec

•

The throughput of a trace is its mean weight, i.e.:

ρ(w)
def
=

ρ(w)

|w |
=

3 + 0 + 10 + 2

1 + 2 + 1 + 1
= 3bits/sec

I The throughput of the system is defined as the infimum of the
mean weight of all traces of L:

throughput(L)
def
= inf {ρ(w) | w ∈ L}.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I System seen as a set L representing all its execution traces.

I One trace, w ∈ L, can be:

• task 1−−−−−−−→
3bits/1sec

• task 2−−−−−−−→
0bits/2sec

• task 3−−−−−−−→
10bits/1sec

• task 4−−−−−−−→
2bits/1sec

•

The throughput of a trace is its mean weight, i.e.:

ρ(w)
def
=

ρ(w)

|w |
=

3 + 0 + 10 + 2

1 + 2 + 1 + 1
= 3bits/sec

I The throughput of the system is defined as the infimum of the
mean weight of all traces of L:

throughput(L)
def
= inf {ρ(w) | w ∈ L}.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I A simple system allows a representation by a regular language
(a finite automaton) with each alphabet symbol representing
a constant time task consuming a constant amount of data.

In such a case any standard algorithm for minimum mean cycle

calculation can be used

I When more complex systems are analyzed and a better
accuracy is required, context-free grammars have to be used
to adequately describe the behavior of the systems.

The throughput of a system is better approximated by the

context-free grammar throughput computation.

I In this talk we are concerned with an Efficient Computation of
Throughput of Context-Free Languages.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I A simple system allows a representation by a regular language
(a finite automaton) with each alphabet symbol representing
a constant time task consuming a constant amount of data.

In such a case any standard algorithm for minimum mean cycle

calculation can be used

I When more complex systems are analyzed and a better
accuracy is required, context-free grammars have to be used
to adequately describe the behavior of the systems.

The throughput of a system is better approximated by the

context-free grammar throughput computation.

I In this talk we are concerned with an Efficient Computation of
Throughput of Context-Free Languages.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I A simple system allows a representation by a regular language
(a finite automaton) with each alphabet symbol representing
a constant time task consuming a constant amount of data.

In such a case any standard algorithm for minimum mean cycle

calculation can be used

I When more complex systems are analyzed and a better
accuracy is required, context-free grammars have to be used
to adequately describe the behavior of the systems.

The throughput of a system is better approximated by the

context-free grammar throughput computation.

I In this talk we are concerned with an Efficient Computation of
Throughput of Context-Free Languages.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I A simple system allows a representation by a regular language
(a finite automaton) with each alphabet symbol representing
a constant time task consuming a constant amount of data.

In such a case any standard algorithm for minimum mean cycle

calculation can be used

I When more complex systems are analyzed and a better
accuracy is required, context-free grammars have to be used
to adequately describe the behavior of the systems.

The throughput of a system is better approximated by the

context-free grammar throughput computation.

I In this talk we are concerned with an Efficient Computation of
Throughput of Context-Free Languages.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

I A simple system allows a representation by a regular language
(a finite automaton) with each alphabet symbol representing
a constant time task consuming a constant amount of data.

In such a case any standard algorithm for minimum mean cycle

calculation can be used

I When more complex systems are analyzed and a better
accuracy is required, context-free grammars have to be used
to adequately describe the behavior of the systems.

The throughput of a system is better approximated by the

context-free grammar throughput computation.

I In this talk we are concerned with an Efficient Computation of
Throughput of Context-Free Languages.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

Via Parikh theorem:
I Parikh showed that the commutative image of every

context-free language is the commutative image of some
regular language.

I The mean weight of a word w is independent of the order of
symbols used in w . Hence, the alphabet commutativity may
be used.

I Consequently, for every context-free language L we can find a
regular language R such that throughput(L) = throughput(R).

	 Expensive!
A direct transformation of a language given by a context-free

grammar G to a commutatively equivalent regular expression (or a

finite automaton) may yield the result of an exponential size with

respect to the size of G .

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

By approximation:
I In 2005, we gave an O(n2 log(max−min

ε)) algorithm, computing
an ε-approximation of the throughput of a CFL, where n is the
size of the grammar, and max (min) is the maximum
(respectively, minimum) letter weight of the alphabet.

⊕ A satisfactory solution from a practical point of view

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

By approximation:
I In 2005, we gave an O(n2 log(max−min

ε)) algorithm, computing
an ε-approximation of the throughput of a CFL, where n is the
size of the grammar, and max (min) is the maximum
(respectively, minimum) letter weight of the alphabet.

⊕ A satisfactory solution from a practical point of view

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Via Parikh theorem
By approximation

Existing solutions

By approximation:
I In 2005, we gave an O(n2 log(max−min

ε)) algorithm, computing
an ε-approximation of the throughput of a CFL, where n is the
size of the grammar, and max (min) is the maximum
(respectively, minimum) letter weight of the alphabet.

⊕ A satisfactory solution from a practical point of view

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Outline of our algorithm

Algorithm “Throughput-Calculation”
INPUT: Context-free grammar G .

1. Compute G2, a 2-reduced form for G .

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2), i.e., throughput(L(G ′)) = throughput(L(G)).

3. Find the throughput of the finite language L(G ′).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Outline of our algorithm

Algorithm “Throughput-Calculation”
INPUT: Context-free grammar G .

1. Compute G2, a 2-reduced form for G .

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2), i.e., throughput(L(G ′)) = throughput(L(G)).

3. Find the throughput of the finite language L(G ′).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Outline of our algorithm

Algorithm “Throughput-Calculation”
INPUT: Context-free grammar G .

1. Compute G2, a 2-reduced form for G .

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2), i.e., throughput(L(G ′)) = throughput(L(G)).

3. Find the throughput of the finite language L(G ′).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Outline of our algorithm

Algorithm “Throughput-Calculation”
INPUT: Context-free grammar G .

1. Compute G2, a 2-reduced form for G .

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2), i.e., throughput(L(G ′)) = throughput(L(G)).

3. Find the throughput of the finite language L(G ′).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Notation and assumptions

I G = (Σ,N,P,S) — a context-free grammar

Context-free grammars under consideration are 2-reduced
grammars. I.e.:

- trimmed (there are no useless nonterminals); and
- each of its production rules has one or two symbols on the

right-hand side.

I ρ — weight function ρ : Σ → IN

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Notation and assumptions

I G = (Σ,N,P,S) — a context-free grammar

Context-free grammars under consideration are 2-reduced
grammars. I.e.:

- trimmed (there are no useless nonterminals); and
- each of its production rules has one or two symbols on the

right-hand side.

I ρ — weight function ρ : Σ → IN

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Notation and assumptions

I G = (Σ,N,P,S) — a context-free grammar

Context-free grammars under consideration are 2-reduced
grammars. I.e.:

- trimmed (there are no useless nonterminals); and
- each of its production rules has one or two symbols on the

right-hand side.

I ρ — weight function ρ : Σ → IN

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Notation and assumptions

I G = (Σ,N,P,S) — a context-free grammar

Context-free grammars under consideration are 2-reduced
grammars. I.e.:

- trimmed (there are no useless nonterminals); and
- each of its production rules has one or two symbols on the

right-hand side.

I ρ — weight function ρ : Σ → IN

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

- Given a positive real value t, we define throughput balance of L with

respect to t as: tb(L, t)
def
= min {(ρ(w)− |w |t) | w ∈ L}.

- If tb(L, t) > 0 (resp., tb(L, t) < 0) then language L has a “surplus”
(resp., “deficit”) in achieving througput t.
- tb(L, t) corresponds to the minimal weight of a word in L with respect

to the modified weight function ρt : Σ 7→ IR defined as ρt(a)
def
= ρ(a)− t.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

I Let L be a finite language and m ∈ IN the maximum length of
a word of L. The minimum difference between mean weight of
two words of L is not smaller than 1

m2 .

Theorem. There exists an O(n log mdρ) time algorithm that
computes throughput(L).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

I Let L be a finite language and m ∈ IN the maximum length of
a word of L. The minimum difference between mean weight of
two words of L is not smaller than 1

m2 .

Theorem. There exists an O(n log mdρ) time algorithm that
computes throughput(L).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput of a finite language

Observations:

I In the case of a finite language L there always exists a word in
L, whose mean weight equals the throughput of L.

I Given a grammar G of size n for a finite language L and a
positive real value t, we can decide in O(n) time whether
throughput(L) ≥ t.

I Let L be a finite language and m ∈ IN the maximum length of
a word of L. The minimum difference between mean weight of
two words of L is not smaller than 1

m2 .

Theorem. There exists an O(n log mdρ) time algorithm that
computes throughput(L).

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Main observation:
The throughput of L(G) is either

1. equal to the mean weight of some word w ∈ L(G), whose
syntax tree is not recursive (i.e., at most of depth |N|);

The set Lf (G) of such words is finite

2. or equal to the mean weight of some word w1w2 ∈ Σ+, such
that there exists a derivation X → w1Xw2 with the
corresponding syntax tree of depth not bigger than |N|.

w1 w2
X

X

The set Lr (G) of such words is finite

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput invariant grammar transformation

Let G = (Σ,N,P,S) be a 2-reduced grammar of size n.

I There exists a grammar Gf of size O(n2) defining Lf (G).

I There exists a grammar Gr of size O(n3) defining Lr (G).

Let G ′ = Fin(G) be the disjoint union of Gf and Gr .

I G ′ defines a finite language and is of size O(n3)

I throughput(L(G ′)) = throughput(L(G))

I All syntax trees of G ′ are of heigh at most |N|+ 1, i.e., the
longest word generated by G ′ is 2|N|.

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Outline of the algorithm
Notation and assumptions
Throughput of a finite language
Throughput invariant grammar transformation
Throughput computation of a context-free language

Throughput computation of a context-free language

Algorithm “Throughput-Calculation”

INPUT: Context-free grammar G of size n.

1. Compute G2, a 2-reduced form for G .
— in O(n) time, yielding G2 of size O(n) —

2. Compute a throughput invariant finite language grammar
G ′ = Fin(G2)
— in O(n3) time, yielding G ′ of size O(n3) —

3. Find the throughput of L(G ′) and report it as the throughput
of L(G).
— in O(n4 + n3 log d) time —

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Conclusions

I We presented the first polynomial-time algorithm computing
the throughput of context-free languages
The problem may be seen as a generalization of the minimal mean weight

cycle problem for finite digraphs, to the case of the class of graphs

generated by context-free grammars.

I Unfortunately the complexity of our approach is still high from
the practical point of view.
How to improve the proposed solution, possibly by using a completely

different approach exploiting explicitly the commutative property?

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Conclusions

I We presented the first polynomial-time algorithm computing
the throughput of context-free languages
The problem may be seen as a generalization of the minimal mean weight

cycle problem for finite digraphs, to the case of the class of graphs

generated by context-free grammars.

I Unfortunately the complexity of our approach is still high from
the practical point of view.
How to improve the proposed solution, possibly by using a completely

different approach exploiting explicitly the commutative property?

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Conclusions

I We presented the first polynomial-time algorithm computing
the throughput of context-free languages
The problem may be seen as a generalization of the minimal mean weight

cycle problem for finite digraphs, to the case of the class of graphs

generated by context-free grammars.

I Unfortunately the complexity of our approach is still high from
the practical point of view.
How to improve the proposed solution, possibly by using a completely

different approach exploiting explicitly the commutative property?

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

Introduction and Motivation
Existing solutions

Polynomial time exact solution
Conclusions

Conclusions

I We presented the first polynomial-time algorithm computing
the throughput of context-free languages
The problem may be seen as a generalization of the minimal mean weight

cycle problem for finite digraphs, to the case of the class of graphs

generated by context-free grammars.

I Unfortunately the complexity of our approach is still high from
the practical point of view.
How to improve the proposed solution, possibly by using a completely

different approach exploiting explicitly the commutative property?

D. Caucal, J. Czyzowicz, W. Fraczak, and W. Rytter Throughput of Context-Free Languages

	Introduction and Motivation
	Existing solutions
	Via Parikh theorem
	By approximation

	Polynomial time exact solution
	Outline of the algorithm
	Notation and assumptions
	Throughput of a finite language
	Throughput invariant grammar transformation
	Throughput computation of a context-free language

	Conclusions

